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Abstract 
The paper aims to investigate different types of weighted ideal statistical con-
vergence and strongly weighted ideal convergence of double sequences of 
fuzzy numbers. Relations connecting ideal statistical convergence and strongly 
ideal convergence have been investigated in the environment of the newly de-
fined classes of double sequences of fuzzy numbers. At the same time, we 
have examined relevant inclusion relations concerning weighted ( ),λ µ -ideal 

statistical convergence and strongly weighted ( ),λ µ -ideal convergence of 

double sequences of fuzzy numbers. Also, some properties of these new se-
quence spaces are investigated. 
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1. Introduction 

In 1965, Zadeh [1], an expert in cybernetics at University of California, first 
proposed the concept of fuzzy set theory. Since its inception, fuzzy set theory 
and its applications have been attracting the attention of researchers from vari-
ous areas of science, engineering and technology. In daily life, the practical 
problems we have to solve often involve uncertainty, which can be expressed by 
fuzzy number [2]. Therefore, in the following research work, the convergence 
problem of sequences of fuzzy numbers is particularly important. The concept of 
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statistical convergence of fuzzy sequence is defined by Savas [3], at the same 
time, statistical convergence of sequences of fuzzy numbers is expressed by the 
sequences of fuzzy numbers with zero natural density and the general conver-
gent sequences of fuzzy numbers. In 1986, Matloka [4] introduced the concepts 
of bounded and convergent sequences of fuzzy numbers and studied their prop-
erties. In 1989, Nanda [5] studied the bounded and convergent spaces of fuzzy 
numbers and established that they are complete metric spaces. In 1995, Naray 
and Savas [6] extended the concept of statistical convergence to sequences of 
fuzzy numbers and showed that a sequence of fuzzy numbers is statistically con-
vergent if and only if it is statistically Cauchy. In recent years, the problem of 
statistical convergence of sequences of fuzzy numbers has been studied exten-
sively by Talo [7], Balen [8], Cinar [9] and Dutta [10], some interesting results 
related to statistical convergence of sequences of fuzzy numbers and related no-
tions can also be found. 

In this paper, we give the concept of weighted ( ),λ µ -ideal statistical con-
vergence and strongly weighted ( ),λ µ -ideal convergence of double sequences 
of fuzzy numbers. And we have examined relevant inclusion relations concern-
ing different types of weight ideal statistical convergence and strongly weight 
ideal convergence of double sequences of fuzzy numbers. 

2. Definitions and Preliminaries 

In this section, we give some basic notions which will be used throughout the 
paper. 

Let ( )A F R∈   be a fuzzy subset on R. If A  is convex, normal, upper semi- 
continuous and has compact support, we say that A  is a fuzzy number [11] [12] 
[13]. Let cR  denote the set of all fuzzy numbers. 

For cA R∈  , we write the level set of A  as ( ){ }:A x A xλ λ= ≥  and  
,A A Aλ λ λ

− + =   . Let , cA B R∈   , we define A B C+ =   iff =A B Cλ λ λ+ ,  
[ ]0,1λ ∈  iff A B Cλ λ λ

− − −+ =  and A B Cλ λ λ
+ + ++ =  for any [ ]0,1λ ∈ . A B Cλ λ λ⋅ = , 

where 

{ }min , , , ,C A B A B A B A Bλ λ λ λ λ λ λ λ λ
− − − − + + − + += ⋅ ⋅ ⋅ ⋅            (2-1) 

{ }max , , , .C A B A B A B A Bλ λ λ λ λ λ λ λ λ
+ − − − + + − + += ⋅ ⋅ ⋅ ⋅            (2-2) 

Define  

( )
[ ]

( )
[ ]

{ }
0,1 0,1

, = sup , = sup max , ,D A B d A B A B A Bλ λ λ λ λ λ
λ λ

− − + +

∈ ∈
− −     (2-3) 

where d is the Hausdorff metric. ( ),D A B   is called the distance between A  
and B . 

Using the results of [11] [12] [13], we see that 
1) ( ),cR D  is a complete metric space,  
2) ( ) ( ), ,D u w v w D u v+ + = ,  
3) ( ) ( ), , , D ku kv k D u v k R= ∈ ,  
4) ( ) ( ) ( ), , ,D u v w e D u w D v e+ + ≤ + , 
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5) ( ) ( ) ( ), 0 , 0 , 0D u v D u D v+ ≤ + ,  
6) ( ) ( ) ( ), , 0D u v w D u w D v+ ≤ + + ,  
Where , , , cu v w e R∈  , 0  represents zero fuzzy number. 
Let X is a nonempty set, 2XI ⊂  is said to be ideal on X [14] [15], if: 
1) I∅∈ ; 
2) if ,A B I∈ , then A B I∈ ; 
3) For A I∈ , if B A⊂ , then B I∈ . 
Especially, if I ≠ ∅  and X I , then I is said to be a nontrivial ideal on X. 
A sequence { }nx  of fuzzy numbers is said to be statistically convergent to a 

fuzzy number 0x  if for each 0ε >  the set ( ) ( ){ }0: ,nA n N D x xε ε= ∈ ≥  has 
natural density zero. The fuzzy number 0x  is called the statistical limit of the 
sequence { }nx  and we write 0lim nn

st x x
→∞

=− . A sequence { }nx  of fuzzy num-
bers is said to be ideal statistically convergent to a fuzzy number 0x  if for each 

0ε >  the set ( ) ( ){ }0: ,nA k n D x x Iε ε= ≤ ≥ ∈ , where I ia a nontrivial ideal on 
X [16] [17]. 

A double sequence of fuzzy numbers { }jkx x=  is said to be bounded if there 
exists a positive number M such that ( ), 0jkD x M<  for all ,j k N∈ , i.e. if  

( )
,
sup , 0jk
j k N

D x
∈

< ∞ , where { }0,1,2,N =   [14]. 

Let K N N⊆ ×  and ( ) ( ){ }, , : , : ,K m n j k j m k n m n K= ≤ ≤ ∈ . The number 

( ) ( )2 ,

1lim ,
m n

k P K m n
mn

δ = −  is called the double natural density of K, provided 

the limit exists [18] [19]. 
A double sequence of fuzzy numbers { }jkx x=  is said to be statistically con-

vergent to 1L E∈  if for every 0ε > , ( )( )2 , 0K m nδ = , where  

( ) ( ) ( ){ }, , : , : ,jkK m n j k j m k n D x L ε= ≤ ≤ ≥ , i.e.,  

( ) ( ){ }
,

1lim , : , : , 0jkm n
P j k j m k n D x L

mn
ε− ≤ ≤ ≥ = . 

In this case, we write, 2 limst x L− = . The set of all double statistically con-
vergent sequences of fuzzy numbers is denoted by ( )2st F  [20] [21]. 

3. Main Results 

Definition 3.1. Let { } 0
: j j

p p
∞

=
=  and { } 0

: k k
q q ∞

=
=  be sequences of nonnega-

tive numbers such that 0mp ≥ , 1, 2,3,m =  , 0 0p >  and nq n≥ ,  
1, 2,3,n =  , 0 0q >  with 

0

m

m j
j

P p
=

= → ∞∑ , as m →∞ . 

0

n

n k
k

Q q
=

= → ∞∑ , as n →∞ . 

The weighted mean mntβγ  is defined as 

11

0 0

1 ,
m n

mn j k jk
j km n

t p q x
P Q = =

= ∑ ∑  
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10

0

1 ,
m

mn j jn
jm

t p x
P =

= ∑  

01

0

1 ,
n

mn k mk
km

t q x
Q =

= ∑  

where , 0m n ≥  and ( ) ( ) ( ) ( ), 1,1 , 1,0 , 0,1β γ = . 
Definition 3.2. A double sequence of fuzzy numbers { }jkx x=  is weighted 

ideal statistically convergent to 0x  if for every 0ε > , 0δ > , we have 

( ) ( ){ }0
1, : , : , : , .m n j k jk

m n

m n N N j k j P k Q p q D x x I
P Q

ε δ
 

∈ × ≤ ≤ ≥ ≥ ∈ 
 

 

In this case, we write, ( )20jk Nx x S→ . 
Where let k N N∈ × . We define the double weighted density of K by  

( ) ( )
2 ,

1: lim ,
m nP QN n m

m n

K K m n
P Q

δ =  

where ( ) ( ) ( ){ }0, : , : , : ,
m nP Q m n j k jkK m n j k j P k Q p q D x x ε= ≤ ≤ ≥ ,  

liminf 0np > , liminf 0mq > . 
Definition 3.3. A double sequence of fuzzy numbers { }jkx x=  is strongly 

weight ideal convergent to 0x  if 

( ) ( )0
=0 =0

1, : , : , .
m n

j k jk
j km n

m n N N j k p q D x x I
P Q

ε δ
   ∈ × ≥ ≥ ∈   

   
∑ ∑  

and we write ( )20jk Nx x W→ . 
Definition 3.4. Let { }mλ λ=  and { }nµ µ=  be two nondecreasing sequence 

of positive real numbers such that each tending to ∞  and 1 1n nλ λ+ ≤ + , 1 1λ = ; 

1 1n nµ µ+ ≤ + , 1 1µ = . 
Let { }jp p=  and { }kq q=  be two sequence of nonnegative real numbers 

such that 0mp ≥ , 1, 2,3,m =  , 0 0p >  and 0nq ≥ , 1,2,3,n =  , 0 0q >  
with 

m
m

j
j J

P pλ
=

= → ∞∑ , as m →∞ . 

n
n

k
k I

Q qµ
=

= → ∞∑ , as n →∞ . 

where [ ]1,m mJ m mλ= − + , [ ]1,n nI n nµ= − + . 
We define generalized weighted mean as follows: 

11 1 ,
m nm n

mn j k jk
j J k I

p q x
P Qλ µ

σ
= =

= ∑ ∑  

10 1 ,
mm

mn j jn
j J

p x
Pλ

σ
=

= ∑  

01 1 .
nn

mn k mk
k I

q x
Qµ

σ
=

= ∑  

Definition 3.5. A double sequence of fuzzy numbers { }jkx x=  is said to be 
weighted ( ),λ µ -ideal statistically convergent to 0x  if for every 0ε > , 0δ > , 
we have 
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( ) ( ){ }0
1, : , : , : , .

m n
m n

j k jkm n N N j k j P k Q p q D x x I
P Q λ µ
λ µ

ε δ
  ∈ × ≤ ≤ ≥ ≥ ∈ 
  

 

In this case, we write 
( )( ),0jk Nx x S
λ µ

→ . We denote the set of all weight 

( ),λ µ -ideal statistically convergent double sequences of fuzzy numbers by 

( ),NS
λ µ

. 

Definition 3.6. A double sequence of fuzzy numbers { }jkx x=  is said to be 
strongly weight ( ),λ µ -ideal convergent to 0x  if 

( ) ( )0
1, : , : , .

m nm n

j k jk
j J k I

m n N N j k p q D x x I
P Qλ µ

ε δ
∈ ∈

     ∈ × ≥ ≥ ∈   
    

∑ ∑  

In this case, we write 
( )( ),0jk Nx x W
λ µ

→ . 

Remark 3.7. When we take ,m nm nλ µ= =  for all ,m n N∈ , weighted  
( ),λ µ -ideal statistically convergence reduces to weighted ideal statistically con-
vergence; strongly weight ( ),λ µ -ideal convergence reduces to strongly weight 
ideal convergence. 

Remark 3.8. When we take 1, 1j kp q= =  for all ,j k N∈  and ,m nm nλ µ= =  
for all ,m n N∈ , weighted ( ),λ µ -ideal statistically convergence reduces to 
ideal statistically convergence; strongly weight ( ),λ µ -ideal convergence reduc-
es to strongly ideal convergence. 

Theorem 3.9. Let { } { },jk jkx x y y= =  are the sequence of fuzzy numbers: 

1) If 
( )( ),0jk Nx x S
λ µ

→  and c R∈ , then 
( )( ),0jk Ncx cx S
λ µ

→ ; 

2) If 
( )( ) ( )( ), ,0 0,jk jkN Nx x S y y S
λ µ λ µ

→ →  then 
( )( ),0 0jk jk Nx y x y S
λ µ

+ → + . 

Proof. 1) When 0c = , the conclusion is clearly established. 
Let 0c ≠ , we have 

( ) ( ){ }

( ) ( )

0

0

1 , : , : ,

1 , : , : ,

m n
m n

m n
m n

j k jk

j k jk

j k j P k Q p q D cx cx
P Q

j k j P k Q p q D x x
P Q c

λ µ
λ µ

λ µ
λ µ

ε

ε

≤ ≤ ≥

 ≤ ≤ ≤ ≥ 
 

 

So 

( ) ( ){ }

( ) ( )

0

0

1, : , : , : ,

1, : , : , : , .

m n
m n

m n
m n

j k jk

j k jk

m n N N j k j P k Q p q D cx cx
P Q

m n N N j k j P k Q p q D x x I
P Q c

λ µ
λ µ

λ µ
λ µ

ε δ

ε δ

  ∈ × ≤ ≤ ≥ ≥ 
  
   ⊂ ∈ × ≤ ≤ ≥ ≥ ∈   

   

 

We have 
( )( ),0jk Ncx cx S
λ µ

→ . 

2) Let 
( )( ) ( )( ), ,0 0,jk jkN Nx x S y y S
λ µ λ µ

→ → , then 

( ) ( ){ }0
1, : , : , : , ;

m n
m n

j k jkm n N N j k j P k Q p q D x x I
P Q λ µ
λ µ

ε δ
  ∈ × ≤ ≤ ≥ ≥ ∈ 
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( ) ( ){ }0
1, : , : , : , .

m n
m n

j k jkm n N N j k j P k Q p q D Y Y I
P Q λ µ
λ µ

ε δ
  ∈ × ≤ ≤ ≥ ≥ ∈ 
  

 

On the other hand, 

( ) ( ) ( )
( ) ( )

0 0 0 0 0 0

0 0

, , ,

, , .

jk jk jk jk jk jk

jk jk

D x y x y D x y x y D x y x y

D x x D y y

+ + ≤ + + + + +

= +
 

for 0ε∀ > , we have 

( ) ( ){ }

( ) ( )

( ) ( )

0 0

0

0

1 , : , : ,

1 , : , : ,
2

1 , : , : , .
2

m n
m n

m n
m n

m n
m n

j k jk jk

j k jk

j k jk

j k j P k Q p q D x y x y
P Q

j k j P k Q p q D x x
P Q

j k j P k Q p q D y y
P Q

λ µ
λ µ

λ µ
λ µ

λ µ
λ µ

ε

ε

ε

≤ ≤ + + ≥

 ≤ ≤ ≤ ≥ 
 

 + ≤ ≤ ≥ 
 

 

So 

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

0 0

0

0

1, : , : , : ,

1, : , : , : ,

1, : , : , : , .

m n
m n

m n
m n

m n
m n

j k jk jk

j k jk

j k jk

m n N N j k j P k Q p q D x y x y
P Q

m n N N j k j P k Q p q D x x
P Q

m n N N j k j P k Q p q D y y I
P Q

λ µ
λ µ

λ µ
λ µ

λ µ
λ µ

ε δ

ε δ

ε δ

  ∈ × ≤ ≤ + + ≥ ≥ 
  
  ⊆ ∈ × ≤ ≤ ≥ ≥ 
  
  ∈ × ≤ ≤ ≥ ≥ ∈ 
  



 

We can get 
( )( ),0 0jk jk Nx y x y S
λ µ

+ → + . 

In case ,m nm nλ µ= =  for all ,m n N∈ , 
( ),NS
λ µ

-ideal statistical convergence 
reduces to 

2NS -ideal statistical convergence and then we have the following co-
rollary. 

Corollary 3.10. Let { } { },jk jkx x y y= =  are the sequence of fuzzy numbers: 
1) If ( )20jk Nx x S→  and c R∈ , then ( )20jk Ncx cx S→ ; 

2) If ( ) ( )2 20 0,jk jkN Nx x S y y S→ →  then ( )20 0jk jk Nx y x y S+ → + . 

Theorem 3.11. Let { }jkx x=  is the sequence of fuzzy number, there is a 

( ),NS
λ µ

-ideal statistically convergent sequence of fuzzy number { }jky y= , such 
that { } { }jk jkx y=  for almost all ,j k , then { }jky y=  also 

( ),NS
λ µ

-ideal statis-
tical convergence. 

Proof. For almost all ,j k , we have { } { }jk jkx y= , and 
( )( ),0jk Ny y S
λ µ

→ . 
Let 0ε > , 0δ > , then 

( ) ( ){ }

( ){ }

( ){ }

0

0

1, : , : , : ,

1, : , : , : ( , )

    , : , : .

m n
m n

m n
m n

m n

j k jk

j k jk

jk jk

m n N N j k j P k Q p q D x x
P Q

m n N N j k j P k Q p q D y y
P Q

j k j P k Q x y

λ µ
λ µ

λ µ
λ µ

λ µ

ε δ

ε δ

  ∈ × ≤ ≤ ≥ ≥ 
  
  ⊆ ∈ × ≤ ≤ ≥ ≥ 
  

≤ ≤ ≠
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Let ( )S S ε=  is the number of elements in the set of  
( ){ }, : , :

m n jk jkj k j P k Q x yλ µ≤ ≤ ≠ , then  

( ){ }
( ) ( ){ }

0

0

, : , : ( , )

, : , : , .

m n

m n

j k jk

j k jk

j k j P k Q p q D x x

j k j P k Q p q D y y S

λ µ

λ µ

ε

ε

≤ ≤ ≥

≤ ≤ ≤ ≥ +
 

So 

( ) ( ){ }0
1, : , : , : ,

m n
m n

j k jkm n N N j k j P k Q p q D x x I
P Q λ µ
λ µ

ε δ
  ∈ × ≤ ≤ ≥ ≥ ∈ 
  

. 

The theorem proved. 
In case ,m nm nλ µ= =  for all ,m n N∈ , 

( ),NS
λ µ

-ideal statistical convergence 
reduces to 

2NS -ideal statistical convergence and then we have the following co-
rollary. 

Corollary 3.12. Let { }jkx x=  is the sequence of fuzzy number, there is a 

2NS -ideal statistically convergent sequence of fuzzy number { }jky y= , such 
that { } { }jk jkx y=  for almost all ,j k , then { }jky y=  also 

2NS -ideal statis-
tical convergence. 

Theorem 3.13. Let ( )0,j k jkp q D x x M≤  for all ,j k N∈ . If a double se-
quence of fuzzy numbers { }jkx x=  is weight ( ),λ µ -ideal statistically conver-
gent to 0x  then it is strongly weight ( ),λ µ -ideal convergent to 0x . 

Proof. Suppose ( )0,j k jkp q D x x M≤  for all ,j k N∈  and the double se-
quence of fuzzy numbers { }jkx x=  is weight ( ),λ µ -ideal statistically conver-
gent to 0x . We note  

( ) ( ) ( ){ }0, : , : ,
m nm nP Q j k jkK j k j P k Q p q D x x

λ µ λ µε ε= ≤ ≤ ≥  

( )

( ) ( )

( )

( ) ( ){ }

0

0 0
, ,

0
,

0

,

, ,

,

, : , : , .

m n

Cm n P Q m n P Qm n m n

m n P Qm n

m n

j k jk
j J k I

j k jk j k jk
j J k I k K j J k I k K

j k jk
j J k I k K

j k jk

p q D x x

p q D x x p q D x x

p q D x x

j k j P k Q p q D x x M

λ µ λ µ

λ µ

λ µ ε

∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

= +

>

= ≤ ≤ ≥ ⋅

∑ ∑

∑ ∑ ∑ ∑

∑ ∑
 

which implies that 

( ) ( )

( ) ( ){ }

0

0

1, : , : ,

1, : , : , : , .

m nm n

m n
m n

j k jk
j J k I

j k jk

m n N N j k p q D x x
P Q

m n N N j k j P k Q p q D x x I
P Q

λ µ

λ µ
λ µ

ε δ

ε δ

∈ ∈

     ∈ × ≥ ≥   
    

  ⊂ ∈ × ≤ ≤ ≥ ≥ ∈ 
  

∑ ∑
 

i.e. 
( ) ( ), ,N NW S
λ µ λ µ

⊂ . 
Theorem 3.14. Let a double sequence of fuzzy numbers jkx  is strongly weighted 

( ),λ µ -ideal convergent to 0x , then jkx  is weighted ( ),λ µ -ideal statistically 
convergent to 0x . 
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Proof. Let ( ) ( ) ( ){ }0, : , : ,
m nm nP Q j k jkK j k j P k Q p q D x x

λ µ λ µε ε= ≤ ≤ ≥ , then 

( )

( )

( )

( )

( )

0

0
,

0
,

0
,

1 ,

1 ,

1 ,

1 ,

.

m nm n

m n P Qm n m n

Cmm n n P Qm n

m n P Qm n m n

m n
m n

j k jk
j J k I

j k jk
j J k I k K

j k jk
j J k I k K

j k jk
j J k I k K

P Q

p q D x x
P Q

p q D x x
P Q

p q D x x
P Q

p q D x x
P Q

K
P Q

λ µ

λ µ

λ µ

λ µ

λ µ

λ µ

λ µ

λ µ

λ µ

ε ε

∈ ∈

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

=

+

>

≥

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

where ( ) ( ) ( ){ }0, : , : ,
m nm nP Q j k jkK j k j P k Q p q D x x

λ µ λ µε ε= ≤ ≤ ≥ . 
We have 

( ) ( ){ }

( ) ( )

0

0

1, : , : , : ,

1, : , : , .

m n
m n

m nm n

j k jk

j k jk
j J k I

m n N N j k j P k Q p q D x x
P Q

m n N N j k p q D x x I
P Q

λ µ
λ µ

λ µ

ε δ

ε δ
∈ ∈

  ∈ × ≤ ≤ ≥ ≥ 
  
     ⊂ ∈ × ≥ ≥ ∈   

    
∑ ∑

 

We get jkx  is weighted ( ),λ µ -ideal statistically convergent to 0x . 

4. Conclusion 

In this article, we aim to investigate different types of weighted ideal statistical 
convergence and strongly weighted ideal convergence of double sequences of 
fuzzy numbers. Relations connecting ideal statistical convergence and strongly 
ideal convergence have been investigated in the environment of the newly de-
fined classes of double sequences of fuzzy numbers. At the same time, we have 
examined relevant inclusion relations concerning weighted ( ),λ µ -ideal statis-
tical convergence and strongly weighted ( ),λ µ -ideal convergence of double 
sequences of fuzzy numbers. 
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