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Abstract 
In this paper, we propose a robust mixture regression model based on the 
skew scale mixtures of normal distributions (RMR-SSMN) which can ac-
commodate asymmetric, heavy-tailed and contaminated data better. For the 
variable selection problem, the penalized likelihood approach with a new com-
bined penalty function which balances the SCAD and 2l  penalty is proposed. 
The adjusted EM algorithm is presented to get parameter estimates of RMR- 
SSMN models at a faster convergence rate. As simulations show, our mixture 
models are more robust than general FMR models and the new combined 
penalty function outperforms SCAD for variable selection. Finally, the pro-
posed methodology and algorithm are applied to a real data set and achieve 
reasonable results. 
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1. Introduction 

In applied statistics, the arc-sine laws for the Wiener process and the skew Brown-
ian motion [1] are widely used in finance if the market is homogeneous. How-
ever, the problem of modeling heterogeneous data has been extensively studied 
in recent years and the Finite Mixture of Regression (FMR) model is an important 
tool for heterogeneous cases. A large number of applications associate a random 
response variable Y  with covariates x  through FMR models and the assump-
tion is that for each observation data point ( ) ( )1 1, , , ,n nY Yx x , the regression 
coefficients are not the same. More details about the FMR model can be found in 
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[2]. 
The Gaussian FMR model is the most common FMR model, which assumes 

that the random error of each subgroup follows the normal distribution. It is well 
known that using the normal distribution to model data with asymmetric and 
heavy-tailed behaviors is unsuitable, and the parameter estimates are sensitive to 
outliers. To overcome the potential shortcomings of Gaussian mixture models, 
McLachlan et al. [3] proposed to replace the mixtures of normal with mixtures 
of t-distribution which results in a more robust mixture model. Basso et al. [4] 
studied a finite mixture model based on scale mixtures of skew-normal distribu-
tions, and Franczak et al. [5] proposed a mixture model using shifted asymmet-
ric Laplace distributions which parameterize the skewness as well as the location 
and the scale. 

The problem of variable selection in FMR models has been widely discussed 
recently. There are generally two types of variable selection methods. One is the 
optimal subset selection method and the discontinuous penalty method based on 
the information criterion, including stepwise regression, best subset regression, 
BIC criterion, AIC criterion and so on. The other is the continuous penalty meth-
od. By imposing penalties on the parameters of the objective function, one can 
select significant variables and obtain the parameter estimates simultaneously. 
The Least Absolute Shrinkage and Selection Operator (LASSO), elastic net regu-
larization [6], MCP penalty [7] and SCAD penalty [8] are penalty functions for 
variable selection. We utilize the SCAD and a new penalty function proposed in 
this paper which balance the SCAD and 2l  penalty to perform variable selection 
on a robust mixture regression model based on Skew Scale Mixtures of Normal 
(SSMN) distributions [9] and this robust model can accommodate asymmetric and 
heavy-tailed data better. 

The paper is organized as follows. In Section 2, a robust mixture regression 
model using the skew scale mixtures of normal distributions (RMR-SSMN) is 
introduced. Then, variable selection methods with SCAD penalty function and a 
newly proposed penalty function are presented in Section 3. Section 4 outlines 
the adjusted EM algorithm for estimating and a BIC method for selecting turn-
ing parameters and components. In Section 5, we carry out simulation studies to 
compare the performances between FMR models and RMR-SSMN models, and 
show the effect of variable selection with penalty functions. An application to a 
real data set of the method is discussed in Section 6 and some conclusions are 
obtained in Section 7. 

2. Robust Mixture Regression Model with SSMN  
Distributions 

It is known that the FMR model can model heterogeneous data and the Skew 
Scale Mixtures of Normal (SSMN) distributions [9] cover both asymmetric and 
heavy-tailed distributions. Therefore, we propose a robust mixture regression model 
whose regression errors of components follow SSMN distributions. Unsurpris-
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ingly, this model is more robust than general FMR models for heterogeneous 
cases. 

2.1. Skew Scale Mixtures of Normal Distributions 

If a random variable Y  follows a skew-normal (SN) distribution with location pa-
rameter ∈µ , scale parameter 2σ , and skewness parameter λ , denoted  

( )2, ,Y SN µ σ λ , then its density function is given as follows: 

( ) ( )22 ; , yf y y − = Φ 
 

µφ µ σ λ
σ

.                 (1) 

where ( )2; ,yφ µ σ  and ( )2; ,yΦ µ σ  are the probability density function and 
the cumulative distribution function of ( )2,N µ σ  calculated at y , respective-
ly. 

Note that when 0=λ , the ( )2, ,SN µ σ λ  reduces to the ( )2,N µ σ , and as 
given in [9], the SN distribution’s marginal stochastic representation is present-
ed by: 

( )
1

2 2
0 11 ,Y T T

 
= + + − 

 
µ σ δ δ                   (2) 

where ( )1 221= +δ λ λ , ( )0 0,1T N  and ( )1 0,1T N  are independent. 
Furthermore, if a random variable Y  follows a SSMN distribution [9] with 

location parameter ∈µ , scale parameter 2σ , and skewness parameter λ , then 
its probability density function is given by: 

( ) ( )( ) ( )2
0

2 ; , d ; ,yf y y u H u
∞ − = Φ 

 ∫  τ µφ µ σ λ
σ

          (3) 

where ( );H u τ  is the cumulative distribution function of U  who derived from 
the parameter vector τ , and U  is a positive random variable, and ( )u  is a 
strictly positive function. If the probability density function of the random vari-
able Y  is shown as the Equation (3), it can be denoted as:  

( )2, , , ;Y SSMN H µ σ λ . 
For ( )2, , , ;Y SSMN H µ σ λ , its hierarchical representation has the form as 

follows: 

( ) ( ) ( )
1

2 2| , , ,  .Y U u SN u u U H
 

=   
 

    τµ σ λ           (4) 

This paper will consider the following distributions in the SSMN distributions 
family: 
• The skew Student-t-normal distribution (STN) [10] with  

( )2, 2U Gamma v v , 0v >  and ( ) 1u u= , which follows probability 
density: 

( )
( )( )
( )

1
21 212 1 ,

2

v
v d yf y

v vv

+ − 
 Γ + −   = + Φ   Γ    π

µλ
σσ

        (5) 

where ( )2 2d y= − µ σ  and ( ).Γ  is the gamma function. We can obtain that 
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( ) ( )( )| 1 2, 2U Y y Gamma v v d= + + . 
• The skew contaminated normal distribution (SCN). U  is a discrete random 

variable taking one of two values and ( ) 1u u= . Given the parameter vec-
tor ( )T,v=τ γ , 0 1v< < , 0 1< <γ , the density function of U  is  
( ) ( ) ( ) ( )1; 1u uh u v v= == + − τ γ . Naturally get as follows: 

( ) ( ) ( ) ( ){ }2 22 ; , 1 ; , .yf y v y v y − = + − Φ 
 

µφ µ σ γ φ µ σ λ
σ

       (6) 

Therefore, the conditional distribution |U Y y=  can be obtained as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2
1

0

1| ; , 1 ; , ,u uf u Y y v y v y
f y = == = + − γφ µ σ γ φ µ σ    (7) 

where ( ) ( ) ( ) ( ) ( ) ( )
2 2

0 1; , 1 ; ,u uf y v y v y= == + − γφ µ σ γ φ µ σ . 
• The skew power-exponential distribution (SPE) has following probability 

density: 

( )
( )

2
1 22 e ,  0.5 1,

2 1 2
vd

v

v yf y v
v

− − = Φ < ≤ Γ  

µλ
σσ

         (8) 

Ferreira et al. [9] have proved that ( )1 1| vE U Y y vd− − = =  . 

2.2. Robust Mixture Regression Model with SSMN Distributions 

Suppose we have n  independent random variables 1 2, , , ny y y , which are 
taken from a mixture of SSMN distributions. The conditional density function of 
the robust mixture regression model with SSMN distributions (RMR-SSMN) 
which has K  components is given by: 

( ) ( )T 2

1
; , ; , , , ; ,

K

i i k i k i k k k k
k

f y SSMN y
=

= +∑x x β τω α σ λΨ         (9) 

with covariate vector q
i ∈x   and q-dimensional unknown regression coeffi-

cients vector , 1, ,k k K= β . , 1, ,k k K= ω  denote the mixing proportions 

satisfying 0k ≥ω , 1 1K
kk= =∑ ω . 

( )TT T 2 2 T T
1 1 1 1 1 1 1, , , , , , , , , , , , , , , , ,K K K K K K−=      β β τ τω ω α α σ σ λ λΨ  is the 

parameter vector of the model. For convenience, let ( )T
1 1, , K −= ω ω ω , 

( )T
1, , K= α α α , ( )TT T

1 , , K= β β β , ( )T2 2 2
1 , , K= σ σ σ , ( )T

1, , K= λ λ λ , 
and ( )TT T

1 , , K= τ τ τ∗ . In this paper, RMR-SSMN models contain the robust 
mixture regression model with STN distribution (RMR-STN), SCN distribution 
(RMR-SCN), SPE distribution (RMR-SPE) and SN distribution (RMR-SN). 

3. Variable Selection Method 

If a component in the q-dimensional explanatory variable x  has no significant 
effect on the response variable y , the regression coefficient of this component 
estimated by the maximum likelihood method will close to 0 rather than 0. Thus, 
this covariate is not excluded from the model and makes the model unstable. To 
avoid this problem, we use a penalized likelihood approach [11] for selecting var-
iables and estimating parameters simultaneously. Let ( ){ }, ; 1, ,i iy i n=x   be sam-
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ple observations from RMR-SSMN models. The log-likelihood function of Ψ  is 
given by: 

( ) ( )T 2

1 1
log ; , , , ; .

n K

k i k i k k k k
i k

l SSMN y
= =

= +∑ ∑ x β τω α σ λΨ          (10) 

Following the idea in [11], we can get the estimates of Ψ  by maximizing the 
penalized log-likelihood function which is defined as: 

( ) ( ) ( ) ,L l p= −Ψ Ψ Ψ                        (11) 

with the penalty function is given by: 

( ) ( )
1 1

,
k

qK

k a kj
k j

p n p
= =

= ∑ ∑ω βΨ                    (12) 

where ( ).
kap  is a nonnegative and non-decreasing function in kjβ  with the 

turning parameter , 1, ,ka k K=  . The turning parameter controls the intensity 
of the penalty for the regression coefficients. 

The SCAD penalty has a type of oracle property as discussed in [8]. In this work, 
we complete the variable selection procedure using the following SCAD penalty 
function: 

( ) ( )
( )

( )

2 2

2

,

2
,

2 1

1
,

2

k

k kj kj k

kj k kj k
a kj k kj k

k
kj k

a a

ca a
p a ca

c

a c
ca


≤


− += − < ≤

−
 + >


β β

β β
β β

β

        (13) 

Meanwhile, inspired by [12], we propose a combined penalty function which 
balance the SCAD penalty and 2l  penalty. This penalty function by introducing 
a connection parameter b  is more effective in variable selection than directly 
mixing SCAD and 2l , and the specific form is given by: 

( )

( )

( )
( ) ( )

( ) ( )

2

2 2
2

2
2

1 ,

2
1 ,

2 1

1
1 ,

2

k

k kj kj kj k

kj k kj k
a kj k kj k kj k

k
k kj kj k

a b b a

b ca a
p a b a ca

c

a b c
a b ca

  + − ≤  


− += − + − < ≤
−

 + + − >


β β β

β β
β β β

β β

 (14) 

We call this new penalty function as MIXL2-SCAD. Some asymptotic proper-
ties of the penalty function are showed in [12], and the constant 0ka >  and 

2c > . Following the idea of [8], let 3.7c = . In particular, the constant b , 
0 1b≤ ≤  and ka  in MIXL2-SCAD jointly control the speed of contraction of kjβ , 
and when 1b = , MIXL2-SCAD penalty reduces to the SCAD penalty. 

4. Numeric Solutions 

The expectation-maximization (EM) algorithm can be applied to mixture regres-
sion models based on SSMN distributions for maximizing the penalized log-like- 
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lihood function. When the M-step of EM is analytically intractable for SSMN dis-
tributions, it can be replaced with a sequence of conditional maximization (CM) 
steps which is derived from ECM algorithm [13]. Furthermore, we also maximize 
the constrained actual marginal log-likelihood function which called CML steps 
[14] for simplicity. 

4.1. Maximization of the Penalized Log-Likelihood Function 

Let us introduce the latent vector ( )T
1, ,i i iKz z=Z   with the component in-

dicator variable ikz  which has the following form: 

1, the th sample comes from the latent th component,
0, otherwise.ik

i k
z 

= 


       (15) 

Using the Equations (2) and (4), we can get the following hierarchical rep-
resentation for the mixture of SSMN distributions. 

( ) ( )
( )( )

( )
( )

( )
( )( )

( )

2
T

1 2 22

1

, , 1 ~ , ,
11

1 ~ ,

1 ~ 0,1; 0, ,

~

|

|

|

1; , , .

i k k k i
i i i i i ik k i k i

k ik i

i ik k

i ik

i K

u u
Y T t U u z N t

uu

U z H

T z TN

Z M

 
 = = = + + + + 

=

= ∞

x
 







β

τ

σ λ σ
α

λλ

ω ω

(16) 

( )( )0,1; 0,TN ∞  denotes the truncated normal distribution. Let ( )T
1, , nt t=t  ,

( )T
1, , nu u=u  , ( )T

1, , ny y=Y   and ( )T
1, , n=Z Z Z

∗ . Among them, t  
and u  are also regarded as latent vectors. Then the complete log-likelihood 
function with complete-data ( )T T

T T T, , ,c
∗=Y Y u t Z  is given by: 

( ) ( ) ( )2, , , , ,c c cl l l ∗= +ω α β σ λ τΨ                  (17) 

with: 

( )
1 1

log ,
n K

c ik k
i k

l z
= =

= ∑∑ω ω                       (18) 

( ) ( )

( ) ( ){ }
( )

2
2 2 T

2 2
1 1

21 2 T
2

1 1

1 1

, , , , log
2

2

log ; .

n K
i i k

c ik k i k i k
i k k k

n K
ik

i k i k i k
i k k
n K

ik i k
i k

t t
l z C y

z
u y

z h u

∗

= =

−

= =

= =

 
= − − + − − 

 

 − + − − 

+

∑∑

∑∑

∑∑

x

x

α β σ λ τ β

β

τ

λ
σ α

σ σ

λ α
σ

  (19) 

C  is a constant that does not depend on any unknown parameter, and ( );i kh u τ  
is the density function of the latent variable iu . 

Replacing ( )l Ψ  with ( )cl Ψ  in the penalized log-likelihood function, the 
complete penalized log-likelihood function is given by: 

( ) ( ) ( ).c cL l p= −Ψ Ψ Ψ                     (20) 

Refer to the method of Fan and Li [8], given the initial parameter value ( )0Ψ , 
( )p Ψ  can be replaced by the following local quadratic function: 
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( ) ( )( )
( )( )

( )
( )( )2

0

0 02
0

1 1 2
k

k

qK a kj

k a kj kj kj
k j kj

p
p n p

= =

 ′
 ≈ + − 
  

∑ ∑
β

ω β β β
β

Ψ        (21) 

This approximation will be applied in the CM-step of the algorithm at each 
iteration. The adjusted EM algorithm proceeds with the following three steps. 
The E-step calculates the conditional expectation of the complete penalized 
log-likelihood function, the CM-step and CML-step obtain the closed-form of 
parameter estimates. 
• The E-step. Given the current estimates ( )ˆ mΨ , calculate the Q-function, 

( )( ) ( ) ( )ˆ ˆ| | ,m m
cQ E L =  YΨ Ψ Ψ Ψ , obtained as: 

( )( ) ( )( ) ( )( )
( )( ) ( )( )

2
1 2

3

ˆ ˆ ˆ| | , , , |

ˆ ˆ| | ,

m m m

m m

Q Q Q

Q p

= +

+ −

ω α β σ λ

τ∗

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ
        (22) 

with: 

( )( ) ( )
1

1 1

ˆ ˆ| log ,
n K

m m
ik k

i k
Q z

= =

= ∑∑ω ωΨ                 (23) 

( )( )
( )

( ) ( )

( )

( )( )( )

2
2

2
2 T

2 2
1 1

( ) 21 2 T
2

1 1

ˆ, , , |

ˆ ˆ
ˆ log

2

ˆ ˆ ,
2

m

m mn K
m ik ik k

ik k i k i k
i k k k

mn K
mik

ik k i k i k
i k k

Q

t t
z y

z
y

= =

−

= =

 
= − − + − − 

  

 − + − −  

∑∑

∑∑

x

x

α β σ λ

β

β

λ
σ α

σ σ

λ α
σ

Ψ

      (24) 

( )( ) ( ) ( )
3

1 1

ˆ ˆ| log ; | , .
n K

m m
ik i k

i k
Q E z h u

= =

 =   
∑∑ Yτ τ∗ Ψ Ψ         (25) 

The required expressions are ( )ˆ m
ikz , ( )2ˆ m

ikt , ( )ˆ m
ikt  and ( )1ˆ m

ik
−
 . 

First, the conditional expectation ( ) ( )ˆˆ | ,m m
ik ik iz E z y =  Ψ  is given by: 

( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

T 2

T 2

1

ˆ ˆˆ ˆ ˆ ˆ; , , , ;
ˆ .

ˆ ˆˆ ˆ ˆ ˆ; , , , ;

m m m m m m
k i k i k k k km

ik K
m m m m m m

k i k i k k k k
k

SSMN y
z

SSMN y
=

+
=

+∑

x

x





β τ

β τ

ω α σ λ

ω α σ λ
    (26) 

Then, refer to [15], ( ) ( )ˆˆ | , , 1m m
ik i i ikt E t y z = = Ψ  and  

( ) ( )2 2 ˆˆ | , , 1m m
ik i i ikt E t y z = = Ψ  can be evaluated by: 

( ) ( ) ( ) ( )
( ) ( )

( )

ˆ ˆˆˆ ˆ ˆ ,
ˆ

m m
m m m m k ik

ik k ik k m
k

e
t e WΦ

 
= +   

 

λ
λ σ

σ
               (27) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

( )

22 2
ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ .

ˆ

m m
m m m m m m m k ik

ik k ik k k k ik m
k

e
t e e WΦ

 
= + +   

 

λ
λ σ λ σ

σ
     (28) 

with ( ) ( ) ( )W u u uΦ = Φφ  and ( ) ( ) ( )T ˆˆˆ m m m
ik i k i ke y= − − x βα . 

Further, ( )1ˆ m
ik
−
  has different expressions for RMR-SSMN models with different 

distributions in the SSMN family, obtained as: 
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( )

( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )

3
2

1
2

1

ˆ 1

1, for RMR-SN model

ˆ 1
, for RMR-STN model

ˆ

ˆ ˆ ˆˆ ˆ1 exp 1 2
, for RMR-SCN model

ˆ ˆˆ ˆ1 exp 1 2

ˆ , for RMR-SPE model
m

k

m
k
m

k ik

m m m m mik k k k k ik

m m m m
k k k k ik

m v
k ik

v
v d

v v d

v v d

v d

−

−




+
 +
=   − + − 
  − + −  


 γ γ

γ γ

(29) 

with ( ) ( )( ) ( )2T 2ˆˆ ˆm m m
ik i k i k kd y= − − x βα σ . 

• The CM-step. Maximize ( )( )ˆ| mQ Ψ Ψ  with respect to Ψ  on the ( )1 thm +  

iteration. As in [11], the mixing proportions are updated by: 

( ) ( )1

1

1ˆ ˆ ,
n

m m
k ik

i
z

n
+

=

= ∑ω                        (30) 

which are the approximate iterated values. Maximizing ( )( )1
ˆ| mQ ω Ψ  with re-

spect to the ω  instead of maximizing ( )( )ˆ| mQ Ψ Ψ  will simplify the computa-
tion of ( )1ˆ m

k
+ω  and this updating scheme works well in our simulations. 

We now consider that ω  is constant, and maximize ( )( )ˆ| mQ Ψ Ψ  with re-
spect to the rest parameters in Ψ . The updates of ( )T2, , ,k k k kβα σ λ  are given 
by: 

( )

( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

1 2 T

1 1

1 2

1

ˆ ˆ ˆ ˆˆˆ
ˆ ,

ˆ ˆˆ

n
m m m m m m

ik ik k ik k i i k
m i

k n
m m m

ik ik k
i

z t y

z

−

+ =

−

=

 − + + − 
=

+

∑

∑

x



βλ λ
α

λ
     (31) 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )

2 1 2 2

12 1

1

ˆ ˆ ˆˆ ˆ ˆ ˆˆ 2
ˆ ,

ˆ2

n
m m m m m m m m

ik ik ik k ik ik k ik
m i

k n
m

ik
i

z t t e e

z

−

+ =

=

 − + + 
=
∑

∑

λ λ
σ    (32) 

( ) ( ) ( ) ( ) ( ) ( )1 2

1 1

ˆ ˆ ˆ ˆˆ ˆ ,
n n

m m m m m m
k ik ik ik ik ik

i i
z t e z e+

= =

= ∑ ∑λ                (33) 

( ) ( ) ( ) ( )( ) 1
1 T 2 Tˆ ˆˆˆ ,m m m m

k k k k a k k kn
−

+  = + ∆ X A X X A Bβ βσ ω         (34) 

with: 
( ) ( ) ( ) ( ) ( )( )1 1 2

1 1
ˆ ˆ ˆ ˆ ˆdiag( , , ) diag , , ,m m m m m

k k nk k n k nkz z− − = + A    λ  

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

T

1 1 2

ˆˆˆ ˆ ˆ ˆ, , ,  ,ˆ ˆ

m m
m m m m ik k

k k nk ik i k m m
ik k

t
b b b y

−
= = − −

+
B 



λ
α

λ
 

( )( )
( )( )

( )

( )( )
( )

( )( )
( )

1 2

1 2

ˆ ˆ ˆ
ˆ diag , , , ,

ˆ ˆ ˆ
k k k

m m m
a k a k a kqm

a k m m m
k k kq

p p p ′ ′ ′
 ∆ =  
 
 

β
β β β

β β β
 

and n  is an identity matrix of order n , and ( )T
1, , n=X x x  is a matrix of or-

der n q× . 
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• The CML-step. Fix ( ) ( ) ( ) ( ) ( )( )T1 1 1 1 12ˆ ˆˆ ˆ ˆ, , ,m m m m m
p k k k k

+ + + + += βα σ λΨ  and ( )1ˆ m
k

+ω , 

update ∗τ  to get ( ) ( ) ( )( )T1 1 1
1ˆ ˆ ˆ, ,m m m

K
+ + +∗ = τ τ τ  by optimizing the constrained 

log-likelihood function: 

( ) ( ) ( )( )1

1 1 1
, ,

1 1

ˆˆˆ argmax log ; , ; .
K

n K
m m m

k i p k
i k

SSMN y+ + +∗

= =

= ∑ ∑


τ ττ τω Ψ     (35) 

The above iterations are repeated alternately until the maximum number of 
iterations is reached or a suitable stopping rule is met. In this work, the iterations 
will be completed when ( ) ( )1ˆ ˆm m+ −Ψ Ψ  is sufficiently small, such as 10−5. 

4.2. Selection of Turning Parameters and Components 

When using the methods proposed in this paper, we also need to consider how 
to determine the components K  and the size of the turning parameters in the 
penalty function. Cross-Validation (CV), Generalized Cross-Validation (GCV), AIC 
and BIC are commonly used criteria for the selection of turning parameters.  

As showed in [12], the final selected model will be overfitting if the turning 
parameter selected by GCV and they use the BIC to choose. In this paper, we al-
so propose a proper BIC criterion for RMR-SSMN models to select turning pa-
rameters ( )T

1, , Ka a=a  , the constant b  and the components K . 
Let ( )T, ,b K= aθ , we should take a set of θ  at a time over a suitable range 

and use the proposed adjusted EM algorithm to obtain the corresponding pa-
rameter estimates Ψ̂ . The optimal set of θ  is selected by minimizing the fol-
lowing BIC criterion: 

( ) ( ) ( )
1

ˆ2 1 log .
K

k
k

BIC l pK n
=

 = − + − + × 
 

∑θ ηΨ            (36) 

where kη  represents the number of non-zero regression coefficients of kβ  and 
p  is either equal to 4 (RMR-SN model), 5 (RMR-STN and RMR-SPE models) or 

6 (RMR-SCN model). 

5. Simulation Studies 

We perform Monte Carlo simulations to evaluate the performance of the pro-
posed robust mixture model and adjusted EM algorithm. To evaluate the effect 
of variable selection and the accuracy of parameter estimates, we use the correctly 
estimated zero coefficients (S1), correctly estimated non-zero coefficients (S2), 
the mean estimate over all falsely identified non-zero predictors ( NZM ) [16] of β  
and the mean squared error (MSE) of regression coefficients ( ( )ˆMSE β ), 

( ) ( ) ( )Tˆ ˆ ˆMSE k k k kE= − −β β β β β . 

5.1. Simulation 1 

The first simulation uses the SCAD penalty function to select significant varia-
bles for RMR-STN, RMR-SPE and RMR-SCN models, and compare the simula-
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tion results with the Gaussian FMR model and RMR-SN model. 
We set 2K =  for the simulation so that the sample data set  
( ){ }, ; 1, ,i iy i n=x   for the mixture regression model is derived from the fol-

lowing model: 

T
1 1 1

T
2 2 2

, 1
, 2

Z
y

Z
 + + == 

+ + =

x
x
β
β

α ε
α ε

                  (37) 

where Z  is used to identify the subgroup that the sample belongs to. 1 2=α , 
( )T

1 4,1, 2,0,0,0,0,0,0,0= −β , 2 2= −α , ( )T
2 1, 3,0,2,3,0,0,0,0,0= −β ,  

1 0.6=ω  and 2 0.4=ω .  
The covariate x  is generated from a multivariate normal with mean 0, vari-

ance 1, and two correlation structures: 0.5 i j
ij

−=ρ , 1 ,i j n≤ ≤ . The simulation 
considers the following three error distributions cases: 1) the random errors 1ε  
and 2ε  follow the t-distribution with 3 degrees of freedom ( ( )3t ); 2) the ran-
dom errors 1ε  and 2ε  follow the chi-square distribution with 3 degrees of free-
dom ( ( )2 3χ ); 3) The random errors 1ε  and 2ε  follow the mixture distribu-
tion of normal ( ) ( )20.9 0,1 0.1 0,5N N+ . So that there are 15 sets of combination, 
and for each combination, we respectively performed 100 repetitions for the simu- 
lation with 300n = . 

From Table 1, the value of S1 in Com1 and Com2 from RMR-STN, RMR-SPE 
and RMR-SCN are all bigger than the value in FMR model for all three cases, 
respectively. In case (1), the S1 in Com2 from RMR-SPE is biggest (S1 = 0.9533), 
however, the S1 in Com2 from FMR is smallest (S1 = 0.8533). In case (2), the RMR- 
SCN model has the biggest S1 (S1 = 0.9033) in Com2 while the S1 in Com2 from 
FMR is 0.8167. In case (3), when the S2 in Com1 and Com2 from FMR are 0.9933 
and 0.9950, respectively, the values of S2 in both components from RMR-STN 
are 1.00. 

Furthermore, the value of ( )ˆMSE β  in Com1 and Com2 from RMR-STN, 
RMR-SPE and RMR-SCN are much smaller than the value in FMR model. When 
errors follow ( )2 3χ  distribution, RMR-SN performs well with the smallest 

( )ˆMSE β  and S2 = 1.00 in both Com1 and Com2 that indicates the non-zero 
coefficients are all identified correctly. Overall, RMR-SSMN models are more ro-
bust than FMR for variable selection when the data set is asymmetric ( ( )2 3χ ), 
heavy-tailed ( ( )3t ) and contaminated ( ( ) ( )20.9 0,1 0.1 0,5N N+ ). 

5.2. Simulation 2 

Simulation 2 uses the MIXL2-SCAD penalty function to select significant var-
iables for RMR-STN, RMR-SPE and RMR-SCN models. By comparing the re-
sults of Simulation 1 and Simulation 2, the effects of SCAD and MIXL2-SCAD 
penalty function on variable selection are analyzed. In addition, the generation 
of the sample data set and the distributions of random errors in this simulation 
are the same as in Simulation 1, and both 300n =  and 500n =  cases are con-
sidered. 
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Table 1. Results of FMR, RMR-SN, RMR-STN, RMR-SPE and RMR-SCN using SCAD penalty function on 100 replicates. 

Error Model n Component S1 S2 NZM  ( )ˆMSE β  

( )3t  

FMR 300 Com1 0.9143 1.0000 −0.0357 0.0838 

  Com2 0.8533 0.9800 0.0382 0.8976 

RMR-SN 300 Com1 0.9057 1.0000 −0.0029 0.9638 

  Com2 0.8900 0.9850 −0.0339 1.2244 

RMR-STN 300 Com1 0.9343 1.0000 −0.0004 0.0619 

  Com2 0.9467 1.0000 0.0181 0.1349 

RMR-SPE 300 Com1 0.9800 1.0000 −0.0048 0.0521 

  Com2 0.9533 1.0000 0.0375 0.1560 

RMR-SCN 300 Com1 0.9714 1.0000 −0.0151 0.0496 

  Com2 0.9400 1.0000 0.0195 0.1426 

( )2 3χ  

FMR 300 Com1 0.9400 0.9000 0.0387 0.6687 

  Com2 0.8167 0.9900 0.0568 0.5838 

RMR-SN 300 Com1 0.9771 1.0000 0.0138 0.0636 

  Com2 0.8867 1.0000 −0.0342 0.1978 

RMR-STN 300 Com1 0.9543 0.9867 0.0053 0.1283 

  Com2 0.8767 1.0000 −0.0491 0.2273 

RMR-SPE 300 Com1 0.9686 0.9933 0.0150 0.0909 

  Com2 0.8967 1.0000 −0.0003 0.2287 

RMR-SCN 300 Com1 0.9543 0.9800 −0.0257 0.1555 

  Com2 0.9033 0.9950 −0.0511 0.2516 

( ) ( )20.9 0,1 0.1 0,5N N+  

FMR 300 Com1 0.9371 0.9933 −0.0098 0.1500 

  Com2 0.8000 0.9950 −0.0305 0.4810 

RMR-SN 300 Com1 0.9314 1.0000 0.0023 0.1133 

  Com2 0.8767 1.0000 −0.0306 0.3358 

RMR-STN 300 Com1 0.9686 1.0000 −0.0019 0.0461 

  Com2 0.9333 1.0000 −0.0361 0.1000 

RMR-SPE 300 Com1 0.9714 0.9933 0.0065 0.0802 

  Com2 0.9433 1.0000 −0.0287 0.1149 

RMR-SCN 300 Com1 0.9857 0.9933 0.0071 0.0691 

  Com2 0.9433 1.0000 −0.0361 0.0908 

 
From Table 2, we can know that as the sample size n  increases, the values of 

S1 and S2 in Com1 and Com2 are getting closer and closer to 1, and the value of 

( )ˆMSE β  is getting smaller and smaller, indicating the asymptotic property of 
parameter estimates. When 500n =  and errors follow ( )3t  distribution, the 
values of S1 and S2 in Com1 from RMR-SPE model are equal to 1.00, which in-
dicates that the MIXL2-SCAD penalty ensures the non-zero and zero coefficients  
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Table 2. Results of RMR-STN, RMR-SPE and RMR-SCN using MIXL2-SCAD penalty function on 100 replicates. 

Error Model n Component S1 S2 NZM  ( )ˆMSE β  

( )3t  

RMR-STN 300 Com1 0.9800 1.0000 −0.0050 0.0486 

  Com2 0.9633 1.0000 0.0129 0.1251 

 500 Com1 0.9914 1.0000 0.0066 0.0244 

  Com2 0.9700 1.0000 −0.0025 0.0652 

RMR-SPE 300 Com1 0.9943 1.0000 −0.0045 0.0504 

  Com2 0.9533 1.0000 0.0135 0.1504 

 500 Com1 1.0000 1.0000 0.0000 0.0256 

  Com2 0.9933 1.0000 −0.0049 0.0545 

RMR-SCN 300 Com1 0.9771 1.0000 −0.0025 0.0509 

  Com2 0.9567 1.0000 0.0223 0.1368 

 500 Com1 0.9971 1.0000 −0.0019 0.0272 

  Com2 0.9933 1.0000 −0.0009 0.0653 

( )2 3χ  

RMR-STN 300 Com1 0.9543 0.9933 −0.0091 0.1136 

  Com2 0.8933 1.0000 −0.0584 0.2597 

 500 Com1 0.9886 1.0000 0.0053 0.0417 

  Com2 0.9867 1.0000 0.0065 0.0923 

RMR-SPE 300 Com1 0.9743 1.0000 −0.0020 0.0641 

  Com2 0.9433 1.0000 −0.0116 0.1765 

 500 Com1 0.9943 1.0000 0.0020 0.0321 

  Com2 0.9900 1.0000 0.0009 0.1047 

RMR-SCN 300 Com1 0.9571 0.9933 −0.0210 0.0992 

  Com2 0.9433 1.0000 −0.0179 0.2297 

 500 Com1 0.9857 1.0000 0.0010 0.0491 

  Com2 0.9933 1.0000 0.0017 0.1436 

( ) ( )20.9 0,1 0.1 0,5N N+  

RMR-STN 300 Com1 0.9743 1.0000 −0.0013 0.0490 

  Com2 0.9667 1.0000 −0.0233 0.0933 

 500 Com1 0.9886 1.0000 −0.0014 0.0281 

  Com2 0.9800 1.0000 0.0005 0.0616 

RMR-SPE 300 Com1 0.9800 1.0000 0.0064 0.0489 

  Com2 0.9800 1.0000 −0.0197 0.0971 

 500 Com1 0.9943 1.0000 −0.0009 0.0327 

  Com2 1.0000 1.0000 0.0000 0.0968 

RMR-SCN 300 Com1 0.9857 1.0000 0.0011 0.0481 

  Com2 0.9600 1.0000 −0.0096 0.1005 

 500 Com1 0.9971 1.0000 0.0005 0.0227 

  Com2 1.0000 1.0000 0.0000 0.0576 

https://doi.org/10.4236/apm.2022.123010


T. Z. Chen, W. Z. Ye 
 

 

DOI: 10.4236/apm.2022.123010 121 Advances in Pure Mathematics 
 

can be identified completely. When 500n =  and errors follow  
( ) ( )20.9 0,1 0.1 0,5N N+ , the same result appears in Com2 from RMR-SPE and 

RMR-SCN model. The absolute values of mean estimate over all falsely identi-
fied non-zero predictors ( NZM ) are smaller than 0.01 from MIXL2-SCAD when 

500n = . 
By comparing Table 1 and Table 2, we can see that the values of S1 and S2 in 

Com1 and Com2 from MIXL2-SCAD are all greater than or equal to the values 
from SCAD penalty for all cases when 300n = . It is worth noting that in case 
(3), when n = 300, the values of S2 in Com1 and Com2 from RMR-STN, RMR-SPE 
and RMR-SCN using MIXL2-SCAD penalty are all 1.00, however, the values of 
S2 in Com1 from RMR-SPE and RMR-SCN using SCAD penalty are 0.9933. From 
these comparisons of experimental data, we can know that MIXL2-SCAD performs 
better than SCAD penalty in variable selection. 

6. Real Data Analysis 

In this section, we obtain the Seoul bike sharing demand data set from the web-
site http://archive.ics.uci.edu/ml/datasets.php. From this dataset, we screen out 
the total number of bikes rented from 10:00 am to 11:00 am every functional day 
of bike rental system in Seoul from December 1, 2017 to November 30, 2018 with 
12 features that may affect the demand of rental bikes. There are 353 observa-
tions in total. The 12 features are: temperature ( 1x ), humidity ( 2x ), wind-speed 
( 3x ), visibility ( 4x ), dew point temperature ( 5x ), solar radiation ( 6x ), rainfall 
( 7x ), snowfall ( 8x ), holiday (holiday = 1, else = 0; 9x ), spring (spring = 1, else = 
0; 10x ), summer (summer = 1, else = 0; 11x ) and autumn (autumn = 1, else = 0; 

12x ). 9 12-x x  are dummy variables and 10 12-x x  indicate different seasons. Con-
sidering that there may be further differential effects between seasons and holi-
day, we continue to introduce 3 interaction terms between dummy variables, namely 

9 10x x∗ , 9 11x x∗ , 9 12x x∗ . This leads to a set of 15 potential covariates affecting 
rented bike count (RBC) from 10:00 am to 11:00 am. 

Let ( )RBC RBCY sd=  be the response variable, where ( )RBCsd  is the 
standard deviation of RBC. Figure 1 shows the histogram and density estimate 
of Y , we can see that the data set has obvious heterogeneity, so that the RMR- 
STN model is applicable. We also apply RMR-SPE and RMR-SCN models to this 
real data set, the outcomes are worse than RMR-STN’s result, thus we do not re-
port the results here. 

The parameter estimates under FMR, RMR-STN ( 2K = ) and RMR-STN ( 3K = ) 
with BIC method and MIXL2-SCAD penalty function are given in Table 3. The 

3K =  RMR-STN model has the lowest BIC (542.5) and the 2K =  RMR-STN 
model ranks second (BIC = 544.7) when FMR model has the biggest BIC (562.8). 
Furthermore, the predicted rented bike count from the 3K =  RMR-STN mod-
el has the smallest MSE of 0.09 and the biggest regression 2R  of 0.90. 

From Table 3, the bike rented demand can be divided into three categories: 
“low”, “medium” and “high” during the time period from 10:00 am to 11:00 am 
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Figure 1. Histogram and density estimate for ( )RBC RBCY sd= . 

 

Table 3. Summary of FMR, RMR-STN ( 2K = ) and RMR-STN ( 3K = ) model with BIC 
method and MIXL2-SCAD penalty for Seoul bike sharing demand data set. 

Covariates 
FMR RMR-STN ( 2K = ) RMR-STN ( 3K = ) 

Com1 Com2 Com1 Com2 Com1 Com2 Com3 

ω  0.44 0.56 0.53 0.47 0.52 0.04 0.44 

Intercept 1.82 1.26 1.85 1.36 1.37 0.41 2.03 

1x  0.82 0.41  0.43 0.44   

2x  −0.24 −0.04 −0.46 −0.08 −0.07 −0.05 −0.67 

3x     −0.03 −0.01   

4x    0.04   0.01  

5x    0.93    1.18 

6x  0.20 0.15 0.26 0.18 0.17  0.12 

7x  −0.28 −0.10 −0.32 −0.10 −0.10  −0.29 

8x   −0.03 −0.03 −0.04 −0.03   

9x   −0.49  −0.64 −0.62   

10x   0.54  0.51 0.50   

11x    0.24     

12x   1.18 0.63 1.02 1.03  0.49 

9 10x x∗    0.87     

9 11x x∗         

9 12x x∗    0.48     

 
with 3K =  RMR-STN model. Humidity is a negative factor for all three types 
of demand. When the bike rented demand is “medium”, warmer temperature 
and increased solar radiation help increase bike demand, while rainfall, snowfall, 
and holidays reduce the demand. In contrast, when bike rented demand is “high”, 
the positive effect of dew point temperature on bike demand is greatest, while 
the negative effects of holidays and snowfall disappear. In addition, we can also find 

https://doi.org/10.4236/apm.2022.123010


T. Z. Chen, W. Z. Ye 
 

 

DOI: 10.4236/apm.2022.123010 123 Advances in Pure Mathematics 
 

that the rented bike count has a strong seasonality and the rented count will be 
more in other seasons than in winter. 

7. Conclusion 

In this paper, we mainly propose a robust mixture regression model based on 
the skew scale mixtures of normal distributions (RMR-SSMN) which can avoid 
the potential limitation of normal mixtures. A new penalty function (MIXL2- 
SCAD) which combines SCAD and 2l  penalties is presented for variable selec-
tion. Through simulations, we find that the RMR-SSMN models are more robust 
than general FMR models for heterogeneous data with asymmetry and heavy- 
tailed properties, and outliers. Furthermore, the capability of MIXL2-SCAD to se-
lect the most parsimonious FMR model is obviously better than SCAD. The pro-
posed methodology is applied to a real data set and achieves reasonable results. 
However, this paper only focuses on the mixture of the simple linear model, and 
further research can focus on the mixture of the semiparametric model or nonpar-
ametric model. 
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