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Abstract 
In this work, a highly efficient algorithm is developed for solving the parabol-
ic partial differential equation (PDE) with the nonlocal condition. For this 
purpose, we employ orthogonal Chelyshkov polynomials as the basis. The 
convergence analysis of the proposed scheme is derived. Numerical experi-
ments are carried out to explain the efficiency and precision of the proposed 
scheme. Furthermore, the reliability of the scheme is verified by comparisons 
with assured existing methods. 
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1. Introduction 

In the else decades, nonlocal boundary value problems have become a rapidly 
increasing field of research. The study of this type of problem is driven not only 
by a theoretical interest, but also by the fact that several phenomena in engi-
neering, physics and life sciences can be modelled in this way. For example, 
problems with feedback controls such as the steady-states of a thermostat, trans-
fer reactive and passive pollutants in underground water [1] [2], heat transfer, 
radioactive nuclear decay in fluid streams [3], viscoelastic material malformation 
in polymers [3], semiconductor modelling [4] and bioengineering. 

The variety of physical phenomena developed on a (PDEs) concerning non- 
local integral terms is constantly increasing. The authors of [5] have given an 
example from metrology. This example is a prototype for the evolution of the 
system temperature distribution of air above the ground during calm nights. 
Specific problems occur in thermodynamics in thermoelasticity [6] [7] [8], heat 
transfer [9] [10] [11] and plasma physics [12]. The above-mentioned articles fo-
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cus on the problems described in terms of parabolic equations. However, there 
are some problems dealing with the dynamics of the ground waters which are 
described in terms of hyperbolic equations [13]. 

The numerical research for PDEs with distinct types of non-local conditions is 
of great interest due to their broad range of applications. Several methods for 
solving nonlocal boundary problems have been developed such as finite-difference 
schemes [14], finite volume element method [15] [16], implicit finite difference 
scheme [17], Galerkin procedure [18] [19] [20], spectral collocation with pre-
conditioning method [21], Chebyshev spectral collocation techniques [22] [23], 
Tau scheme [24], sinc method [25] [26] [27], sinc-Galerkin method [28], finite 
difference methods [14], spectral collocation method with preconditioning [21], 
Gaussian radial basis functions method [29], Legendre-Gauss-Lobatto pseu-
do-spectral method [30] [31]. Recently, El-Gamel and Abd El-Hady applied sinc 
collocation approach for solving a parabolic PDE with nonlocal boundary condi-
tions [32]. Existence, uniqueness and some characteristics of the solution to 
these issues have been developed in [33]. 

In this paper, we attempt to introduce a new method, based on Chelyshkov 
polynomials for solving  
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where , , , ,i i iq f k g α  and iβ , 0,1i = , are known functions. 
The area of orthogonal polynomials is a very strong research area in mathe-

matics as well as in purposes in mathematical physics, engineering and comput-
er science. One of orthogonal polynomials is the set of the Chelyshkov polyno-
mials. These polynomials have formed by Chelyshkov [34] [35], which are or-
thogonal over the interval [ ]0,1  with respect to the weight function ( ) 1w x = . 
Chelyshkov orthogonal basis has been used for solving several kinds of integral 
and differential equations. For example, nonlinear weakly singular integral equ-
ations In [36], a class of mixed functional integro-differential equations In [37] 
[38], Volterra-Hammerstein delay integral equations In [39], the two-dimensional 
Fredholm-Volterra integral equations In [40], a systems of linear functional dif-
ferential equations In [41] and distributed-order fractional differential equations 
In [42]. Moradi et al. In [43] applied Chelyshkov wavelets of time-delay frac-
tional optimal control problems and El-Gamel et al. In [44] used Chelyshkov- 
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Tau approach for solving Bagley-Torvik equation.  
The layout of this paper is as follows. Section 2, below briefly references, in 

which the reader can find an excellent summary of Chelyshkov polynomials 
which are required for establishing our results. Section 3 is dedicated to the for-
mulation of Chelyshkov collocation scheme. In Section 4, the convergence anal-
ysis of the proposed method is investigated and error estimation for the fully 
discrete problem. Section 5 includes test examples to illustrate the accuracy and 
the performance of our scheme. Conclusion is made in Section 6. 

2. An Overview and Relations of Chelyshkov Polynomials 

An appropriate solution is expressed in the following form  

( ) ( ),
0

N

N j N j
j

u aη ψ η
=

≅ ∑  

so that ja  and ( ), , 0,1, 2, ,N j j Nψ η =  , respectively, are the unknown Che-
lyshkov coefficients and Chelyshkov orthogonal polynomials of the degree N  
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The Chelyshkov polynomials can be connected to Rodrigues’ type expansion 
by  
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Another relation to Chelyshkov polynomials from the previous one is  
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1d d
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j
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+∫ ∫  

The Chelyshkov polynomials could be represented in terms of the Jacobi po-
lynomials ( ),

kP α β  by the following relation  
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−= − − =   

We can write ( )u η  and its derivative in matrix forms as follows:  
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where  
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[ ] ( ) 2
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Na a τ η η η η = =  A  χ  
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for N is odd,  
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3. Direct Chelyshkov Collocation Method 

In this part, we will approximate the solution of the Equation (1) as follows 
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where ⊗  represent for the kronecker product and also  
[ ]00 0 0N N NNc c c c τ=C     which be an unknown vector and will be ob-

tained by our scheme.  
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Clearly,  
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Likewise, we should deduce that  
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consider that ( ),u tη  is approximated by ( ),Nu tη  and we discretize the Equ-
ation (1) in the following form  
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where  
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η = = =   

by substituting (9) and (10) into Equation (11) we obtain  
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The initial conditions (2) can be discretized in the form  

( ) ( ),0 , 0,1, ,i if i Nη η= =C ψ                 (13) 

The boundary condition (3) can be discretized in the form  
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The boundary condition (4) is discretized in the form below  
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Equations (12)-(15) can be rewritten in the form  

=CΛ Φ                            (16) 
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where  
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Then we solve the generated linear system of ( ) ( )2 21 1N N+ × +  equations by 
using Q-R method. 

4. Convergence and Error Estimation 
4.1. Convergence of Chelyshkov Polynomial 

Now, we will introduce the convergence and error bound to Chelyshkov poly-
nomials.  

Theorem 4.1. Suppose that the function ( ) [ ] [ ] 2, : 0,1 0,1u tη × →   is 1k +  
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times continuously differentiable, ( ) [ ] [ ]1, 0,1 0,1ku t Cη +∈ ×  and ( )ˆ ,u tη  is the 
best approximation of ( ),u tη  in the space ×   where  

( ) ( ) ( ) ( ){ },0 ,1 ,2 ,, , , ,N N N N NSpan ψ η ψ η ψ η ψ η=   

and 
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then the error bound is  
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by using two Equations (18), (19) we obtain  
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4.2. Error Estimation of Chelyshkov-Collocation Method  

In this section, the error estimation for the Chelyshkov-collocation method has 
been employed with the residual error function [45] [46] [47] [48]. One can ob-
tain the residual function first, we can display the residual function ( ),NR tη  as  

( ) ( ) ( ) ( )ˆ ˆ, , , , .N tR t u t u t q tηηη η η η= − −                (21) 

where ( )ˆ ,u tη  is approximate solution given by (8) of Equation (1). Thus, 
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( ) ( ) ( ) ( )ˆ ˆ, , , , ,t Nu t u t q t R tηηη η η η− = +  

( ) ( )ˆ ,0u fη η=  

( ) ( ) ( ) ( ) ( )
1 1

1 10
0

ˆ ˆ0, , , d
k

k k
k

t u t k t u t g tα η η η
η=

∂
+ =

∂∑ ∫  

( ) ( ) ( ) ( ) ( )
1 1

2 20
0

ˆ ˆ1, , , d
k

k k
k

t u t k t u t g tβ η η η
η=

∂
+ =

∂
∑ ∫  

so, we can obtain the error function  

( ) ( ) ( )ˆ, , ,u t u tε η η η= −                   (22) 

such that ( ),u tη  is the exact solution of Equation (1). 
Accordingly, the error differential equation is  
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The solution of Equation (23) is 

( ) ( ) ( ), ,
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,
N N

ij N i N j
i j

t c tε η ψ η ψ
= =

= ∑∑   

In the same manner as Section 3, we obtain unknown coefficients  
, , 0,1, 2, ,ijc i j N=

 . so, the maximum absolute error can be determined by  

( )max max , , 0 1, 0 1E t tε η η= < < < ≤  

Using maximum error estimation, we can test the reliability of the results es-

https://doi.org/10.4236/am.2022.132009


M. El-Gamel et al. 
 

 

DOI: 10.4236/am.2022.132009 109 Applied Mathematics 
 

pecially if the exact solution is unknown. 

5. Numerical Results 

In this section, we experimentally illustrate the performance of the proposed 
scheme. Numerically, we verify that our proposed scheme can deal with the pa-
rabolic PDE equation with the nonlocal condition. We consider the following 
five examples, namely the nonlocal problems from [14] [21] [25] [29]. The for-
mula of the maximum absolute error is  

( ) ( ){ }max , , , 0,1, , ; 0,1, ,J i j N i jE u t u t i N j Nη η= − = =   

Example 1: [14] consider the following parabolic PDE  
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and the initial condition  
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+
 

whose the exact solution is  
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2
, e 1 .

6 1
tu t δη η η

δ
−
 
 = − +
 + 

 

where 0.12δ =  The maximum absolute error, NE  is reported in Table 1 as 
N increases from 3N =  to 9N = . Maximum absolute error is tabulated in 
Table 2 for Chelyshkov collocation with the analogous results of Ekolin [14] 
who used finite difference methods (Forward Euler, backward Euler and Crank- 
Nicolson methods) to obtain his numerical solution. The exact and approximat-
ing solutions and errors are shown in Figure 1. 

Example 2: [25] consider the following  
2

2

u u
t η

∂ ∂
=
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subject to the boundary conditions  

( ) ( ) ( ) ( )
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1
10

1
20

0, , d

1, e , d

u t t u t g t
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η η η

η η−

− + =
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∫
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where  

( ) [ ]1
1 e cos1 sin1 sin1 2
2

tg t t t−= − − + + −  
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Table 1. Maximum absolute error NE  for example 1. 

N NE  

3 3.4117E-05 

5 4.6525E-08 

7 5.2898E-11 

9 4.5264E-14 
 

Table 2. Comparison of the numerical results for example 1. 

NE , 9N =  4.5264E-14 

Forward Euler 130N =  [14] 1.50E-07 

backward Euler, 130N =  [14] 6.70E-06 

Crank-Nicolson, 130N =  [14] 1.30E-06 

 

 
Figure 1. Exact, approximate solution and error for example 1. 

 

( ) ( ) ( )2 1 e cos1 2 e 1 e e cos1 sin1
2e

t ttg t − − = + − − + − +   

and the initial condition  

( ) ( ),0 1 cosu η η= +  
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whose the exact solution is  

( ) ( ), 1 e cos .tu tη η−= +  

The maximum absolute error, NE  is reported in Table 3 as N increases 
from 3N =  to 9N = . Maximum absolute error is tabulated in Table 4 for 
Chelyshkov collocation method with the analogous results of Shidfar [25] who 
used sinc-collocation method to obtain this numerical solution. The exact and 
approximating solutions and error are shown in Figure 2. 

Example 3: [21] [29] consider the following parabolic PDE 
 

 
Figure 2. Exact, approximate solution and error for example 2. 

 
Table 3. Maximum absolute error NE  for example 2. 

N NE  

3 3.89250E-03 

5 2.42266E-06 

7 4.23364E-08 

9 1.87322E-11 
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Table 4. Comparison of the numerical results for example 2. 

NE , 9N =  Method [25], 30N =  

1.87E-11 1.83E-05 

 
2

2 , 0 1, 0 1u u t
t

η
η

∂ ∂
= < < < <

∂ ∂
 

subject to the boundary conditions  

( )

( )

2

2

4

1
4

0

0, e

2, d e

t

t

u t

u tη η
π

−
π

−

=

π
=∫

 

whose the exact solution is  

( )
2

, exp cos .
4 2

tu t ηη
   = − 

π



π



 

In Table 5 we display the comparison of absolute errors between our scheme 
and the absolute errors result from Gaussian radial method [29] at 0.1t = . The 
exact and approximating solutions and errors are shown in Figure 3.  

Example 4: [21] consider the following parabolic PDE  

( )
2

2
2 e 2 , 0 1, 0 1tu u t

t
η η

η
∂ ∂

= + − < < < <
∂ ∂

 

subject to the boundary conditions  

( )

( )

2

1

0

0,

e, d
3

t

u t

u t

η

η η

=

=∫
 

and the initial condition  

( ) 2,0u η η=  

whose the exact solution is  

( ) 2,0 e .tu η η=  

In Table 6, we display the comparison of absolute errors between our scheme 
and the absolute errors in [21] at different values of x and t. The exact and ap-
proximating solutions and error are shown in Figure 4. 

Example 5: [29] consider the following parabolic PDE  

( ) ( ) ( )( )
2

2
2 1 e sin cos , 0 1, 0 1tu u t

t
η η η

η
−∂ ∂

= + − + < < < <
∂ ∂

π π π  

subject to the boundary conditions  

( ) ( ) ( )

( ) ( ) ( )

1

0
1

0

0, 2 sin , d 0

0, 2 cos , d 0

u t u t

u t u t

η η η

η η η

− =π

π+ =

∫

∫
 

and the initial condition  
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Figure 3. Exact, approximate solution and error for example 3. 

 
Table 5. Absolute error with 0.1t =  and 9N =  for example 3. 

x our method Method [29] 

0.1 7.6734E-09 2.6837E-08 

0.2 1.2885E-08 3.0350E-08 

0.3 1.4747E-08 2.3109E-08 

0.4 1.3092E-08 1.1866E-08 

0.5 8.2383E-09 1.0594E-09 

0.6 1.0779E-09 3.7093E-09 

0.7 7.0853E-09 7.5678E-09 

0.8 1.4621E-08 5.5621E-08 

0.9 1.9894E-08 1.7974E-07 

1.0 2.0407E-08 4.5256E-07 
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Table 6. Comparison the absolute error of the our scheme with 9N =  and method in 
[21] for example 4. 

( ),x t  our method Method [21] 

( )0.1,0.1  9.74824E-13 1.19E-08 

( )0.2,0.2  6.14349E-14 2.81E-11 

( )0.4,0.4  1.03907E-14 3.98E-11 

( )0.6,0.6  2.53647E-14 2.52E-11 

( )0.8,0.8  2.19862E-13 1.38E-13 

 

 
Figure 4. Exact, approximate solution and error for example 4. 

 
( ) ( ) ( ),0 sin cosu η η ηπ + π=  

whose the exact solution is  

( ) ( ) ( ), e sin costu tη η η− π + π=     

In Table 7 we display the comparison of absolute errors between our scheme 
and the absolute errors result from Crank-Nicolson scheme [49] and Gaussian 
radial method [29] at 0.25x = . The exact and approximating solutions and er-
rors are shown in Figure 5. 
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Figure 5. Exact, approximate solution and error for example 5. 

 
Table 7. Absolute values of error with 0.25x =  and 9N =  for example 5. 

t present method Method [49] Method [30] 

0.1 1.5887E-06 5.17E-05 1.09E-06 

0.2 2.1365E-06 6.19E-05 3.04E-06 

0.3 2.2131E-06 6.49E-05 9.01E-06 

0.4 2.1091E-06 6.45E-05 1.56E-06 

0.5 1.9485E-06 6.21E-05 2.02E-06 

0.6 1.6145E-06 5.64E-05 2.19E-06 

0.7 1.6145E-06 4.99E-05 2.08E-06 

0.8 1.4628E-06 4.49E-05 1.68E-06 

0.9 1.3246E-06 4.08E-05 1.05E-06 

1.0 1.1984E-06 3.64E-05 3.32E-06 
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6. Conclusion 

This paper solved partial differential equations with nonlocal boundary condi-
tions by applying Chelyshkov matrix collocation method. The numerical expe-
riments demonstrated the efficiency of Chelyshkov matrix collocation method. 
In addition, the accuracy of the scheme was tested on five examples. The study 
found that the computational by Chelyshkov matrix collocation method can be 
an efficient numerical method to solve nonlocal problems. 
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