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Abstract 
Möbius transformations, which are one-to-one mappings of   onto   
have remarkable geometric properties susceptible to be visualized by drawing 
pictures. Not the same thing can be said about m-Möbius transformations 

mf  mapping m  onto  . Even for the simplest entity, the pre-image by 

mf  of a unique point, there is no way of visualization. Pre-images by mf  of 

figures from   are like ghost figures in m . This paper is about handling 
those ghost figures. We succeeded in doing it and proving theorems about 
them by using their projections onto the coordinate planes. The most im-
portant achievement is the proof in that context of a theorem similar to the 
symmetry principle for Möbius transformations. It is like saying that the im-
ages by m-Möbius transformations of symmetric ghost points with respect to 
ghost circles are symmetric points with respect to the image circles. Vectors 
in m  are well known and vector calculus in m  is familiar, yet the pre- 
image by mf  of a vector from   is a different entity which materializes by 
projections into vectors in the coordinate planes. In this paper, we study the 
interface between those entities and the vectors in m . Finally, we have shown 
that the uniqueness theorem for Möbius transformations and the property of 
preserving the cross-ratio of four points by those transformations translate into 
similar theorems for m-Möbius transformations. 
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1. Introduction 

The bi-Möbius transformations are functions :f × →    of the form: 
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where { }\ 0,1a∈  and 2 1A a a= − + . By denoting 1 1a aω = + −  and 

1 1 2s z z= + , 2 1 2s z z= , we have: 

( ) 2 1
2 1 2

2 1

1
,

s sf z z
s s
ω

ω
− +

=
− +

                    (2) 

Let us notice that if { }2 \ ,1z a a∈ , then  
( )( ) ( )22

2 2 2 1 0Az a A az a z− − + − ≠ , thus ( )2 1 2,f z z  is a Möbius transfor-
mation in 1z  and if { }1 \ ,1z a a∈ , then ( )( ) ( )22

1 1 1 1 0Az a A az a z− − + − ≠ , 
thus ( )2 1 2,f z z  is a Möbius transformation in 2z , which justifies the name of 
bi-Möbius transformation we have given to ( )2 1 2,w f z z= . 

It is expected that the fixed points of 2f  as a Möbius transformation in 1z  
depend on 2z . In reality, solving for 1z  the equation ( )2 1 2 1,f z z z=  we obtain 
( ) ( )2

2 1 11 1 1 0z z zω − − + + =  . Since ( )2 1 1,1f z z= , all the points 1z  are fixed 
points of the Möbius transformation ( )2 1,1f z . On the other hand, the equation 

( )2
1 11 1 0z zω− + + =  does not depend on 2z , therefore its solutions which are 

the fixed points 1ξ  and 2ξ  do not depend on 2z  and are such that 

1 2 1ξ ξ ω+ = +  and 1 2 1ξ ξ = . Similarly, the fixed points of 2f  as a Möbius 
transformation in 2z  do not depend on 1z . It can be easily checked that in fact 
they are the same, in other words, ( ) ( )2 2 2 1, , , 1, 2k k kf z f z kξ ξ ξ= = =  for every 

1z  and 2z  in  . In particular ( )2 1 2 1 2,f ξ ξ ξ ξ ξ= = = , hence 2 1ξ ω= +  and 
2 1ξ = . When 1ξ =  we have 1ω = , hence 1a = , which has been excluded. 

When 1ξ = − , we have 3ω = − , thus 2f  defined by 3ω = −  has the double 
fixed point −1.  

An easy computation shows that: 

( ) ( )( ) ( )( ) ( )
( )

3 2
3 1 2 3 2 1 2 2 3 2 2 1 2 3

3 1

1 1
, , , , , ,

1
s s

f z z z f z f z z f f z z z
s s

ω
ω

+ − +
= = =

− + +
  (3) 

where 3 1 2 3s z z z= , 2 1 2 1 3 2 3s z z z z z z= + +  and 1 1 2 3s z z z= + + . Moreover, 
( )3 1 2 3, ,f z z z  is a Möbius transformation in each one of the variables, if the 

other variables do not take the values a or 1/a. Again, solving for 1z  the equa-
tion ( )3 1 2 3 1, ,f z z z z=  we obtain ( ) ( )2

2 3 1 11 1 1 0z z z zω − − + + =  , which indi-
cates that ( )3 1 2 3, ,f z z z  has the same fixed points 1ξ  and 2ξ  as the Möbius 
transformation in every variable when the other two jz  and kz  are such that 

1j kz z ≠ . 
By using formula (3) repeatedly, we have computed in [1] several functions 

mf . We provide here a list of them, which will be needed in Section 3 when 
dealing with the uniqueness of m-Möbius transformations. There is no harm to 
write ( )mf z  instead of ( )1 2, , ,m mf z z z , where ( )1 2, , , mz z z= z . 
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When we checked for the fixed points of ( )4f z  as a Möbius transformation 
in 4z  we got the equation: 

( ) ( )2
3 1 2 4 41 1 1 0s s s z zω ω  − + − − + + =     

where ks  are the symmetric sums in 1 2 3, ,z z z , which shows that 4f  has the 
same fixed points 1ξ  and 2ξ  as 2f  and 3f . Due to the symmetry of 4f , 
this is true when it is considered as a Möbius transformation in any one of its 
variables if the other three are such that ( )3 1 21 0s s sω − + − ≠ . For ( )5f z  the 
equation is: 

( )( ) ( )2
4 1 3 5 51 1 1 1 0s s s z zω ω + − + − − + + =      

where ks  are the symmetric sums in 1 2 3 4, , ,z z z z  and again we find the same 
fixed points 1ξ  and 2ξ  when 5f  is treated as a Möbius transformation in 
any one of its variables and ( )( )4 1 31 1 0s s sω + − + − ≠ . 

It is expected similar properties to be true for any m-Möbius transformation, 
yet for higher values of m, the computation becomes too tedious. 

We notice that the coefficients of ks , which are polynomials in ω  become 
more and more complicated as k increases. Yet, an interesting pattern should be 
noticed, namely that in every mf  the coefficient of ks  at the numerator is the 
same as the coefficient of m ks −  at the denominator. Also, if we compare the co-
efficients from mf  and from 2mf +  we find another surprising pattern, which 
will be studied in detail in Section 3. 

More generally, if ( ) ( )( )1 2 2 1 1 2 1, , , , , , ,m m m m mf z z z f f z z z z− −=  , then: 

( ) ( ) ( ) ( )
( ) ( ) ( )
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a s a s a
f z z z

a s a s a
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−

− −

+ + +
=

+ + +






        (4) 

where js  are symmetric sums of kz  and ( )ja ω  are polynomials in ω . More-
over, ( )1 2, , ,m mw f z z z=   is a Möbius transformation in every kz  if the oth-
er variables belong to { }\ ,1a a . This is an m-Möbius transformation, see [1] 
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[2] [3] for more details about these transformations and their applications. 

2. Images of Circles 

The geometric properties of the m-Möbius transformations concern the way these 
mappings transform figures from each one of the planes (zk) into figures situated 
in the (w)-plane. As Möbius transformations, they are obviously conformal map-
pings, hence they will preserve the angles of those figures, except at singular points. 
They will transform circles (including straight lines, which can be considered cir-
cles of infinite radius) into circles. However, there are details which need to be exa- 
mined. 

A circle C centered at 0w  and of radius r in the (w)-plane has the equation: 

0w w r− = , or ( ) 22 2
0 02w Re w w w r− + = . 

It is convenient to write this equation under the form:  

( )2 2 0w Re bwα β+ + = ,                   (5) 

where ,a β ∈  and b∈ . Indeed, we obtain (5) when we replace 0w  by  
b α−  and 2r  by 2 2b α β α−  into the equation 0w w r− = . Then, when 

0α = , this equation becomes that of a straight line. We will continue to call it 
circle (of infinite radius, or centered at infinity). 

Theorem 1. The circle (5) is the image by ( )1 2, , ,m mw f z z z=  ,  
{ }\ ,1jz a a∈  fixed, for j k≠  of circles: 

( )2 2 0k k k k kz Re b zα β+ + =                  (6) 

from the (zk)-planes, 1,2, ,k m=  . More exactly, for every k, fixing ,jz j k≠  
there is a unique circle (6) which is mapped bijectively by ( )1 2, , ,m mf z z z  onto 
the circle (5) from the (w)-plane. 

Proof: Indeed, the coefficients ,k kbα  and kβ  can be uniquely determined as 
functions of ,bα  and β  by using mf  as follows. With fixed ,jz j k≠ , let us 
denote: 

( )1 1 2 1 1, , , , , ,k m k k mp Af z z z z z a− − += −  , 

( )1 1 2 1 1, , , , , , 1k m k k mq a f z z z z z− − + = −   , 

( )1 1 2 1 1, , , , , ,k m k k mr A f z z z z z− − += −    
and: 

( )1 2, , , k k k
m m

k k k

p z q
w f z z z

q z r
−

= =
+

 . 

Then: 

2 k k k k k k

k k k k k k

p z q p z q
w

q z r q z r
− −

=
+ +

 

hence, (5) becomes: 

( )( ) ( )( )
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k k k k k k k k k k k k
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or: 
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which gives:  
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= − + − + ∈

= + − ∈







              (7) 

Obviously, different values of ,jz j k≠  will determine different circles (6) in 
the (zk)-plane which are mapped bijectively by mf  onto the circle (5). The bijective 
nature is assured by the fact that the Möbius transformations are bijective and 

mf  is a Möbius transformation of the (zk)-plane as long as every { }\ ,1jz a a∈  
remains fixed. Varying some of jz , the coefficients ,k kp q  and kr  will all change 
and then ,k kα β  and kb  will be different, thus all circles (6) will change, despite 
of the fact that the circle (5) remains the same. 

The concept of pre-image by mf  can be useful in order to describe this change. 
The pre-image by mf  of a point w∈  is by definition  

( ) ( ){ }1 2 1 2| , , , , , , ,m
m m mz z z f z z z w∈ = = z z . The pre-image by mf  of a fi- 

gure ⊂ F  is ( ){ }|m
mf∈ ∈ Fz z . Since mf  depends only on the symmet-

ric sums ks  the pre-image by mf  of any figure is invariant with respect to the 
permutations of the variables, i.e., it is a symmetric figure in m . In particular, 
the pre-image W of a single point w is a symmetric figure, which means that if 
( )1 2, , , mz z z  belongs to W, then so does any point obtained by a permutation of 
these coordinates. 

Let us deal for simplicity with the case of ( )2 1 2,f z z  given by (2). We can chose 

arbitrarily { }1 \ ,1z a a∈ . Solving for 2z  the equation: 

( ) 1 2 1 2
2 1 2

1 2 1 2

1
,

z z z zw f z z
z z z z
ω

ω
− − +

= =
− − +

 we get: 

( )
( )

1
2

1

1 1
1

w z w
z

w z w
ω

ω
− + −

=
− + −

                      (8) 

so, with this value of 2z  we have ( )2 1 2,f z z w= , i.e., ( )1 2,z z W∈ . We notice 
that 2z , as a function of 1z  is a Möbius transformation and therefore a bijective 
mapping of   onto  , which means that the pre-image by 2f  of a single 
point { }\ ,1w a a∈  is a subset of 2  in one-to-one correspondence with  . 
Given 1z  in the ( 1z )-plane there is a unique 2z  in the ( 2z )-plane, namely that 
given by (8) such that ( )1 2,z z W∈ . Due to the symmetry of 2f . this happens if 
and only if ( )2 1,z z W∈ , which means that W is a symmetric figure in 2 . 
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When 0w = , then: 

1
2

1

1
1

zz
zω
−

=
−

                         (8') 

hence every point ( ) 2
1 2,z z ∈ , where 2z  is given by (8') is carried by 2f  

into the origin. Due to the symmetry of 2f , the same is true for every point  

( ) 2
1 2,z z ∈ , where 2z  is arbitrary and ( ) ( )1 2 21 1z z zω= − − . 
Now, suppose that w belongs to the circle C of equation (5). Let us denote by 

C  the pre-image by mf  of the circle C, i.e., ( ){ }|m
mf C= ∈ ∈C z z . The for-

mula (8) tells us that for every w C∈ , we can pick up arbitrarily 1z  and if 2z  
is given by (8), then ( )1 2,z z ∈C . But, for 1z  fixed (8) is a Möbius transfor-
mation in w and it maps the circle C onto a circle ( )2 1C z  into the ( 2z )-plane. 
We will call it the projection onto the ( 2z )-plane of the section of C  by  

1z const= . Analogously, a projection ( )1 2C z  onto the ( 1z )-plane can be de-
fined of the section of C  by 2z const= . The circles ( )1 2C z  and ( )2 1C z  are 
mapped bijectively by ( )2 1 2,f z z  onto the circle C when we keep 2 ,z  respec-
tively 1z  fixed in { }\ ,1a a . An easy computation shows that in terms of 

2 2,p q  and 2r  the equation (8) is ( ) ( )2 2 2 2 2z r w q q w p= + − + , where  

2 1p Az a= − , ( )2 1 1q a z= −  and 2 1r A z= − . When 1z  varies, all these parame-
ters vary and we obtain different formulas (8) and therefore different circles  

( )2 1C z . Hence, there are infinitely many circles into the planes ( 1z ) and ( 2z ) 
which are mapped bijectively by 2f  onto the circle C, one for every 2z const= , 
respectively 1z const= . They are all projections onto the two planes of sections 
of C  by 2z const= , respectively 1z const= . However, we can prove: 

Theorem 2. There is a unique Möbius transformation of the ( 1z )-plane into 
the ( 2z )-plane which maps bijectively every circle ( )1 2C z  onto a circle ( )2 1C z . 

Proof. For a given { }2 \ ,1z a a∈  to every circle C in the (w)-plane corre-

sponds uniquely a circle ( )1 2C z  which is the image of C by the Möbius trans-

formation ( ) ( )
( )

2 2
1

2 2

1
1 1

z w z
z w

z w z
ω

ω
− + −

=
− + −

 of the (w)-plane into the ( 1z )-plane and 

for every given { }1 \ ,1z a a∈  a unique circle ( )2 1C z  exists, which is the 

image of C by the Möbius transformation ( ) ( )
( )

1 1
2

1 1

1
1 1

z w z
z w

z w z
ω

ω
− + −

=
− + −

 of the  

(w)-plane into the ( 2z )-plane. The function 1
2 1z z−  is a Möbius transformation 

of the ( 1z )-plane into the ( 2z )-plane which carries the circle ( )1 2C z  into the 
circle ( )2 1C z . The affirmation of the theorem is not trivial since it asserts the 
uniqueness of such a Möbius transformation, while it is known that there are in-
finitely many Möbius transformations which map a given circle onto another 
given circle. They differ by rotations around the center of any one of these circles. 
The theorem states that the mapping 1

2 1z z−  is uniquely determined by the cir-
cles ( )1 2C z  and ( )2 1C z . Indeed, the two circles are in turn uniquely determined 
by the circle C and the two fixed values of 1z  and 2z , which define uniquely the 
functions ( )1z w  and ( )2z w . 
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The general case can be treated similarly. We choose  
( )1 2 1 1, , , , , ,k k mz z z z z− +   arbitrarily in 1m−  and let: 

( ) ( ) ( )
( ) ( )

1 1 2 1 1

1 1 2 1 1

1 , , , , , , 1
, , , , , , 1

m k k m
k

m k k m

w f z z z z z w
z w

w f z z z z z w
ω

ω
− − +

− − +

− + −
=

− + −

 

 

        (9) 

such that ( )1 2, , ,m mf z z z w= . Due to the symmetry of mf , this happens if 
and only if ( )1 2, , ,m mf z z z w′ ′ ′ =  where ( )1 2, , , mz z z′ ′ ′

  is an arbitrary permu-
tation of ( )1 2, , , mz z z . The formula (9) represents a Möbius transformation in 
w which maps a circle C of equation (5) onto a circle kC  into the ( kz )-plane 
when all the other variables are kept constant in { }\ ,1a a . The theorem 2 in 
the general form states that for every k and j, j k≠  there is a unique Möbius 
transformation of the ( kz )-plane into the ( jz )-plane which carries every circle 

kC  into a circle jC . 
Let us deal now with the symmetry with respect to a circle (see [4], page 80) of 

Equation (5). As we have seen, that equation represents a proper circle when 
0α ≠  or a line when 0α = . When that line is the real axis, we say that the 

points w and w  are symmetric with respect to it. Yet, for any line it is known 
what symmetric points with respect to that line mean, namely z and z∗  are 
symmetric points with respect to the line L if and only if L is the bisecting nor-
mal of the segment determined by z and z∗ . This concept can be extended to 
the case when 0α ≠ . In that case the Equation (5) is 0w w r− = , where 0w  is 
the center of the circle and r is its radius. As shown in [4], page 81 by using the 
tool of cross ratios, w and w∗  are symmetric with respect to this circle if and 
only if: 

( )2
0 0w r w w w∗ = − + .                     (10) 

The symmetry principle states that if a Möbius transformation carries a circle 

1C  into a circle 2C , then it transforms any pair of symmetric points with re-
spect to 1C  into a pair of symmetric points with respect to 2C . Here circle means 
proper circle or line. This principle can be extended to m-Möbius transformations 
in the following way. 

Theorem 3 (The Main Theorem). Let w and w∗  be symmetric points with 
respect to the circle (5) and let W and W ∗  be the pre-images by mf  of w and 
respectively w∗ . Then the projection onto the ( kz )-plane of any section of W 
and W ∗  obtained by keeping { }\ ,1jz a a∈  fixed, j k≠  are points sym-
metric with respect to the circle (6) corresponding to that section. 

Proof: By the Theorem 1, the circle (5) is the image by Möbius transformations 
of every circle (6) from the ( kz )-plane when { }\ ,1 ,jz a a j k∈ ≠  are kept 
fixed. Then the symmetry principle applied to these circles is exactly this theo-
rem. 

This theorem describes in fact a phenomenon happening in m  related to 
m-Möbius transformations. If we consider C  as a generalized circle in m  and 
W as the equivalent of a point from  , then it makes sense to say that W ∗  is the 
symmetric of W with respect to C , since this is true for the projections on every 
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( kz )-plane of any section of them obtained by keeping { }\ ,1jz a a∈  fixed, 
j k≠ . The projection of the respective section of C  is kC  and that of the sec-

tions of W and W ∗  is kz  and kz∗ . The symmetric of kz  with respect to kC . 
The theorem states that a m-Möbius transformation carries symmetric points with 
respect to C  into symmetric points with respect to C.  

There is a one-to-one mapping of W onto W ∗  assigning to every  
( )1 2, , , mz z z W= ∈z  the point ( )1 2, , , mz z z∗ ∗ ∗ ∗= z , where kz∗  is the symmetric 

of kz  with respect to kC . It can be called reflection in C , extending to m  a 
concept pertinent to   (see [4], page 81). The reflection in a circle is an invo-
lution and the composition of two reflections with respect to different circles 
result in a Möbius transformation. More generally, the composition of an odd 
numbers of reflections with respect to different circles is again a reflection and 
the composition of an even number of reflections is a Möbius transformation. More- 
over, as shown in [4], page 172, every Möbius transformation can be obtained as 
the composition of two or four reflections in circles. 

The symmetry principle states that if a Möbius transformation ( )w M z=  
carries the circle 1C  into the circle 2C , then M composed with reflection in 

1C  is reflection in 2C . In other words ( ) ( )M z M z
∗ ∗=   , where ∗  on the 

left hand side means reflection in 2C  and on the right hand side reflection in 

1C . 
We notice that (10) does not represent a Möbius transformation since it is 

anticonformal, while Möbius transformations are conformal mappings. Yet, in 
terms of mapping properties there are some similarities between the reflections 
in circles and Möbius transformations. One of them is that of preservation of 
circles ([5], page 126). Even more can be said: if a line L does not pass through 
the center 0w  of the circle C, then its reflection in C is a circle 1C  passing through 

0w  and vice-versa, if a circle 1C  passes through 0w  then its reflection in C is 
a line L not passing through 0w . If the proper circle 1C  does not pass th- 
rough 0w  then its reflection in C is another proper circle not passing through 

0w . 
Next we will investigate some similar properties of the reflections with respect 

to C  and m-Möbius transformations of C . 
Theorem 4. Let C  be the pre-image by a m-Möbius transformation  

( )mw f= z  of the circle 0:C w w r− = . Then mf  composed with reflection in 
C  is reflection in C. If L is a line not passing through 0w , then 0 = ∅L w , 
where L  and 0w  are the pre-images of L and 0w . Moreover, if ∗L  is the im-
age of L  by reflection in C , then 0

∗⊂w L . Reciprocally, if 1C  is a proper cir-
cle which passes through 0w  then 0 1⊂w C  and 1 0

∗ = ∅C w . 
Proof: By the formula (9) and the symmetry principle we have  

( ) ( )k kz w z w
∗∗ =     for every 1,2, ,k m=  . Then:  

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2, , , , , ,m m m mw f z w z w z w f z w z w z w
∗ ∗ ∗∗ ∗ ∗ ∗= =               

and the first term shows reflection in C, while the last one is mf  composed 
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with reflection in C . The second affirmation is true since the pre-image of the 
intersection of two sets is equal to the intersection of the pre-images of those sets. 
Next, mf  moves ∗L  into the reflection of L in C which passes through 0w , 
hence the pre-image of 0w  is included in ∗L . Finally, if a proper circle 1C  
passes through 0w , then 1C∗  should pass through ∞ , which is the reflection 
in C of 0w . Thus 1C∗  is a line not passing through 0w  and then  

1 0
∗ = ∅C w .  
Theorem 5. Given a circle ( )2: 2 0k k k k k kC z Re b zα β+ + =  in the ( kz )-plane, 

for every j k≠  there are infinitely many circles jC  in every ( jz )-plane such 
that kC  and jC  have the same image by mf  when all the other variables are 
kept fixed.  

Proof: Suppose that a circle C of Equation (5) is given in the (w)-plane. We are 
looking for a circle (6) which is mapped bijectively by mf  onto the circle C when 

,jz j k≠  are kept all fixed. With the notations of Theorem 1, we have that if kz   

is on kC  and w is on C where ( )1 2, , ,m mw f z z z=  , then k k
k

k k

r w q
z

q w p
+

=
− +

, as 

in Theorem 1, thus k k
k

k k

r w q
z

q w p
+

=
− +

, and the equation of:  

( ): 2k k k k k k kC z z Re b zα β+ +  becomes: 

0k k k k k k k k
kk k k

k k k k k k k k

r w q r w q r w q r w q
b b

q w p q w r q w r q w r
α β

+ + + +
+ + + =

− + − + − + − +
, or 

( )( ) ( )( )
( )( ) ( )( ) ,

k k k k k k k k k k

k k k k k k k k k k

r w q r w q b r w q q w r

b r w q q w r q w r q w r

α

β

+ + + + − +

+ + − + + − −
 

which is: 

( ): 2C ww Re bwα β+ + , 

where: 

( )
( )

2 2

2 2

2 2

2

2

k k k k k k k

k k k k k k k

k k k k k k k k k k

r q Re b r q

q r Re b q r

b q r q r b q b r

α α β

β α β

α β

= + −

= + +

= − − +

               (11) 

Hence the circle kC  is mapped bijectively by mf  onto the circle C when 
,k kp q  and kr  are kept fixed. On the other hand, the projection onto the ( jz )- 

plane of any section of the pre-image C  of C by ,lz const l j= ≠  is a circle jC  
which is mapped by mf  bijectively onto C when all the variables except jz  are 
kept fixed in { }\ ,1a a , therefore there are infinitely many circles jC  in every 
( jz )-plane such that kC  and jC  have the same image by mf . 

The theory of Apollonius circles and of Steiner nets ([4], page 85) can be ex-
tended word by word to m-Möbius transformations. Let us deal first with the 
case 2m = . With the notation ( ) ( ) ( )2 2 2 1k z Az a a z= − − ,  

( ) ( ) ( )2 2 21z a z Az aϕ = − −  and ( ) ( ) ( )2 2 2 1z z A a zψ = − −  the formula (1) be- 
comes ( ) ( ) ( )2 1 2 1 2w k z z z z zϕ ψ= − −       , which shows that ( )1 2z zϕ=  cor-
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responds to 0w =  and ( )1 2z zψ=  corresponds to w = ∞ , thus straight lines th- 
rough the origin of the (w)-plane are images by ( )2 1 2,f z z  of circles lC  through 
the limit points ( )2zϕ  and ( )2zψ  from the ( 1z )-plane for every 2z ∈ . On 
the other hand, the concentric circles about the origin w ρ= , are the images 
by ( )2 1 2,w f z z=  of circles with equation  

( ) ( ) ( )1 2 1 2 2z z z z k zϕ ψ ρ− − =        for every 2z ∈ . These are the Apol-
lonius circles aC  with the limit poins ( )2zϕ  and ( )2zψ . Together with the 

aC  circles they form the Steiner net. Every lC  circle is orthogonal to all aC  
circles and every aC  circle is orthogonal to all lC  circles.There is exactly one 

aC  circle and one lC  circle from the Seiner net defined by 2z  passing through 
every point of the ( 1z )-plane except the points ( )2zϕ  and ( )2zψ . Reflection 
in a aC  circle switch ( )2zϕ  and ( )2zψ  and transforms every lC  circle into 
itself and every aC  circle into another aC  circle. 

The pre-image by 2f  of any Steiner net from the (w)-plane is an object in 
2  whose sections by 2z const=  and 1z const=  are Steiner nets in the ( 1z )- 

plane, respectively the ( 2z )-plane. Indeed, this is true due to the formula (8) and 
the preservation of circles by Möbius transformations. The Theorem 2 implies 
the following: 

Corollary 1. There is a unique Möbius transformation of the ( 1z )-plane into 
the ( 2z )-plane which carries the Steiner net determined by 2z const=  into the 
Steiner net determined by 1z const= .  

Proof: Indeed, by the Theorem 2 there is a unique Möbius transformation 
( )1 2z M z=  which carries an Apollonius circle ( )2aC z  into another Apollonius 

circle ( )1aC z . Then, by the symmetry principle every ( )2lC z  circle is trans-
formed into a ( )1lC z  circle. Yet the family of these circles determines uniquely 
the family of the ( )1aC z  circles, which are all the orthogonal circles to them. Fi-
nally, the whole Steiner net from the ( 2z )-plane is mapped by ( )1 2z M z=  into 
the Steiner net determined by 2z const= . 

The pre-image by mf  of a Steiner net from the (w)-plane is an object in m  
whose sections obtained by keeping all jz  fixed for j k≠  is a Steiner net in 
the ( kz )-plane, due to the formula (9) and the preservation of circles by Möbius 
transformations. Every point of m , except the pre-image of the limit points of 
the net, belongs to the pre-image of both families of circles belonging to the Stei-
ner net from the (w)-plane.  

Given a Steiner net in the (w)-plane, its pre-image by ( )mf z  into m  pro-
jects into Steiner nets in every ( kz )-plane, the image of which by mf  is the orig-
inal Steiner net from the (w)-plane. By Theorem 2, there is a unique Möbius trans-
formation of any ( jz )-plane into the ( kz )-plane carying one such Steiner net into 
the other.  

The question arises: what is the pre-image by mf  of a triangle, rectangle, or 
in general of an arbitrary polygon? We cannot describe these pre-images, yet we 
can imagine their sections when keeping constant all the variables except one. 
Since such a section of the pre-image of a line segment is an arc of a circle or a 
half line, when one of the ends is sent to infinity, the answer to that question is 
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the following. The projection onto the ( kz )-plane of the sections as previously 
defined of the pre-image by mf  of a triangle is a curvilinear triangle having the 
same angles as the original one. Some of these triangles can be infinite, in the sense 
that one side is an arc of a circle and the other two are half-lines. An analogous 
situation appears for the pre-image of an arbitrary polygon. 

3. Uniqueness of m-Möbius Transformations 

It is known that there is a unique Möbius transformation in the plane moving 
three distinct points into other three distinct points. In what follows, we will 
study similar properties of m-Möbius transformations. 

Theorem 6. There is a unique m-Möbius transformation mf  moving a given 
point , 2,3m m∈ =z  into a given point w∈ .  

Proof: Indeed, such transformations have the form see ([1])  

( ) 2 1
2 1 2

2 1

1
,

s sf z z
s s
ω

ω
− +

=
− +

, respectively ( ) ( )
( )

3 2
3 1 2 3

3 1

1 1
, ,

1
s s

f z z z
s s

ω
ω

+ − +
=

− + +
. Then, in 

the first case, ( )2w f= z  implies ( )2 1 2 11s s w s sω ω− + = − + , hence ω  is uni- 

quely determined by 
( )2 1 1

2

1w s s s
s w

ω
− + −

=
−

. Analogously, in the second case, 

( )3w f= z  implies ( ) ( )3 2 3 11 1 1s s w s sω ω+ − + = − + + , thus ω  is uniquely 

determined by 
( )( )3 2 1

3

1 1 1s w s ws
s w

ω
+ − + − −

=
−

. 

This theorem is a particular case of the following: 
Theorem 7. For 2m k=  and 2 1m k= + , 1,2,3,k =   the equation  

( )mf w=z  has the degree k in ω  and therefore, with the exception of multi-
ple roots, it has k solutions, which means that with those exceptions there are k 
different m-Möbius transformations ( )mf z  moving a given point m∈z  in-
to a given point w∈ . 

Proof: We need a pretty elaborate induction argument. It can be made more 

obvious if we write the m-Möbius transformations as matrices ,1

,2

m

m

r
r
 
 
 

 whose  

entries are the polynomials in ω  appearing at the numerator and at the de-
nominator of ( )mf z  and arrange the coefficients of these polynomials also as 
matrices. The examples of mf  which follow can be found in [1]. 

For ( )2f z  we have the matrix expression:  

2,1

2,2

1 1
1 1

r
r

ω
ω

−   
=   −  

 

For ( )3f z  the matrix is:  

3,1

3,2

1 1 0 1
1 0 1 1

r
r

ω
ω

+ −   
=   − +  

 

We notice that starting with 4m =  every matrix ,1

,2

m

m

r
r
 
 
 

 is built around the 
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matrix 2,1

2,2

m

m

r
r

−

−

− 
 − 

 by adding a first and a last column as follows:   

2
4,1 2,1

2
4,2 2,2

1
1

r r
r r

ω ω ω
ω ω ω

 + − − 
=    − + −    

 

2
5,1 3,1

2
5,2 3,2

2 1
1 2

r r
r r

ω ω ω
ω ω ω

 + − + 
=    + − +    

 

3 2 2
6,1 4,1

2 3 2
6,2 4,2

2 1 1
1 2 1

r r
r r

ω ω ω ω ω
ω ω ω ω ω

 + − − − + − 
=    + − − + − −    

 

3 2 2
7,1 5,1

2 3 2
7,2 5,2

3 1 2
2 3 1

r r
r r

ω ω ω ω ω
ω ω ω ω ω

 + + − − + 
=    + − + + −    

 

4 3 3 2
8,1 6,1

3 2 4 3
8,2 6,2

3 3 2 1
2 1 3 3

r r
r r

ω ω ω ω ω ω
ω ω ω ω ω ω
 + − − + − − 

=    + − − − + −    
 

4 3 2 3 2
9,1 7,1

3 2 4 3 2
9,2 7,2

4 3 2 1 3 1
3 1 4 3 2 1

r r
r r

ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

 + + − − − + + − 
=    + + − − + + − −    

 

Let us notice that a simplification with 1ω −  occurs in every ( )2 1kf + z  such 
that ( )2kf z  and ( )2 1kf + z  have the same degree as rational functions of ω . We 
need to prove this affirmation thoroughly by induction. It is clear that the induc-
tion hypothesis should be: 

( ) ( )
( ) ( )

2 ,1 2 2,1 1

2 ,2 1 2 2,2

k k k k

k k k k

r p r p
r p r p

ω ω
ω ω

− −

− −

 −  
=    −   

 

( ) ( )
( ) ( )

2 1,1 2 1,1 1

2 1,2 1 2 1,2

k k k k

k k k k

r q r q
r q r q

ω ω
ω ω

+ − −

+ − −

 −  
=    −   

 

where ( )kp ω  and ( )kq ω  are polynomials of degree k and ( )1kp ω−  and  
( )1kq ω−  are polynomials of degree 1k − . Moreover, it can be easily checked that 

for every 1,2,3,4k =  we have ( ) ( ) ( )1k k kq q pω ω ω−− = ,  
( ) ( ) ( ) ( )1 1k k kp p qω ω ω ω−− = − , ( ) ( ) ( ) ( )1 1k k kp p qω ω ω ω ω−− = −  and  
( ) ( ) ( )1 1k k kq q pω ω ω ω− +− =  and these equalities should be a part of the induc-

tion hypothesis. 
The proof consists in showing that the formula: 

( ) ( ) ( )
( ) ( )

1 1 2 1
1 1 2 1

1 1 2 1

1 , , , 1
, , ,

1 , , ,
m m m m

m m
m m m m

z f z z z z
f z z z

z f z z z z
ω

ω
+ +

+ +
+ +

− + −
=

− + −







 

produces matrices obtained from the last two by replacing k with 1k + , i.e.: 

( ) ( )
( ) ( )

2 2,1 1 2 ,1

2 2,2 2 ,2 1

k k k k

k k k k

r p r p
r p r p

ω ω
ω ω

+ +

+ +

 −  
=    −   

 

( ) ( )
( ) ( )

2 3,1 2 2 1,1 1

2 3,2 1 2 1,2 2

k k k k

k k k k

r p r p
r p r p

ω ω
ω ω

+ + + +

+ + + +

 −  
=    −   
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We have:  

( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2 1 1
2 2 2 2

1 2 1
2 2 1 2 2 2

2 1 1
2 2 2 2

1 2 1

1 2 2 2 1 1

1 2 2 2 1 1

1 2 2

1 1
, , ,

1

k k k
k k

k k k
k k

k k k
k k

k k k

k k k k k k

k k k k k k

k k

q s q
z z

q s q
f z z z

q s q
z z

q s q

q q z s q q
q q z s q q

p s

ω ω
ω

ω ω
ω ω

ω
ω ω

ω ω ω ω ω

ω ω ω ω ω

ω

+ −
+ +

− +
+ +

+ −
+ +

− +

− + + −

− + + −

+ +

+ +
− + −

+ +
=

+ +
− + −

+ +

− + + −  =
− + + −  

+
=















 ( )
( ) ( )2 2 1

,k

k k k

p
p s p

ω
ω ω+ +

+
+ +

  

which shows that indeed, the matrix corresponding to ( )2 2 1 2 2 2, , ,k kf z z z+ +  is: 

( ) ( )
( ) ( )

2 2,1 1 2 ,1

2 2,2 2 ,2 1

k k k k

k k k k

r p r p
r p r p

ω ω
ω ω

+ +

+ +

 −  
=    −   

 

The computation for the second matrix is similar. This proof provides more 
information than that about the degree of the equation ( )mf w=z , namely it 
shows the structure of ( )mf z . 

4. Vectors in m  

The orthogonality of two vectors in m  is expressed by the cancellation of their 
inner product (see [5], page 151). With the help of m-Möbius transformations 
we can say more, namely an angle of two arbitrary two vectors in m  can be 
defined, such that the respective angle is ( )22 modπ π  when their inner prod-
uct is zero. For simplicity, we deal first with the case 2m = . Let 2, ∈z ζ  be 
arbitrary points. Following a tradition (see [4], page 12), we will keep the same 
notation for their position vectors, i.e., vectors pointing from the origin to those 
points. The inner product of the vectors z  and ζ  is by definition  

1 1 2 2, z zζ ζ= +z ζ . We say that z  and ζ  are orthogonal if and only if  
, 0=z ζ . Suppose that z  and ζ  are not those given by (8'), i.e., their imag-

es by 2f  is not zero. We denote by 0z  a point which is mapped by 2f  into 
zero, i.e., ( )0 1 2,z z=z , for an arbitrary 1z  and ( ) ( )2 1 11 1z z zω= − − . Then 

0−z z  and 0− zζ  are vectors with the initial point 0z  and the final points re-
spectively z  and ζ . Their images by 2f  are position vectors u and v in the 
(w)-plane. They make an angle ( ),u vα =  which remains invariant to a con-
formal mapping.  

Theorem 8. Let 2f  be a bi-Möbius transformation of parameter ω  moving 
the points 0−z z  and 0− zζ  into u and v. Then the projection of the section 
of the pre-image of u and v by 2 1z =  does not depend on ω . 

Proof: Indeed, let us deal with the mapping ( ) ( )
( )

2 2
1

2 2

1
1 1

z w z
z w

z w z
ω

ω
− + −

=
− + −

 ob-

tained by solving for 1z  the equation ( )2 1 2,w f z z= . For 2z  fixed this is a  

conformal mapping of the (w)-plane onto the ( 1z )-plane. For 2 1z =  we have 
( )1z w w= , which implies that ( ) ( )( ) ( )1 1, ,z u z v u v=  . Due to the symmetry 
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of 2f  we obtain a similar result for the projection onto the ( 2z )-plane. 
If u and v are orthogonal, so are ( )1z u  and ( )1z v , respectively ( )2z u  and 
( )2z v . Then ( ) ( )1 1 0z u z v =  and ( ) ( )2 2 0z u z v = , thus  
( ) ( ) ( ) ( )1 1 2 2 0z u z v z u z v+ = , which means that z  and ζ  are orthogonal. We 

can put by definition ( ) ( ), ,u v=z ζ  , which agrees with the the definition of 
orthogonality. These concepts generalize trivially to m . 

5. The Cross-Ratio 

The cross-ratio of four points used by Desargues in his studies of projective ge-
ometry (see [5], page 154), reappears in complex analysis as a means of dealing 
with Möbius transformations. It is known that there is a unique Möbius trans-
formation which carries three arbitrary distinct points , ,q r s∈  into  

0,1,∞ . This is [ ] ( )( )
( )( )

, , ,
z q r s

z q r s
z s r q
− −

=
− −

 and it is called the cross-ratio of the  

four points , , ,z q r s . In other words, the cross-ratio [ ], , ,z q r s  is the image of z 
by the Möbius transformation which carries , ,q r s  into 0,1,∞ . It is also known 
(see [4], page 79) that for any Möbius transformation ( )w M z=  and for any 
four distinct points 1 2 3 4, , ,z z z z ∈  we have  
[ ] [ ]1 2 3 4 1 2 3 4, , , , , ,w w w w z z z z= , where ( )j jw M z= , 1,2,3,4j = , hence the 
cross-ratio of four points is an invariant with respect to Möbius transformations. 

What can be said if ( )w M= z  is a m-Möbius transformation? Obviously, the 
cross-ratio cannot be defined in m . Yet, we can use the pre-image by M of the 
four points jw ∈  and the fact that the projections of the sections obtained by 
keeping lz  fixed, l k≠  of this pre-image onto any ( kz )-plane are complex 
numbers. More exactly, keeping fixed all lz , l k≠ , the section of the pre-image 
of jw  is a unique point. Let us denote by ( )j

kz  the projection onto the ( kz )- 
plane of the section of the pre-image of jw  obtained by keeping lz  fixed, l k≠ . 
We have:  

( )

( )

j
k k k

j j
k k k

p z q
w

q z r
−

=
+

                       (12) 

as in Section 2. Thus, we can state: 
Theorem 9. For every m-Möbius transformation ( )w M= z  the cross-ratio 

of four points from every ( kz )-plane is preserved. 
Proof: Let us take ( ) , 1, 2,3, 4j

kz j =  four distinct points in the ( kz )-plane and 
for ( )j

lz  arbitrary in the ( lz )-planes, l k≠  denote  

( ) ( ) ( )( )
( )

( )1 2, , ,
j

j j j k k k
j m j

k k k

p z q
w M z z z

q z r
−

= =
+


, 1,2,3,4j = . The projections onto the  

( kz )-plane of the sections of the pre-image by M of jw  obtained when we 
keep ( ) ,j

l lz z l k= ≠  fixed are exactly the points ( )j
kz . Since (9) is a Möbius 

transformation, we have ( ) ( ) ( ) ( ) [ ]1 2 3 4 1 2 3 4, , , , , ,k k k kz z z z w w w w  =  , which proves the 
theorem. 

Theorem 10. The cross-ratio ( ) ( ) ( ) ( )
1 2 3 4, , ,k k k kz z z z 

   of four points in any ( kz )- 
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plane is real if and only if for arbitrary ,lz l k≠ , the points ( )j jw M= z , where 
( )( )1 2 1 1, , , , , , ,k

j k j k mz z z z z z− +=  z  lie on a circle in the (w)-plane. 
Proof: It is known that cross-ratio of four points in the complex plane is real if 

and only if the four points lie on a circle in that plane (see [4], page 79). Let the 
plane be a ( kz )-plane and let ( ) , 1, 2,3, 4k

jz j =  lie on a circle. Then  
( ) ( ) ( ) ( )
1 2 3 4, , ,k k k kz z z z 

   is real and ( ) ( ) ( ) ( ) [ ]1 2 3 4 1 2 3 4, , , , , ,k k k kz z z z w w w w  =  . The imag-
es of that circle by ( )M z  for different choices of ,lz l k≠  are circles in the (w)- 
plane which contain the points jw . Reciprocally, if jw  lie on a circle in the (w)- 
plane, let us take the pre-image by ( )M z  of that circle. Keeping ,lz l k≠  con-
stant we obtain a section of that pre-image whose projection onto the ( kz )-plane 
is a circle containing the points ( )k

jz , therefore, the cross-ratio of these points must 
be real. 

6. Conclusion 

The purpose of this work was to extend to m  the geometric concepts pertinent 
to Möbius transformations in the plane. The introduction of a function  

: m
mf →  , which is a Möbius transformation in each one of the variables, 

when keeping the others constant allowed us to perform this task. The most re-
markable achievement was the extension to m  of the symmetry principle. The 
concept of the angle of two vectors in m  has been also dealt with. However, 
just a few properties have been visited, so the potential for other developments is 
obvious. In particular, visualization in the style done in [6] might be possible 
having in view the fact that mf  is a classic Möbius transformation in every one 
of its variables when others are kept fixed. For the same reason, characterizations 
as those made by Haruki and Rassias in [7] [8] [9] [10] are expected. 
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