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Abstract 
It is known that the prime-number-formula at any distance from the origin 
has a systematic error. It is shown that this error is proportional to the square 
of the number of primes present up to the square root of the distance. The 
proposed completion of the prime-number-formula in the present paper elimi-
nates this systematic error. This is achieved by using a quickly converging recur-
sive formula. The remaining error is reduced to a symmetric dispersion of the 
effective number of primes around the completed prime-number-formula. The 
standard deviation of the symmetric dispersion at any distance is proportional to 
the number of primes present up to the square root of the distance. There-
fore, the absolute value of the dispersion, relative to the number of primes is 
approaching zero and the number of primes resulting from the prime-number- 
formula represents the low limit of the number of primes at any distance. 
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1. Introduction 

Writing the integral of de la Valée Poussin as summing over all integers the local 
density of primes results in a first approximation for the number of primes. The 
summing may be written as two steps: First summing up the local density of primes 
within sections of length ( c ) and then summing up to over all the ( c ) sections. 
As the first simplification over each section, the average of the local density is taken. 
A second simplification is taking instead the average of the local density of primes 
within each section, the density within the last section at the distance (c). This sim-
plification results in the well-proved prime-number-formula. It is shown that the 
difference between the first simplification and the prime-number-formula is pro-
portional to the square of the number of primes present up to the distance ( c ). 

Further, it is shown that the error due to the first simplification is proportion-
al to the number of primes present up to the distance ( c ). This proportionali-
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ty allows for a correction of the first simplification. In fact, this correction may 
be applied recursively. Avoiding the second simplification, the resulting formula 
gives without systematic error the number of primes at the distance (c).  

2. Evaluation of the Number of Primes 

De la Valée Poussin proved 1899, (ref. [1]), that ( ( ) ( )c Li cπ ≈ ), the integral of 
the local logarithmic density of free positions ( ( )1 ln c ). Approximating the 
integral by the sum of the logarithmic density over all integers is in the following 
named as sum over all integers: 

( ) ( ) ( )2

1 d
ln

c

c O c c
c

π + ≈ ∫ ; ( ) ( )2

1
ln

c
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n

c
c

π
=

≈ ∑             (1.1) 

The above sum may be written as summing up first over all integers within the 
sections of length ( c ) and then summing up to over all the ( c ) sections of the 
length ( c ). Taking the average value over each section and summing up to over 
the sections is the first simplification, in the following used as sum over all sections: 
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The well proven prime-number-formula PNF results from a second simplifi-
cation of the above approximation by taking for each of the sections the smallest 
value of the density at ( j c= ): 
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1 1 lnln ln

c c

j j

c c c S c
cj c c c= =

> = =∑ ∑             (1.3) 

The difference between the first simplification of the number of primes and the 
value resulting from the PNF, (refs. [2] [3]), is proportional to ( ( ) ( )22R c S c= ), 
the square of the number of primes up to the distance ( c ): 
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because value ( cγ ) quickly converges to a constant value, as shown in Annex A1: 
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Thus, the error of the second simplification resulting in the PNF at the distance 
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(c) is proportional to ( ( )2R c ), the square of the number of primes present at 
( c ). The factor of proportionality is evaluated in Annex A1 as ( 0.2829cγ = � ). 

The relation between the error of the PNF at (c) and the square of the 
number of primes up to ( c ) is invariant. The constant factor of propor-
tionality ( cγ ) is an inherent propriety of the number of primes. 

The first simplification replacing (
( )( )1

1
ln

j c

n j c n= −
∑ ) by (

( )ln
c

j c
) in (1.2) ori-

ginates an error ( ( )error cπ∆ ). 

It can be proved, that this error is proportional to ( ( )R c ), the number of the 
series of multiples of primes, which are covering positions at (c). This is because 
each of the series of multiples of primes contributes its share to the error: 

( )
( ) ( ) ( )

1 1
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ln ln

c c

error sec sec sec
j j

c cc R c
j c c c

π γ γ γ
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Herewith the error at the distance (c)—meaning the difference between the 
effective number of primes ( ( )cπ ) and the value resulting from the first simpli-
fication ( ( )_ _sec appr cπ ), using the average value of the density over the sections in 
(1.2)—is proportional to the number of primes up to ( c ). The factor of pro-
portionality is evaluated in annex 2.2: 

( ) ( ) ( ) ( )_ _error sec appr secc c c R cπ π π γ∆ = − = ; 0.03551secγ = −       (1.6) 

Because the error of the first simplification resulting from the procedure of 
taking the average of the number of primes over the sections—evaluated as sum 
over all sections (1.2)—is proportional to the number of primes present up to 
the root of the distance, the approximating function (1.2) may be corrected cor-
respondingly. The corrected approximating function, the corrected sum over 
all sections is instead of (1.2): 
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But herewith for ( ( )effR c ) and for ( ( )effS c ) it may be written recursively: 
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This allows writing for the complete-prime-number-formula (CPNF): 
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This formula converge very fast: Two steps with ( 2m = ) are already sufficient. 
The results of the CPNF are evaluated in Annex A3 and compared with the 

effective number of primes. Compared with another approximating formula (refs. 
[4] [5]), there is no systematic error. The remaining error is the dispersion 
around the CPNF. It is proportional to the number of primes up to ( ( )R c ), the 
series of multiples that are covering positions at (c). Therefore, the dispersion of 
the effective number of primes around the CPNF, relative to ( ( )R c ) has constant 
boundaries, symmetrical around zero, as demonstrated in Annex A2 and Annex 
A3: 
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The standard deviation of the relative dispersion is: 
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It is evaluated in Annex A4. It is found that the standard deviation is constant 
over the distance. This constant is evaluated in Annex A4 as ( _ 0.16238SDF π∆ = ), 
it is again an inherent property of the prime numbers. 

3. Boundaries of the Dispersion of the Number of Primes  
around the CPNF 

Regarding Figure A3.1, it is obvious, that the dispersion shows oscillations of 
different frequencies: There are different oscillations with high, middle, and low 
frequencies observable. The evaluation of the number of primes with the CPNF 
correct the error of the average on the long range, but at the same time it is the 
origin of oscillations due to the summation procedures over ( ( )R c , ( )R c ,

( )R c , � ) subsections. Each time these values change by unity, there is a 
discontinuity in the summation procedure. At the distance (c), with ( ( )R c ) be-
ing the number of primes present up to ( c ), the summing of the local density 
values over (j) is influenced only by ( c ). If for the distance succeeding primes 
were taken, as in the above evaluations, the size of the gaps between primes 
would account for the long-range fluctuations. If ( ( )R c ) changes by unity, there 
is a jump: At the change of the distance at certain number of primes ( ( )nP ) the 
summation limit changes  

from ( ( )n R c= , ( )nc P= ) to ( ( ) 1n R c= + , ( )1nc P += ), 
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The difference makes  
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For illustration, the discontinuity of the approximating function is evaluated and 
illustrated in Annex A5. 

Thus, the dispersion of the effective number of the primes around the best es-
timate value—due to the evaluation procedure of the best estimate value—is 
proportional to the number of primes, the series of multiples of which primes 
cover positions at the distance (c). Another source of dispersion is the variable 
gap between the primes. Concerning the complete dispersion, the following 
lemma may be formulated: 

Lemma 2.1: 
The boundaries of the dispersion of the number of primes at any distance 

(c) are proportional to ( ( )R c ), the number of the series of multiples of 
primes, which are covering positions at (c). 

Proof: The cover interval is defined as the interval of the size ( 2 c ) with 
centrum at the distance (c). Shifting the centrum of the cover interval to the ori-
gin, all the series of multiples of the ( ( )R c ) primes coincide, and each series 
covers at least two positions within the cover interval, around the origin. Such a 
complete coincidence occurs next times at the distance equal to the product of 
all first ( ( )R c ) primes. 

In the following, only the series of multiples of the primes in the range ( ( )nP , 

( ) ( )R c n R c< < ) will be taken into consideration. This does not influence the 
validity of the proof, since for large distances nearly all primes are in this range. 

At any distance ( c c� ) all of the series of multiples of primes are shifted 
with reference to (c), except the ones coinciding at (c). All these shifted series li-
berate by the shifting two positions within the cover interval. The series of mul-
tiples of some primes—after the shifting—may cover again two positions, which 
are liberated by the shifting of the series of multiples of two other primes. This is 
only possible, if the corresponding prime is—before the shifting—equidistant to two 
other primes. It can be proved, that the density of the number of such three equi-  

distant primes at the distance (c) is (
( )
2

3ln
c
c

δ ; 2 1.320323632δ = ), thus (
( )

2
2ln c

δ ) 

times smaller, then the density of primes.  
Because of this fact, the effect of the multiple coverage after the shifting may 

be neglected: On the average, each shifted series of multiples of primes liberates 
two positions within the cover interval and covers only one. 

Herewith the shifted series of multiples of the ( ( ) ( )R c R c− ) primes leave 
on the average ( ( ) ( )R c R c− ) positions free within the cover interval. These 
free positions are for a large distance about equally distributed between the up-
per and the lower part of the cover interval. Therefore, within the sections of the 
length ( c ) at the arbitrary distance (c) there are, on the average  
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( ( ) ( )( ) ( )1 1
2 2

R c R c R c− ≈ ) positions left free.  

Besides the effect of the multiple coverages, there are some other effects, which 
may be the reason for divergence from the average value ( ( ) 2R c ). All the fol-
lowing effects may be neglected: 

The effect of multiple coincidences between the series of multiples of primes: 
The number of coinciding primes ( ( )q Q c= ) is limited by the fact, that their 
product must be smaller than the distance (c). The largest number of coinci-
dences occurs, if the first (q) primes are coinciding: 

( ) ( )
1

q

p
p

Per q P
=

= ∏ ; ( ) ( )Q c Per q= ; ( ) ( )1Per q c Per q≤ < +      (2.3) 

The number ( ( )Q c ) is growing very slowly with the distance (c). Its effect may 
be neglected against ( ( ) 2R c ), the average value of free positions remaining. 

The effect of the shifting outside of the cover interval: Each series of mul-
tiples considered may cover two positions within the cover interval after the 
shifting. By the shifting, the covering capability of some series of multiples of 
primes may be reduced by shifting outside of the limits of the cover interval one 
of the covered positions. The number of covered positions within the cover in-
terval may only be reduced by this effect, herewith rising the remaining number 
of the remaining free positions. The number of the primes, which may participate  

in this effect is limited, therefore the effect may be neglected against ( ( )1
2

R c ), 

the average value of free positions remaining. 

Therefore, the total dispersion is proportional to ( ( )1
2

R c ), as stated in the 

lemma and concluding the proof. 
With this lemma the dispersion of the number of primes within each section 

of the length ( c ) at the distance ( j c ) is certainly smaller than the average  

number of free positions left ( ( )1
2

R c ). Therefore, the difference between the  

effective value of primes up to this distance ( ( )cπ ) and its approximation 
( ( )appr c ) is limited to the number of the series of multiples of primes, which are 
covering positions at this distance: 

( ) ( )_ 2 lnbounds eff
cc
c

π = ± ; 

( ) ( ) ( ) ( ) ( ) ( )_ _ lnbounds bounds bounds appr bounds eff
cc c c c R c
c

π π π π= + = ± = ±    (2.4) 

Lemma 2.1 is in accordance with the fact—demonstrated in (1.11) and in 
Annex A4—that the standard deviation of the dispersion around the best esti-
mate approximation of the number of primes—resulting from the CPNF, and 
relative to ( ( )R c )—is constant over the distance (c). The constancy of the 
standard deviation of the relative dispersion around the best estimate ap-
proximation of the number of primes—resulting from the CPNF—is an inhe-
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rent property of the prime numbers. 
From Lemma 2.1, the boundary of the dispersion of the effective number of 

primes around the value resulting from its best estimate expression is propor-
tional to the number of primes, which are covering position at any distance from 
the origin ( ( )K R c⋅ ), with (K) being a constant factor of any size): 

( ) ( )( ) ( )( )_lim lim limdisp bounds effc c c
c K c K R cπ π

→∞ →∞ →∞
= ⋅ = ⋅ = ∞         (2.5) 

With this boundary growing to infinity, an additional proof for the fact, which 
the upper limit of the gap between consecutive primes is unlimited, (see ref. 
[6]). On the other hand, it follows, that the width of the boundaries of the dis-
persion of the number of primes, relative to the value resulting from its best es-
timate expression, is approaching zero with the distance growing without limit: 

( )
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( )

( )

_
ln 2: lim lim 0

ln

disp bounds eff

c c
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cc K c K R c K

cc c S c c
c

π π
π π →∞ →∞

 ⋅
 
 ⋅ ⋅ ⋅

= = = = 
 
  
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   (2.6) 

Therefore, the series of primes approaches a continuum for large distances. 
Lemma 2.2: 
For any distance from the origin (c) large enough, the difference between the 

values resulting from the complete-prime-number-formula (CPNF) and from 
the prime-number-formula (PNF) is larger than the width of the dispersion of 
the number of primes ( ( )R c ) multiplied by any constant factor ( 1K ≥ ). 

Proof: The difference between the value of the (CPNF) and the (PNF) is with 
(1.3) growing proportional to ( ( )2R c ), with the factor of proportionality ( cγ ). 
The width of the dispersion of the number of primes grows with Lemma 2.1 only 
proportional to ( ( )R c ). 

For any sufficiently large distance ( ( )limit cc cγ < ) the difference between the 
value of the (CPNF) and the (PNF) outgrows ( ( )K R c⋅ ) for any (K): 

( ) ( )
( ) ( )lim c

c

c S c
R c

K R c K
π γ

→∞

−
= = ∞

⋅
 

as stated in the lemma and concluding the proof. 
From this Lemma 2.2 follows, that the PNF is the low limit of the number of 

primes. Because the number of primes has a low limit function, growing to infinity, 
it is infinite itself: An additional proof for the infinity of the number of primes. 

4. Conclusions 

For large distances, the CPNF gives a result for the number of primes as good as 
de la Valée Poussin’s formula: There is no systematic error involved. The expli-
cation for this fact is that de la Valée Poussin’s formula uses the integral of the 
local density given by the inverse of the logarithm, while Equation (1.0) uses the 
summation of the same values, applied over the sections of the length ( c ), 
with recurring correction. This allows to formulate the following lemma: 
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Lemma 3.1: 
The complete-prime-number-formula (CPNF) gives the number of primes 

with increasing efficiency for all distances from the origin. 
Proof: The approximating formula (1.9) is based on the recurring application 

of the correction of the replacement of the de la Valée Poussin integral: 

( ) ( )
2

1 1 1ln ln ln

ccc

sec sec
j j j

cc c
j c j c j c

γ γ
= = =

− + +
 
 
 

∑ ∑ ∑ �  

For large distances (c) each of the components of the correction goes over into 
the integral of the inverse of the logarithm of the distance (c): 

( ) ( )1 0

1lim d
lnln

cc

c j

c c
cj c→∞ =

 
  =
 
 
∑ ∫ ; 

( ) ( )1 0

1 d
lnln

cc

sec sec
j

c c
cj c

γ γ
=

=∑ ∫  

For the distance (c) growing to infinity, the contribution of the successive 
components—relative to the effective number of primes approaches zero. The 
remaining first component results in the de la Valée Poussin integral as stated in 
the lemma and concluding the proof. 

The first evaluation of the factor ( cγ ) in (1.6) and (1.7) is somewhat heuristic 
since the convergence is not strongly proved. But the application of this factor in 
the CPNF results in a converging approximation of the effective number of primes. 
This fact justifies the evaluation procedure of the factor ( secγ ) and proves the va-
lidity of its value. The evaluation of the factor ( secγ ) is repeated in Annex A3 
with the results of the CPNF. It gives the exact value. 
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Annexes 

All above formula are checked in the following annexes with numeric results. 
The annexes together compose executable files in MATHCAD from PTC. The 
syntax corresponds to the MATHCAD syntax. Especially the symbols ( ( )ceil x ) 
and ( ( )floor x ) stand for rounding up or down a real value to the next larger 
respectively to the next smaller integer. 

Annex 0: General Data, Vectors, and Functions 

In the following all formula are checked with numeric results. The set of primes 
and the listed known formula below are used for this checking. Some vectors of 
the results of the known formula, which are often used, are evaluated and the 
results are saved.  

The set of primes is read from a file: ( ( ): READPRN "PRimes_large.prn"P = ). 
The number of primes in the set and their numbering are:  
( ( ): rows 1 5003713PN P= − = , : 1, 2, , Pn N= � ). 

The number of primes up to (c) is approximated with the prime-number- 
formula ( ( )S c ). At (c) only the multiples of the primes up to ( c ) are cover-
ing free integral positions ( ( ) ( )R c S c= ). The numbers of these primes are 
given as well: 

( )( ) ( )( )1S c S cP c P +< < ; ( ) ( ) ( ) ( )
: floor

ln lnc
c cc S c
c c

π
 

> = ≈  
 

       (A0.1) 

( )( ) ( )( )1R c R cP c P +< < ; ( ) ( ) ( ) ( ) ( )
: floor

ln ln
c

c cc S c R c
c c

π
 
 > = = ≈
 
 

 

For the evaluation of the effective number of free positions up to the distance 
(c) the routine ( ( ),next lastn c n ) resulting the index (n) of the prime next to any 
integer is needed ( ( ) ( )1n nP c P +≤ < ). The evaluation starts either at the last eva-
luated index ( lastn ), or at the index resulting from the prime-number-formula. 
This, to shorten some of the evaluation processes. Further functions are the in-
dexes of the closest primes to any distance, and to the square root of any dis-
tance, as well as a short expression for the exponential function: 

= ; ;  (A0.2) 

In the following all functions, which are evaluated for illustration, are eva-
luated at sparse distances, equal to multiples of the square root of the largest  
distance considered (

( ) ( )k Psp Nc k P= ): 

nnext c nlast, ( )

n S c( )← nlast 1=if

n nlast← otherwise

n n 1+←

P n( ) c≤while

Res n 1−←

c 0≠if

Res 0← otherwise

Seff c( ) nnext c 1, ( ):= Reff c( ) nnext c 1, ( ):= exp_ x( ) ex:=
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( ):
Psp Nc P∆ = ; ( ): floor 1 9277PN

limit
sp

P
k

c
 

= − = 
∆  

; 

: 1, 2, , limitk k= � ; 
( )

:
ksp spc k c= ⋅ ∆                 (A0.3) 

The vectors of the indexes of the primes corresponding to these sparse distances,  
respectively to the next smaller primes (

( )
( )

( )1
k

sp spk k
spn n

P c P
+

   
      

< < ) are evaluated  

for ( ( )sp cπ ), ( ( )sp cπ ), and ( ( )sp cπ ). They are evaluated once and written 
to files. They are read from these files: 

( ) ( )
: ,1

k ksp next spn cπ  =   ; 
( ) ( )_ : ,1
k ksqr sp next spn cπ  =   

;  

( ) ( )_ _ : ,1
k ksqr sqr sp next spn cπ  =   

               (A0.4) 

( )WRITEPRN "index_distance_sp.prn" : spπ= ; 

( ): READPRN "index_distance_sp.prn"spπ = ; ( )length 9278spπ =  

( ) _WRITEPRN "n_sqr_sp_primes.prn" : sqr spπ= ; 

( )_ : READPRN "n_sqr_sp_primes.prn"sqr spπ = ; ( )_length 9278sqr spπ =  

( ) _ _WRITEPRN "n_sqr_sqr_sp_primes.prn" : sqr sqr spπ= ; 

( )_ _ : READPRN "n_sqr_sqr_sp_primes.prn"sqr sqr spπ =  

Annex 1. Evaluation of the Number of Primes as Sum over Sections 

The number of primes as sum over sections is evaluated with (1.2) as a first sim-
plification: 

( ) ( )_ _
1 ln

c

sec appr
j

cc
j c

π
=

= ∑                    (A1.1) 

The number of primes resulting from the second simplification (1.3) results 
the PNF. The difference between the first and the second simplification results 
the error of the PNF. At the dinstance (c) it is proportional to ( ( )2R c ), the 
square of the number of primes covering positions at the distance ( c ). The 
factor of proportionality is evaluated over the distance with (1.4): 

 
( )

( )

( )

( )

( )

( )

_ _
1

ln1 1:
2ln

sp k
k

k k

k k

ceil c
sp

c appr sp
j

sp sp

c
c

R c j c
γ

 
  

=

  
   = −          

∑      (A1.2) 

The factors are evaluated once and written to a file. They are read from this 
file:  

( ) _ _WRITEPRN "gamma_c_appr_sp.prn" : c apprγ= ; 

( )_ _ : READPRN "gamma_c_appr_sp.prn"c apprγ =  

The factors are approaching a constant value: (Figure A1.1) 

( )_ _ _: 0.28312
klimit

c appr c apprγ γ= =  
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Figure A1.1. Relation of the error of the prime-number-formula to the square of the num-
ber of the series of multiples of primes, which are covering positions, over the distance. 

 
The approximating function is evaluated at sparse distances, respectively at  

the next smaller prime to these distances (
( )

( )
( )1

k
sp spk k

spn n
P c P

+
   
      

< < ) with (1.2).  

They are evaluated similarly as well at the square root and at the square root of 
the square root of these sparse distances. The evaluation at the next smaller 
prime corresponding to each distance assures that the evaluated numbers of the 
primes correspond exactly to the distances considered: 

 
( )

( )
_ _ _:

k
sp k

sec appr sec appr P
π

π π  
  

 
=  

  
; 

( )
( )_

_ _ _ _:
k

sqr sp k
sqr sec appr sec appr P

π
π π  

  

 
=  

  
  (A1.3) 

( )
( )_ _

_ _ _ _ _:
k

sqr sqr sp k
sqr sqr sec appr sec appr P

π
π π  

  

 
=  

  
 

They are evaluated once and written to files. They are read from these files:  

( ) _WRITEPRN "pr_sec_appr_sp_t.prn" : sec apprπ= ; 

( )_ : READPRN "pr_sec_appr_sp_t.prn"sec apprπ = ;  

( ) _ _WRITEPRN "pr_sqr_sec_appr_sp_t.prn" : sqr sec apprπ= ; 

( )_ _ : READPRN "pr_sqr_sec_appr_sp_t.prn"sqr sec apprπ = ;  

( ) _ _ _WRITEPRN "pr_sqr_sqr_sec_appr_sp_t.prn" : sqr sqr sec apprπ= ;

( )_ _ _ : READPRN "pr_sqr_sqr_sec_appr_sp_t.prn"sqr sqr sec apprπ =  

Annex A2. Evaluation of the Factor of Correction of the First  
Simplification 

The result of the first simplification (1.2) giving the sum over the sections of the 
density of primes has an error. This error is proportional to the number of 
primes up to ( c ). The error relative to ( ( )cπ ) results the factor of correc-
tion. Assuming the factor of correction ( secγ ) is constant over the distance (c), it 
may be evaluated as relation of the average error to the effective number of 
primes ( ( ) ( )kspcπ π= ). The average error is: 

( ) ( ) ( )_:
k k ksec sec appr spπ π π∆ = − ; 

( ) ( )_
1

1:
k j

k

sec av sec
jk

π π
=

 ∆ = ∆ ∑      (A2.1) 

The value of the factor of correction is herewith: 

0 4 103
× 8 103

×

0
0.1
0.2
0.3
0.4

γc_appr_ k( )

γc_appr

k
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Figure A2.1. Convergence of the relation of the average relative error of the first simplification (1.2) to the final 
constant value ( secγ ). 

 

( ) ( )
( )

_sec av
sec

c
c

c

π
γ

π

∆
= ; 

( )

( )

( )

_

_ _

2
: k

k
k

sec av

sec_
sqr sec appr

π
γ

π

∆
= ; 

( )
: 0.035513

klimit
sec sec_γ γ= = − (A2.2) 

Figure A2.1 shows the independence of the factor of correction ( secγ ) from 
the distance. The averaging process (A2.1) to evaluate the factor of correction is 
therefore justified. This factor ( 0.035513secγ = − ) is invariant, an inherent 
property of the prime numbers:  

Annex A3. Evaluation of the CPNF 

The CPNF (1.9) is evaluated with the following routine: 

;  (A3.1) 

The results of the CPNF are evaluated once at sparse values of the distance 
(

( )kspc ), for (c), ( c ) and ( c ). They are written to files and are read from 
these files: 

( )WRITEPRN "Pi_appr_sp.prn" : apprπ= , 

( ): READPRN "Pi_appr_sp.prn"apprπ = , 

( ) _WRITEPRN "Pi_sqr_appr_sp.prn" : sqr apprπ= , 

( )_ : READPRN "Pi_sqr_appr_sp.prn"sqr apprπ =  

( ) _ _WRITEPRN "Pi_sqr_sqr_appr_sp.prn" : sqr sqr apprπ= , 

( )_ _ : READPRN "Pi_sqr_sqr_appr_sp.prn"sqr sqr apprπ = . 

1−

0.5−

0

0.5

1

∆π sec k( )
πsqr_sec_appr k( )

γsec−

πsp k( )

0.4−

0.2−

0
0.2
0.4

γsec_ k( ) γsec.−

0

πsp k( )

c_exp c m, ( ) exp_
1

2
m 1+









:=

πappr_ c( ) m 1←

S

1

floor c( )

j

c

ln j c⋅( )∑
=

←

∆ m( ) γsec( )m

1

floor c_exp c m, ( )( )

j

floor
c_exp c m, ( )

ln j c_exp c m, ( )⋅( )




∑

=

⋅←

break ∆ m( ) 1<if

S S ∆ m( )−←

m m 1+←

m c<while

S

:= *
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Figure A3.1. The relative dispersion of the difference between the effective number of primes and its 
value evaluated with the complete-prime-number-formula (CPNF).  

 

 

Figure A3.2. Relation of the error of the PNF to ( ( )2R c ), the square of the number of 

primes up to ( c ), over the distance. 
 

( )
( )

_:
k

sp k
appr appr P

π
π π  

  

 
=  

  
; 

( )
( )_

_ _:
k

sqr sp k
sqr appr appr P

π
π π  

  

 
=  

  
; 

( )
( )_ _

_ _ _:
k

sqr sqr sp k
sqr sqr appr appr P

π
π π  

  

 
=  

  
            (A3.2) 

(Figure A3.1) There is no systematic error of the number of primes resulting 
with the CPNF. The dispersion of the evaluated values relative to the effective 
number of primes at ( c ) is about constant over the distance up to (c), ( c ) 
and ( c ): 

( )

( ) ( )

( )

_ :
1

k k

k

k

appr sp

appr rel

spR c

π π
π

−
∆ =

 ⋅ 

; 
( )

( ) ( )

( )

_ _

_ _ :
1

k k

k

k

sqr appr sqr sp

sqr appr rel

spR c

π π
π

−
∆ =

 ⋅  

   (A3.3) 

( )

( ) ( )

( )

_ _ _ _

_ _ _ :
1

k k

k

k

sqr sqr appr sqr sqr sp

sqr sqr appr rel

spR c

π π
π

−
∆ =

 ⋅  

 

with the results of the CPNF the factor of the proportionality ( cγ ) of the error 
of the PNF relative to the square of the number of primes present up to ( c ) 
evaluated in (A1.2) with (1.4), is reevaluated with the more exact difference as 
follows: (Figure A3.2) 

( )
( ) ( )

( ) ( )

( )

_ _
_2 2: k k

k

k

appr spappr cpnf
cpnf

sp

s cc

R c R c

ππ
γ

 −
 = =

 
 

          (A3.4) 

Annex A4. Evaluation of the Standard Deviation of the Dispersion  
of the Effective Number of Primes around the CPNF 

The standard deviation SD of the relative dispersion (1.13) is evaluated as fol-

1−
0.5−

0
0.5

1

∆π appr_rel k( )

k
1−

0.5−
0

0.5
1

∆π sqr_appr_rel k( )

k
1−

0.5−
0

0.5
1

∆π sqr_sqr_appr_rel k( )

k

0 4 103
× 8 103

×

0
0.1
0.2
0.3
0.4

γcpnf_ k( )

γcpnf

k
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lows: 

( )

( ) ( )

( )

2

_ _ 2
1

1: j j

k

j

k appr sp

appr rel
j

eff sp

SD
k R c

π

π π
∆

=

 −
 =

 
 

∑           (A4.1) 

The results are evaluated once and written to a file:  
( ( ) _ _WRITEPRN "SD_ prime_sqr_appr_rel.prn" : appr relSD π∆∆ = ). They are read 
from this file: ( ( )_ _ : READPRN "SD_ prime_sqr_appr_rel.prn"appr relSD π∆ = ∆ ). 

The average of the relation of the standard deviation converges to a final value, 
to the factor of proportionality ( ∆SD _F  ). This factor is evaluated as follows:  

( ) ( )_ _ _ _ _
1

1:
k j

k

appr rel av appr rel
j

SD SD
kπ π∆ ∆

=

= ∑              (A4.2) 

The results are evaluated once and written to a file. They are read from this 
file: 

( ) _ _ _WRITEPRN "SD_ prime_sqr_appr_rel_av.prn" : appr rel avSD π∆∆ =  

( )_ _ _ : READPRN "SD_ prime_sqr_appr_rel_av.prn"appr rel avSD π∆ = ∆  

The constant factor is equal to the final average value of the standard devia-
tion at large distances. The figure below illustrates that the standard deviation is 
about constant over the distance. This fact rectifies taking the average over the 
whole distance for the evaluation: 

( )1_ _ _ _: 0.162389
klimit

SD appr rel avF SDπ π −∆ ∆= = ;  

( )SD cπ  
( )

( )_ _ _ _ksp rel av SDSD R c Fπ π∆ ∆⋅ ≈             (A4.3) 

Figure A4.1 below indicates that the standard deviation of the dispersion of 
the effective number of primes around its approximation is rising proportionally 
to ( ( )R c ), the number of the series of multiples of primes, which are covering 
integer positions at this distance (c). The factor of proportionality  
( _ 0.162389SDF π∆ = ) is again an inherent property of the primes. 

 

 
Figure A4.1. Dispersion of the standard deviation of the dispersion of the number of 
primes around its average, the resulting constant value. 

Annex A5. Evaluation of the Boundaries of the Dispersion 

At the distance (c), with ( ( )R c ) being the number of the series of multiples of 
primes covering formerly free positions, the summing of the local density values 
over (j) is influenced only by ( c ). If for the distance succeeding primes were 

0

0.1

0.2SD∆π_appr_rel k( )

FSD_∆π

k
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taken, as in the above evaluations, the size of the gaps between primes would 
account for the long-range fluctuations. If ( ( )R c ) changes by unity, there is a 
jump: At the change of the distance at certain number of primes ( ( )nP ) the 
summation-limit changes from ( ( )R c , ( )nc P= ) to ( ( ) 1R c + , ( )1nc P += ): 

from (
( )

( )

1

1
ln

R c

j
c

j c=
∑ ) to (

( )
( ) 1

1

1
ln

R c

j
c

j c

+

=
∑ )            (A5.1) 

The difference makes  

(
( )

( )

( )
( )

( ) ( )
( )1

1 1

1 1
ln 2ln ln 2 ln

R c R c

j j

R cc cc c
cj c j c c

+

= =

− ≈ = =
⋅

∑ ∑ ).  (A5.2) 

For illustration, the discontinuity of the approximating function is shown. For 
this purpose, the values of the approximating function are evaluated in (addition 
to its sparse values evaluated in (1.4)) at distances corresponding to each prime 
( ( )qc P= , 

( )
( )_ _qappr test appr qπ π= ) in the range ( low highq q q= � ): 

from ( : 1909500lowq = , ( ) 30887083lowP q = ) 

to ( : 1911600highq = , ( ) 30923341highP q = , : low highq q q= � ) 

( ) ( )_ _ _:
qappr test sec appr qPπ π  =                      (A5.3) 

The results are written to a file and are read from this file:  

( ) _WRITEPRN "Nprime_appr_c.prn" : appr testπ= ; 

( )_ : READPRN "Nprime_appr_c.prn"appr testπ = . 

The discontinuity of the approximating function is shown in Figure A5.1. 
The size of the jumps (2.2) is the bandwidth of the dispersion due to the ap-
proximating function: 

( ) ( )
_ 2bounds appr

R c
cπ = ±                 (A5.4) 

 

 
Figure A5.1. Discontinuity due to the approximating function. 
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