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Abstract 
In this paper, a cubic objective programming problem (COPP) is defined. 
Introduced a new modification to solve a cubic objective programming 
problem. Suggested an algorithm for its solution. Also reported the algo-
rithm of the usual simplex method. Application talks about how the devel-
oped algorithm can be used to unravel non-linear. The proposed technique, 
modification simplex technique, can be used with the constructed numeri-
cal examples an illustrative numerical problems are given to demonstrate 
the algorithms.  
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1. Introduction 

Nonlinear programming problems are mathematical programming problems 
with nonlinear/linear objective functions and linear/nonlinear constraints. There 
are several approaches for solving various sorts of non-linear programming 
problems that are affected by the kind of objective function and constraints in 
[1]. The number of methods with providing examples clearly discussed using 
standard division to sole multi-objective programming problem in [2]. [3] pre-
sented a specialization of the convex simplex method to cubic programming. [4] 
presented a method that's utilized to illuminate a set of nonlinear programming 
issues by simplex strategy. This technique also makes a difference to supply the 
arrangement of direct programming problems (Abdulrahim). Nonlinear opti-
mization with financial application is been examined by [5]. Also, by utilizing 
altered simplex approach and Wolfes strategy QFPP illuminated by [6]. The cu-
bic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation 
in parabolic law media are investigated to obtain the dark, singular, bright-singular 
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combo and periodic soliton solutions by [7]. In 2020, A. M. Sultan et al. are stu-
died solutions of higher order dispersive cubic-quantic nonlinear in [8] to broa-
den this work, they considered a unique case issue in which the target capacities 
are QF (Quadratic partial) however contain direct limitations. The issue will set-
tle by another adjusted simplex strategy. Likewise, the issue of the extraordinary 
case will be tackled by simplex strategy after converting the target capacity to the 
pseudo partiality work. The two outcomes will be contrasted with test legitima-
cy. [9] discussed about linear and nonlinear operation research, named “Prin-
ciples of Operations Research” in 1999.  

Cubic objective programming problems (COPP) might be specified as a really 
critical point with respect to nonlinear programming. In expansion, direct pro-
gramming is exceptionally vital for a few purposes counting (wellbeing care, 
generation and etc.) arranging. More specifically, in mentioned applications of 
nonlinear programming, two given portions or functions could be maximized 
and minimized. 

In order to extend this work, we have defined a cubic objective programming 
problem with linear constraints (COPP) and suggested the algorithm to solve 
cubic programming problem; and proposed a new modification simplex method 
to find the solution of COPP. 

2. Some Definition and Theorems 
2.1. Linear Programming (LP) 

The general linear programming model with n decision variables and m con-
straints can be stated in the following form.  

Optimize (max or min) 1 i ii
nZ C t
=

= ∑  
Subject to 

11 1 12 2 1 1n na t a t a t b
≥ 
 + + + ≤ 
 = 


 

21 1 22 2 2 2n na t a t a t b
≥ 
 + + + ≤ 
 = 


 

  

1 1 2 2n n nn n na t a t a t b
≥ 
 + + + ≤ 
 = 


 

0t ≥  

where ic  represents the per unit profit (or cost) of decision variables 1 2, , , nt t t  
to the value of the objective function. And ija  where 1,2, , ; 1, 2, ,i n j n= =   
represent the amount of resource consumed per unit of the decision variables. 
The ib  represents the total availability of the ith resource. Z represents the 
measure-of-performance which can be either profit, or cost or reverence etc. 
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2.2. Quadratic Programming 

The optimization problems assume that form  

( ) T TMax Min . Z C t t Gtα= + +  

subject to:  

At b
≥ 
 ≤ 
 = 

 

0t ≥  

where ( )ij m n
A a

×
= , matrix of coefficients. 

For all 1,2, ,i m=   and 1,2, ,j n=   

( )T
1 2, , , nb b b b=  , ( )T

1 2, , , nt t t t=  , ( )T
1 2, , , nCt C C C=   

And ( )ij n n
G g

×
=  mentioned as a positive semi-definite organized four-sided 

matrix, also, the objective functions is quadratic and constraints are linear. So, 
shown problem could be expressed as a QP problem. For more details, see [3]. 

2.3. Nonlinear Programming Problem 

The general non-linear programming problem can be stated in the following 
form: optimize  

( ) T TMax Min . Z C t t Gtα= + +  

subject to:  

At b
≥ 
 ≤ 
 = 

 

0t ≥  

where ( )ij m n
A a

×
= , matrix of coefficients. 

For all 1,2, ,i m=   and 1,2, ,j n=   

( )T
1 2, , , nb b b b=  , ( )T

1 2, , , nt t t t=  , ( )T
1 2, , , nCt C C C=    

And ( )ij n n
G g

×
=  mentioned as a positive semi-definite organized four-sided 

matrix, also, the objective functions is nonlinear and constraints are linear. 

2.4. Theorem: Fundamental Theorem of LP 

The ideal value of the target function in a LP issue exists, at that point that es-
teem (known as the ideal arrangement) or (optimal solution) should happen at 
least one of the limit points of the practical area [3]. 

3. Mathematical Form of COPP 

The mathematical form of COPP cubic objective programming problem as fol-
lows: 

T
1Max. n p

iz C t
=

= ∑  
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subject to: 

( ), ,At b≤ ≥ =  

0t ≥  

where C is n-dimensional column vector, 1,2,3p = , A is an (m × n) matrix and 
b is an m-dimensional column vector. 

4. New Approach 

In this paper the problem that has objective function from as follows  
3 2 2 3
1 1 2 21 2 2 3 1 4Max. z a t a t t a t t a t= + + +   

subject to: 

At b
≤ 
 ≥ 
 = 

  

0t ≥  

A is an m × n matrix, all vectors are assumed to be column vectors unless 
transposed (T), where t is an n-dimensional column vector of decision variables. 

1 2 3 4, , ,a a a a  are coefficients of objective functions, 1 2, , , nt t t  are the value of 
objective functions.  

( )T
1 2, , , nb b b b=  , ( )T

1 2, , , nt t t t=   

5. Algorithms 
5.1. Algorithm of Standard Division Technique to Solve COPP  

(Cubic Objective Programming Problem) of Form 

( )( )( )1 1 2 2 1 1 2 2 1 1 2 2Max. z a t a t b t b t c t c tα β γ= + + + + + +  

subject to: 

At b
≤ 
 ≥ 
 = 

 

0t ≥  

A is an m × n matrix, all vectors are assumed to be column vectors unless 
transposed (T), where t is an n-dimensional column vector of decision variables, 
α, β, and γ are scalars. 

Below algorithm shown to find the optimal average of maximum and mini-
mum for the COPP as follows:  

Step 1: Through clarifying and appearing slack and manufactured factors 
standard shape of the issue can be composed to limitations, and stamp starting 
simplex table.  

Step 2: Compute the μ by through below equations 

min B

j

t
t

µ =  
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Step 3: Compute the j∆  through below equations 

( ) ( ) ( )2 1 3 1 3 2 1 2 31 2 1 3 2 3j j j j j j j j j jZ Z Z Z Z Z µ∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ ∆ ∆ , 

then mark or write computed value in the beginning simplex table. 
Step 4: Get arrangement of to begin with objective issue through utilizing 

simplex way.  
Step 5: Check the reply for attainability in step 4, in case of being doable go to 

step 6, and in case not, double simplex strategy will be utilizing in order to re-
move in feasibility.  

Step 6: The arrangement for optimality will be check in the event that all 
0j∆ ≥  at that point go to step 7, something else back to step 4.  

Step 7: Dole out a title to ideal esteem of the greatest objective work iZ  say 
1,2, ,i r=∀   and allot a title to the ideal esteem of the most extreme objective 

work iZ  where 1, 2, ,i r r s∀ = + +  . 
Step 8: Include overall objective functions through repeat procedure from the 

step 4: for 2, ,i s=  .  

5.2. Algorithm and Solving Cubic Programming Problem by  
Modified Simplex Method 

Cubic form as follows: 
3 2 2 3
1 1 2 21 2 2 3 1 4Max. z a t a t t a t t a t= + + +  

subject to: 

At b
≤ 
 ≥ 
 = 

 

0t ≥  

A is an m × n matrix, all vectors are assumed to be column vectors unless 
transposed (T), where t is an n-dimensional column vector of decision variables. 

5.3. Algorithm 

1) 1 2max. max. maxz z z= − . Then applying algorithm 4.1 to solve 1max. z  
and 2max z . 

2) Find 1 2max. max. maxz z z= − . 

6. Construct Numerical Example 

Example 1 
3 2 2

1
3

221 1 2Max. 2 3Z t t t t t t= − + +  

subjected to:  

1 2 6t t+ ≤  

1 24 2 8t t− ≤  

1 2, 0t t ≥  
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( ) ( )2 2
1 21 2 1 2max. 2 3z t t t t t t= − − − −  

subjected to:  

1 2 6t t+ ≤  

1 24 2 8t t− ≤  

1 2, 0t t ≥  

Then  

( )2
11 1 2max. 2z t t t= −  

( )2
22 1 2max. 3z t t t= − −  

subjected to:  

1 2 6t t+ ≤  

1 24 2 8t t− ≤  

1 2, 0t t ≥  

Solve each objective by the same constraints: 

( )2
11 1 2max. 2z t t t= −  

subjected to:  

1 2 6t t+ ≤  

1 24 2 8t t− ≤  

1 2, 0t t ≥  

where: 

SB  is basic variables, iCB  is coefficient of basic variable in the objective 
function, 1, 2,3i = . 

1j
C  is a coefficient of variables in the first factor of the ob-

jective function. 
2j

C  is a coefficient of variables in the second factor of the ob-
jective function. 

3j
C  is a coefficient of variables in the third factor of the objec-

tive function. Bt  is a value of the basic variables, and 1 2 3, ,z z z  value of the 
factors in the objective function, and 1 1 2 3Z f f f∗ ∗=  value of the objective 
function.  

( )( )1 1 0 0 6 4 0Bf CB t= ∗ = = , ( )( )2 2 0 0 6 4 0Bf CB t= ∗ = = , 

( )( )3 3 0 0 6 4 0Bf CB t= ∗ = =  

1 0f = , 2 0f = , 3 0f = ; 1 1 2 3 0Z f f f∗ ∗= =  

Applying the procedure of simplex method, we get the optimal solution is t1 = 
2, t2 = 0, S1 = 4, S2 = 0 and max. Z = 8. 
where: 

minratio = min{tB/tj, tj > 0}, μj = min{tB/tj, tj > 0} for non-basic vectors, i.e. for j 
= 1, 2 

1 11j j jZ t C∆ = ∗ − , 
2 22j j jZ t C∆ = ∗ − , 

3 33j j jZ t C∆ = ∗ − , 

( )
1

1 0 0 0jC =  is a coefficients of variables in the first factor of the objective 
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function, then ( )
1

1 0 0 0j −∆ = ; ( )
2

1 0 0 0jC =  is a coefficients of variables in 
the second factor of the objective function, then ( )

2
1 0 0 0j −∆ =  &  

( )
3

1 2 0 0jC = −  is a coefficients of variables in the first factor of the objective 
function, then  

( )
3

1 2 0 0j = −∆  & { }1 6 1,2 1 4µ = = ; { }2 6 1, - 6µ = =   

( ) ( ) ( )2 1 2 1 3 2

1 2 3

1 2 1 3 2 3j j j j j j j

j j j

Z Z Z Z Z Z

µ

∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆∗ ∗ ∗ ∗

+ ∆

∗

∆

∗

∆
  

then ( )2 0 0 0j∆ = −  

( )2
22 1 2max. 3z t t t= − −  

subjected to:  

1 2 6t t+ ≤  

1 24 2 8t t− ≤  

1 2, 0t t ≥  

1 0f = , 2 0f = , 3 0f = ; 2 1 2 3 0Z f f f∗ ∗= =  

To apply simplex method in Table 1, since all 0j∆ ≥  then this solution is 
optimal t1 = 0, t2 = 0, S1 = 6, S2 = 8 and max. Z2 = 0. 

Leads to 
To calculate Δj by the same manner in Table 2. 
The symbols 

1j
C , 

2j
C , 

3j
C , 

1j
∆ , 

2j
∆ , 

3j
∆ , Δj and μj have the same mean-

ing as before in Table 2. 

{ }1 6 1,8 4 2µ = = , { }2 6 1, - 6µ = =  

( )
1

0 1 0 0jC = , ( )
2

0 1 0 0jC = , ( )
3

3 1 0 0jC = − −  

( )
1

0 1 0 0j = −∆ , ( )
2

0 1 0 0j = −∆ , ( )
3

3 1 0 0j =∆ , 

 
Table 1. First table of modification simplex method for solving cubic objective function. 

Bs CB1 CB2 CB3 tB t1 t2 S1 S2 Min ratio 

S1 0 0 0 6 1 1 1 0 6/1 = 6 

S2 0 0 0 8 4 −2 0 1 8/4 = 2 

    Δj 0 4 0 0  

 
Table 2. First table of modification simplex method for solving cubic objective function. 

Bs CB1 CB2 CB3 tB t1 t2 S1 S2 Min ratio 

S1 0 0 0 6 1 1 1 0 6/1 = 6 

S2 0 0 0 4 1 −2 0 1 4/1 = 4 

    Δj −2 0 0 0  
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( )0 4 0 0j =∆ . 

Then we get the value of objective function Z as: 

1 2Max Max. M 8 0 8ax.Z Z Z = −= =−  

The solution is Max 8 0 8Z = − =   
Example 2:  

3 2 3
1 2 21Max. 8 2 3Z t t t t= − +  

subjected to:  

1 24 3 12t t− + ≤  

1 25 3 15t t+ ≤  

1 2, 0t t ≥  

( )3
1 1 2

2
2max. 8 2 3z t t t t= − −  

subjected to:  

1 24 3 12t t− + ≤  

1 25 3 15t t+ ≤  

1 2, 0t t ≥  

Then  

1
3
1max. 8z t=  

( )2
22 1 2max. 2 3z t t t= −  

subjected to: 

1 24 3 12t t− + ≤  

1 25 3 15t t+ ≤  

1 2, 0t t ≥  

Solve each objective by the same constraints: 
3

1 11 1 1max. 8 2 2 2z t t t t= = ∗ ∗  

subjected to: 

1 24 3 12t t− + ≤  

1 25 3 15t t+ ≤  

1 2, 0t t ≥  

where: 

SB  is basic variables, iCB  is coefficient of basic variable in the objective 
function, 1, 2,3i = . 

1j
C  is a coefficient of variables in the first factor of the ob-

jective function. 
2j

C  is a coefficient of variables in the second factor of the ob-
jective function. 

3j
C  is a coefficient of variables in the third factor of the objec-

tive function. Bt  is a value of the basic variables, and 1 2 3, ,z z z  value of the 
factors in the objective function, and 1 1 2 3Z f f f∗ ∗=  value of the objective 
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function.  

1 0f = , 2 0f = , 3 0f = ; 2 1 2 3 0Z f f f∗ ∗= =  

Applying the procedure of simplex method, we get the optimal solution is t1 = 
3, t2 = 0, s1 = 24, s2 = 0 and max. Z = 216. 
where: 

To calculate Δj by the same manner in Table 2. 
The symbols 

1j
C , 

2j
C , 

3j
C , 

1j
∆ , 

2j
∆ , 

3j
∆ , Δj and μj has the same mean-

ing as before in Table 2 

{ }1 -,15 5 3µ = = , { }2 12 3,15 3 4µ = =  

( )
1

2 0 0 0jC =
, ( )

2
2 0 0 0jC =

, ( )
3

2 0 0 0jC =
 

( )
1

2 0 0 0j −∆ = , ( )
2

2 0 0 0j −∆ = , ( )
3

2 0 0 0j −∆ = . 

( )24 0 0 0j =∆ −  

The optimal solution is t1 = 3, t2 = 0, S1 = 24, s2 = 0 and 1Max. 6 6 6 216Z = ∗ ∗ =  
Now to solve max. Z2 as: 

( )2
21 1 2max. 2 3z t t t= −  

subjected to: 

1 24 3 12t t− ≤  

1 25 3 15t t+ ≤  

1 2, 0t t ≥  

where: 
All the symbols have the same meaning as before in Table 2, Table 3. 

1 0f = , 2 0f = , 3 0f = ; 2 1 2 3 0Z f f f∗ ∗= =  

applying the procedure of simplex method in Table 4, since all Δj ≥ 0 then this 
solution is optimal t1 = 0, t2 = 0, S1 = 12, S2 = 15 and Max. Z2 = 0. 
where 

To calculate Δj by the same manner in Table 2  

{ }1 6 1,8 4 2µ = = , { }2 6 1, - 6µ = =  

( )
1

0 1 0 0jC = , ( )
2

0 1 0 0jC = , ( )
3

2 3 0 0jC = −  

( )
1

0 1 0 0j = −∆ , ( )
2

0 1 0 0j = −∆ , ( )
3

2 3 0 0j = −∆ . 

( )0 12 0 0j =∆  

Then we get the value of objective function Max. Z as: 

1 2Max Max. Max 216 0 216.Z Z Z= − =− =  

The solution is 216 2 6Max 0 1Z − ==  
In Table 5, it is clear that the results optioned in examples, which solved by 

modification simplex method. 
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Table 3. First table of modification simplex method for solving cubic objective function. 

Bs CB1 CB2 CB3 tB t1 t2 S1 S2 Min ratio 

S1 0 0 0 12 −4 3 1 0 - 

S2 0 0 0 15 5 3 0 1 15/3 = 5 

    Δj −24 0 0 0  

 
Table 4. First table of modification simplex method for solving cubic objective function. 

Bs CB1 CB2 CB3 tB t1 t2 S1 S2 Min ratio 

S1 0 0 0 12 −4 3 1 0 - 

S2 0 0 0 15 5 3 0 1 - 

    Δj 0 12 0 0  

 
Table 5. Results of the numerical approaches. 

Example 1 
t1 t2 s1 s2 z1 z2 z 

2 0 4 0 8 0 8 

Example 2 
t1 t2 s1 s2 z1 z2 z 

3 0 24 0 216 0 216 

7. Conclusions 

In this paper, we try to draw certain conclusions based on our experience of 
working with the algorithm developed in this paper. The algorithm developed in 
this paper found computationally efficient to solve the related type of cubic pro-
gramming problems. 

In fact, the related the theoretical development of algorithm is useful only 
when their computer programs are available for quick and accurate solution of 
practical problems of large dimensions.  

In this work example 1 showed that the solution of cubic programming prob-
lem, 1 2t = , 2 0t = , and 1max. 8z = , 2max. 0z = , and max. 8z = , similarly in 
example 2 1 3t = , 2 0t = , and 1max. 216z = , 2max. 0z = , and max. 216z = . 
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