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Abstract 
High frequency financial data is characterized by non-normality: asymmetric, 
leptokurtic and fat-tailed behaviour. The normal distribution is therefore in-
adequate in capturing these characteristics. To this end, various flexible dis-
tributions have been proposed. It is well known that mixture distributions 
produce flexible models with good statistical and probabilistic properties. In 
this work, a finite mixture of two special cases of Generalized Inverse Gaus-
sian distribution has been constructed. Using this finite mixture as a mixing 
distribution to the Normal Variance Mean Mixture we get a Normal Weighted 
Inverse Gaussian (NWIG) distribution. The second objective, therefore, is to 
construct and obtain properties of the NWIG distribution. The maximum li-
kelihood parameter estimates of the proposed model are estimated via EM 
algorithm and three data sets are used for application. The result shows that 
the proposed model is flexible and fits the data well. 
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1. Introduction 

It is well known that mixture distributions produce flexible models with good 
statistical and probabilistic properties. Our first objective, therefore, is to construct 
and obtain properties of a finite mixture of two special cases of Generalized In-
verse Gaussian distribution. These two special cases are related to the inverse 
Gaussian distribution which is also a special case of Generalised Inverse Gaus-
sian distribution. 

The Generalized Hyperbolic Distribution (GHD) introduced by Barndorff- 
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Nielsen [1] as a Normal Variance-Mean Mixture is obtained when the Genera-
lized Inverse Gaussian (GIG) distribution is the mixing distribution. Barndorff- 
Nielsen [2] introduced the Normal Inverse Gaussian (NIG) distribution obtained  
when the mixing distribution is Inverse Gaussian (IG). The IG is obtained as a 

special case of GIG when the index parameter 
1
2

λ = − . 

The two special cases and their finite mixture are weighted Inverse Gaussian 
distributions. Using this finite mixture as a mixing distribution to the Normal 
Variance Mean Mixture we get a Normal Weighted Inverse Gaussian (NWIG) 
distribution. The second objective, therefore, is to construct and obtain proper-
ties of the NWIG distribution. 

The maximum likelihood parameter estimates of the proposed model are es-
timated via EM algorithm and three data sets are used for application. 

In literature, the Normal Inverse Gaussian (NIG) distribution has been used 
repeatedly for financial data which are skewed, leptokurtic and heavy-tailed be-
cause they are collected over short-time intervals, such as daily or weekly. Our 
third objective is to compare the log-likelihood functions of NWIG and NIG 
distributions. 

Generalized Inverse Gaussian distribution has three parameters , ,λ δ γ . The 

distribution is denoted by ( ), ,GIG λ δ γ . When 
1
2

λ = − , we have  

1 , ,
2

GIG δ γ − 
 

 which is an Inverse Gaussian (IG) distribution. If 
1
2

λ = , we 

have 1 , ,
2

GIG δ γ 
 
 

 which is Reciprocal Inverse Gaussian distribution. The 

third special case is 3 , ,
2

GIG δ γ − 
 

. 

1 , ,
2

GIG δ γ 
 
 

 and 3 , ,
2

GIG δ γ − 
 

 are expressed in terms of 1 , ,
2

GIG δ γ − 
 

 

and are weighted IG distributions. Their finite mixture; i.e.,  

( )1 3, , 1 , ,
2 2

pGIG p GIGδ γ δ γ   + − −   
   

 is also WIG. 

The concept of weighted distribution was introduced by Fisher [3] and elabo-
rated by Patil and Rao [4]. Gupta and Kundu [5] considered the finite mixture of 
the IG and the length biased IG distributions. Generalized Hyperbolic Distribu-
tion (GHD) is a normal variance mean mixture with GIG mixing distribution. It  

is a five parameter distribution denoted by ( ), , , ,GH λ α β δ µ . For 
1
2

λ = −  we 

have a normal Inverse Gaussian (NIG) distribution. For 
1
2

λ =  and 
3
2

λ = −  

we have normal weighted Inverse Gaussian (NWIG) distributions. 
The rest of the paper is organised as follows: section 2 deals with the proposed 

mixing distributions. Section 3 is on the proposed mixed model, posterior dis-
tribution and posterior expectations. Section 4 is on the EM algorithm estima-
tion procedure. Application and Conclusion are in section 5 and 6 respectively.  
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2. Proposed Mixing Distribution 

We show that two special cases of Generalised Inverse Gaussian (GIG) distribu-
tion can be expressed as Weighted Inverse Gaussian (WIG) distribution. A finite 
mixture of these cases can also be expressed as WIG distribution. The Genera-
lized Inverse Gaussian (GIG) distribution is given by  

( ) ( )
1 2

21exp
2 2

zg z z
K z

λ λ

λ

γ δ γ
δ δγ

−     = − +   
     

             (1) 

where  
0; , 0, 0z λ δ γ> −∞ < < ∞ > >  

and ( )Kλ ω  is the Modified Bessel function of the third kind of order λ  eva-
luated at point ω . 

In short form, it is stated as  

( ), ,Z GIG λ δ γ . 

The moments around the origin of the ( ), ,GIG λ δ γ  distribution are given 
by  

( ) ( )
( )

r
rr K

E Z
K
λ

λ

δγδ
γ δγ

+ 
=  
 

                    (2) 

Remark: This expectation formula works when r is also a negative integer.  
Special Cases  

When 
1
2

λ = −   

( )
3 2

22
1

e 1exp
22

g z z z
z

δγδ δ γ
−    = − +  

π    
               (3) 

This is an Inverse Gaussian (IG) distribution. 

When 
1
2

λ =   

( )
1 2

22
2

e 1exp
22

g z z z
z

δγγ δ γ
−    = − +  

π    
               (4) 

This is a Reciprocal Inverse Gaussian (RIG) distribution. 

When 
3
2

λ = −   

( )
( )

53 2
22

3
e 1exp

22 1
g z z z

z

δγδ δ γ
δγ

−    = − +  
π +    

           (5) 

which is the 3 , ,
2

GIG δ γ − 
 

. 

Using the concept of weighted distribution introduced by Fisher (1934) it can 
be shown that the two special cases are weighted inverse Gaussian distribution. 
More specifically, we express 2g  and 3g  in terms of 1g  as follows:  
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( ) ( )
3 2

22
2 1

e 1exp
22

g z z z z zg z
z

δγγ δ δ γγ
δ δ

−    = − + =   
π      

         (6) 

and  

( ) ( )
32 2 2

1 2 12
3 1

e 1exp
1 2 12

g z z z z z g z
z

δγδ δ δ δγ
δγ δγ

−− −
    = − + =   + +π      

    (7) 

A finite mixture of the two cases is given by  

( ) ( ) ( ) ( ) ( ) ( )
2

4 2 3 1
11 1

1
g z pg z p g z p z p g z

z
γ δ
δ δγ

 
= + − = + − + 

 

Put  
3

3p δ
δ γ

=
+

                         (8) 

( ) ( ) ( )
2 2 2

4 1 13 3 3

1 1 1
1

g z z g z z g z
z z

γδ γδ γδ
δγδ γ δ γ δ γ

   
∴ = + = +   ++ + +   

   (9) 

3. Proposed Model 
Construction of the Mixed Model 

Suppose the conditional of x given z is ( ),N z zµ β+ . If z follows itself distribu-
tion defined by formula (9). The mixed model is constructed as follows  

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )( ) ( )
( )( )

2

22

2

22

2

2
40

3
21 2

3 0

3 2 1
20 1

3 0

3 2 2

0 23

1 e d
2

e e 1 e d
12

e e e d
12

e e
1

x z
z

x
zx

z

x
zx

z

x

f x g z z
z

z z z z

zz z

K x
K x

x

µ β

δ φαβ µδγ
α

δ φαβ µδγ
α

β µδγ

γδ
δγδ γ

γδ
δγδ γ

αδ φγδ ααδ φ
δγδ φδ γ

− −  −∞

 
 − +−
 ∞ − −  

 
 − +− − −  ∞ −  

−

=
π

 
= + +π +  

 
= + +π +  


= +

+π +

∫

∫

∫


 
 
  

    (10) 

( )
( )

( )( ) ( ) ( )( ) ( )( )

( )

( )( )( )
( ) ( ) ( )( ) ( )( ){ }

2
22

03

2 2
0 23

e e
1

e e 1
1

x

x

K x
f x x K x

x

x K x K x
x

β µδγ

β µδγ

α αδ φγδ δ φ αδ φ
δγφ δ γ

γδ δγ δ φ αδ φ α αδ φ
φ δ γ δγ

−

−

 
 = + 

+π +   

= + +
π + +

(11) 

where  

( ) ( )2

21
x

x
µ

φ
δ
−

= +  

and 
2 2 2α β γ= +  
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The log-likelihood function  

( )

( )

( )( )( )
( ) ( ) ( )( ){

( )( )}

1

2
03

1

2
2

log log

e elog 1
1

n

i
i

xn

i

l L f x

x K x
x

K x

β µδγγδ δγ δ φ αδ φ
φ δ γ δγ

α αδ φ

=

−

=

= =

= +
π + +

+ 


∑

∑  

( ) ( ) ( )( ) ( ){
( ) ( ) ( )( ) ( )( ){ }}
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ){ }

3

1

2 2
0 2

3

1 1

2 2
0 2

1

log log 1 log

log 1

log log 1 log

log 1

n

i i
i

n n

i i
i i

n

i

x x

x K x K x

n n x n n x

x K x K x

δγ δγ β βµ δγ δ γ φ

δγ δ φ αδ φ α αδ φ

δγ δγ β βµ δγ δ γ φ

δγ δ φ αδ φ α αδ φ

=

= =

=

= + + − − + π + −

+ + +

= + + − − + π + −

+ + +

∑

∑ ∑

∑

(12) 

Posterior Expectation  

( )

( )

( )

( )

( )

( )

22

2

22

2

22

2

22

2

1 22
0

1 22
0

1 1 21 1
0

2 1 20 1
0

e d
1

e d
1

1 e d
2 1

1 e d
2 1

x
z

z

x
z

z

x
z

z

x
z

z

zz z z z
E Z X

zz z z

zz z

zz z

x

δ φα

α

δ φα

α

δ φα

α

δ φα

α

δγ

δγ

δγ

δγ

δ φ
α

 
 − +−  ∞ −  

 
 − +−  ∞ −  

 
 − +− −  ∞ −  

 
 − +− −  ∞ −  

 
+ + =

 
+ + 

 
+ + =

 
+ + 

+

=

∫

∫

∫

∫

( ) ( )( )

( )( ) ( ) ( )( )

( )
( )

( )( )

( )( ) ( )
( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

1

1

2
2

0

1

2 2

0 2

3
3 2

1

2 3
0 2

1

1

1

1

x
K x

K xx
K x

x
K x

x

K x
K x

x

x x K x

x K x K x

δ φ
αδ φ

α

αδ φδ φ
αδ φ

α δγ

δ φ α αδ φ
α δ φ

αδ φααδ φ
δγδ φ

δγ δ φ α δ φ αδ φ

α δγ δ φ αδ φ α αδ φ

−

−

  
  
  

   
 
 +
  + 

 
 +
  =

+
+

 + +  =
+ +

   (13) 

Similarly,  
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( )

( )

( )

( )

22

2

22

2

22

2

22

2

1 21 2
0

1 22
0

3 1 21 1
0

2 1 20 1
0

e d
11

e d
1

1 e d
2 1

1 e
2 1

x
z

z

x
z

z

x
z

z

x
z

z

zz z z z
E X

Z
zz z z

zz z

zz

δ φα

α

δ φα

α

δ φα

α

δ φα

α

δγ

δγ

δγ

δγ

 
 − +−  ∞ − −  

 
 − +−  ∞ −  

 
 − +− −  ∞ − −  

 
− +− − ∞ −  

 
+ +   = 

 
 

+ + 

 
+ + =

 
+ + 

∫

∫

∫

∫ dz



 

( )
( )( ) ( )

( )( )

( )( ) ( )
( )( )

( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

3
3

1

2
2

0

3
2

1 3

23

0 2

2 3
1 3

3
2

0 2

11

1

1

1

1

1

K x
K x

x x
E X

Z K x
K x

x

x K x K x

x
x K x K x

x K x K x

x K x x K x

αδ φα ααδ φ
δγδ φ δ φ

αδ φααδ φ
δγδ φ

ααδ φ αδ φ αδ φ
δγ

α δ φ
δ φ αδ φ αδ φ

δγ

αδ δγ φ αδ φ α αδ φ

δγ δ φ αδ φ α δ φ αδ φ

 
 +
  +   = 

   
 +
  + 

+
+=

+
+

+ +
=

+ +

(14) 

( )

( )

( )

( )( )
( )

( )( )
( )

( ) ( ) ( )( )

22

2

22

2

22

2

22

2

1 22 2
0

2

1 22
0

22 1 0 1
0

20 1 2 1
0

2

22

e d
1

e d
1

1 1 e d
2

1 1 e d
2

1

x
z

z

x
z

z

x
z

z

x
z

z

zz z z z
E Z X

zz z z

z z z

z z z

x
K x

δ φα

α

δ φα

α

δ φα

α

δ φα

α

δγ

δγ

δγ

δγ

δ φ
δγ αδ φ

α

 
 − +−  ∞ −  

 
 − +−  ∞ −  

 
 − +
 ∞ − −  

 
 − +
 ∞ − − −  

 
+ + =

 
+ + 

+ +
=

+ +

+
=

∫

∫

∫

∫

( )( )
( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

0

0 2

2 2
2 0

2 2
0 2

1

1

1

K x

K x K x

x K x K x

K x K x

αδ φ

δγ αδ φ αδ φ

δγ δ φ αδ φ α αδ φ

α δγ αδ φ α αδ φ

+

+ +

+ +
=

+ +

     (15) 

4. EM Algorithm 
4.1. Introduction 

EM algorithm is a powerful technique for maximum likelihood estimation for 
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data containing missing values or data that can be considered as containing 
missing values. It was introduced by Dempster et al. [6]. 

Karlis [7] considers the mixing operation responsible for producing missing 
data. 

Assume that the true data are made of an observed part X and unobserved 
part Z. Kosta [8] observes the log likelihood of the complete data ( ),i ix z  for 

1,2,3, ,i n=   factorizes into two parts. This implies that the joint density of X 
and Z is given by  

( ) ( ) ( ),f x z f x z g z= . 

The likelihood function is  

( ) ( ) ( ) ( )
1 1 1

n n n

i i i i i i
i i i

L f x z g z f x z g z
= = =

= =∏ ∏ ∏  

( ) ( )

( ) ( )

1 1

1 1

1 2

log log log

log log

n n

i i i
i i

n n

i i i
i i

L f x z g z

f x z g z

l l

= =

= =

∴ = +

= +

= +

∏ ∏

∑ ∑  

where 

( )1
1
log

n

i i
i

l f x z
=

= ∑  

and 

( )2
1
log

n

i
i

l g z
=

= ∑ . 

4.2. M-Step for the Conditional Probability 

Since  

( )
( )2

21 e
2

x z
zf x z

z

µ β− −
−

π
=  

then  

( )
( )

( ) ( )

2

2
1

1

2

1

1, log e
2

1 1log 2 log
2 2 2

i i

i

x z
n

z

i

n
i i

i
i

l
z

x z
z

z

µ β

µ β

µ β

− −
−

=

 − − = − − − 
 

π

π


∑

∑
 

( ) ( ) ( )2

1
1 1

1, log 2 log
2 2 2

n n
i i

i
i i i

x znl z
z

µ β
µ β

= =

− −
∴ = − − −π ∑ ∑  

( )1
1

n

i i
i

l x zµ β
β =

∂
= − −

∂ ∑  

( )1
1

ˆˆ0 0
n

i i
i

l x zµ β
β =

∂
= ⇒ − − =

∂ ∑  
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i.e., 
1 1

ˆˆ 0
n n

i i
i i

x n zµ β
= =

− − =∑ ∑  

ˆˆ 0x zµ β∴ − − =  

ˆˆ x zµ β∴ = −                         (16) 

1
1

n
i i

i i

x z
l

z
µ β

µ =

− −∂
=

∂ ∑  

1
1 1

1 ˆˆ0 0
n n

i

i ii i

x
l n

z z
µ β

µ = =

∂
= ⇒ − − =

∂ ∑ ∑  

( )
1 1

1ˆ ˆ 0
n n

i

i ii i

x
x z n

z z
β β

= =

∴ − − − =∑ ∑  

1 1 1

1 1ˆ ˆ 0
n n n

i

i i ii i i

x
x z n

z z z
β β

= = =

∴ − + − =∑ ∑ ∑  

1 1 1

1 1n n n
i

i i ii i i

x
n z x

z z z
β

= = =

 
∴ − = − 
 

∑ ∑ ∑  

1 1

1

1

ˆ
1

n ni

i i
i

i
n

i

i

x x
z z

n z
z

β
= =

=

−
∴ =

−

∑ ∑

∑
                    (17) 

4.3. M-Step for the Mixing Distribution 

From formula (9)  

( ) ( )

( )

2
2

2
2

2
1

13

132
21 2

3

133
21 2

3

1
1

1 e e
1 2

e 1 e
12

z
z

z
z

g z z z g z

z z z

z z z

δδγ γ

δδγ γ

γδ
δγδ γ

γδ δ
δγδ γ

γδ
δγδ γ

−

 
 − +−  −  

 
 − +−  −  

 
= + ++  

 
= + ++  

 
= + 

π


+

π

+ 

          (18) 

Therefore  

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2
1

3

1

2 2

3

2 2

1 1 1 1

log

1log 3log log 2 log log 1
2

3 1 1log log 1
2 2 2

log 3 log log 2 log log 1
2

3 1log log 1
2 2 2

n

i
i

n

i

i i i
i i

n n n n

i i i
i i i ii

l g z

z z z
z z

nn n n n n

z z z
z

γ δ δγ δ γ δγ

δ γ δγ

γ δ δγ δ γ δγ

δ γ δγ

=

=

= = = =

=

= + + − π − + − +


 − − − + + +  
 

= + + − π − + − +

− − − + +

∑

∑

∑ ∑ ∑ ∑ 1

iz
 

+ 
 

(19) 

Differentiating w.r.t γ  we obtain  
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( )

( )

( ) ( )

2 3
1 1

3
1 1

23 2

23
1 1

11 1

11
11 1

1 1 1

n n
i

i
i i

i
i

n n
i

i
i i

i
i

n n
i

i
i i i

zn n nl n z
z

z

zn n n z
z

z

zn n z
z

δδδ γ
γ γ δγδ γ δγ

δ
δ γ

γ δγδ γ δγ

δδ γδ γ
δγ δγγ δ γ

= =

= =

= =

∂
= + − − − +

∂ ++ + +

   
= − + − − +   ++    + +

= + − +
+ + ++

∑ ∑

∑ ∑

∑ ∑

 

0
γ
∂

=
∂

 implies that  

( ) ( )
23 2

23
1 1

0
1 1 1

n n
i

i
i i i

zn n z
z

δδ γδ γ
δγ δγγ δ γ = =

+ − + =
+ + ++

∑ ∑           (20) 

Similarly  

( )

( ) ( )

22

2 3 2
1 1

22

23
1 1

3 3 1
1 1 1

3 1
1 1 1

n n
i

i ii i

n n
i

i ii i

zn n nl n
z z

zn n
z z

γδ γγ δ
δ δ δγδ γ δγ

γγ δγ δ
δγ δγδ δ γ

= =

= =

∂
= + − − − +

∂ ++ + +

= + − +
+ + ++

∑ ∑

∑ ∑
 

0
δ
∂

=
∂

 implies that  

( ) ( )
22

23
1 1

3 1 0
1 1 1

n n
i

i ii i

zn n
z z

γγ δγ δ
δγ δγδ δ γ = =

+ − + =
+ + ++

∑ ∑          (21) 

4.4. E-Step 

Values of random variables iZ , 1

iZ
 and 2

iZ  are not known. So we estimate 

them by considering posterior expectations  

( )i iE Z X , 1
i

i

E X
Z

 
 
 

 and ( )2
i iE Z X   

as given in formulae (12), (13) and (14) respectively. Let  

( )i i is E Z X= , 1
i i

i

w E X
Z

 
=  

 
 and ( )i i iv E Z X= .  

The k-th iterations are as follows  

( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )
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i i i

x x K x
s

x K x K x

δ γ δ φ α δ φ α δ φ

α δ γ δ φ α δ φ α α δ φ

 
+ + 

 =
+ +

(22) 

( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 3

1 3

3 2
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α δ δ γ φ α δ φ α α δ φ

δ γ δ φ α δ φ α δ φ α δ φ

+ +
=

+ +
(23) 
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( )
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=
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(24) 

For the log-likelihood, the k-th iteration is given as  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
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∑

∑
     (25) 

4.5. Iterative Scheme 

From Equations (19) and (20), we obtain the following iterative scheme  

( )

( )( )
( ) ( )( ) ( )

( ) ( )( )
( ) ( )

( )
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From Equations (15) and (16) we also obtain  

( )
( ) ( )

( ) ( )
1

1

1 1ˆ
n nk k

i i ik
n

i i
k k

ii

x w x w

n s w
β =

=

+ =
−

=
−

∑ ∑
∑

                  (28) 

( ) ( ) ( )1 1ˆˆ k k kx sµ β+ += −                        (29) 

( ) ( )( ) ( )( )
1

2 2 21 1 1ˆˆ ˆk k kα γ β+ + + = +  
                  (30) 

5. Application 

Let ( tP ) denote the price process of a security at time t, in particular of a stock. 
In order to allow comparison of investments in different securities we shall in-
vestigate the rates of return defined by  

1log logt t tX P P−= − . 

In this section, we consider three data sets for data analysis. They include: 
Range Resource Corporation (RRC), Shares of Chevron Corporation (CVX) and 
s&p500 index. The histogram for the weekly log-returns in Figure 1 for RRC il-
lustrates that the data is negatively skewed and exhibits heavy tails. The Q-Q plot 
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shows that the normal distribution is not a good fit for the data, especially at the 
tails. This is also similar for the other data sets. 

Table 1 provides descriptive statistics for the return series in consideration. 
We observe that the data sets experience excess kurtosis indicates the leptokurtic 
behaviour of the returns. The log-returns have distributions with relatively heavier 
tails than the normal distribution. The skewness indicates that the two tails of 
the returns behave differently. 

Table 2 below gives the method of moment estimates of NIG for the three 
data sets. The estimates will be used as initial values for the EM-algorithm.  

The stopping criterion is when  
( ) ( )

( )

1k k

k

l l tol
l

−−
<                         (31) 

where tol is the tolerance level chosen; e.g 10−6 and ( )kl  as given in Equation 
(11). We now wish to obtain the maximum likelihood parameter estimates of the 
data sets for the proposed model via the EM algorithm. Tables 3-5 illustrate 
monotonic convergence at different levels. The loglikelihood and AIC for each 
data set are also provided.  

 

 
Figure 1. Histogram and Q-Q plot for RRC weekly log-returns. 

 
Table 1. Summary statistics for the data sets.  

dataset Minimum Standard.dev skewness exc.kurtosis Maximum Mean N 

RRC −14.4465 2.824736 −0.1886714 2.768252 13.9830 0.2333 702 

CVX −13.76112 1.480436 −1.297339 11.10113 6.71410 0.08711 702 

s&p500 −8.722261 1.157893 −0.7851156 6.408709 4.931805 0.006697 702 
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Table 2. NIG method of moment estimates for the data sets.  

dataset α̂  β̂  δ̂  µ̂  

RRC 0.3722511 −0.02456226 2.950864 0.4284473 

CVX 0.4190067 −0.1054991 0.8324058 0.3036691 

s&p500 0.6556607 −0.1257455 0.8310044 0.1690855 
 

Table 3. Maximum likelihood estimates of the proposed model for RRC. 

Parameter Starting Values ( )510EM tol −=  ( )610EM tol −=  ( )810EM tol −=  

α̂  0.3722511 0.5144623 0.5144017 0.5144511 

β̂  −0.02456226 −0.03578978 −0.0357382 −0.03571578 

δ̂  2.950864 2.26434 2.264649 2.265279 

µ̂  0.4284473 0.5176135 0.5172807 0.5171165 

Loglikelihood  −1696.862 −1696.873 −1696.844 

No. iteration  43 47 78 

AIC  3401.724 3401.746 3401.688 
 

Table 4. Maximum likelihood estimates of the proposed model for CVX. 

Parameter Starting Values ( )510EM tol −=  ( )610EM tol −=  ( )810EM tol −=  

α̂  0.4190067 1.167283 1.167218 1.167188 

β̂  −0.1054991 −0.2492112 −0.2491672 −0.2491203 

δ̂  0.8324058 1.631138 1.631156 1.631209 

µ̂  0.3036691 0.5692185 0.5691717 0.5691122 

Loglikelihood  −1222.955 −1222.962 −1222.956 

No. iteration  37 41 66 

AIC  2453.91 2453.924 2453.912 
 

Table 5. Maximum likelihood estimates of the proposed model for s&p500 index. 

Parameter Starting Values ( )510EM tol −=  ( )610EM tol −=  ( )810EM tol −=  

α̂  0.6556607 1.569046 1.568931 1.568897 

β̂  −0.1257455 −0.2078989 −0.20787 −0.2078466 

δ̂  0.8 1.466964 1.466918 1.466935 

µ̂  0.3036691 0.2425692 0.2425475 0.2425306 

Loglikelihood  −1042.372 −1042.386 −1042.385 

No. iteration  36 42 65 

AIC  2092.744 2092.772 2092.77 
 

Figures 2-4 show that the proposed models is a good fit the data sets.  
Remark: 
Expressing the proposed model in terms of its components we have  

( )
3

3 3

3 , , , ,
2

f x NRIG GHDδ γ α δ β µ
δ γ δ γ

 = × + × − + +  
       (32) 
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Using the estimates we obtain the estimates of p for the data sets as shown in 
Table 6 below:  

The finite mixture for these data sets is more weighted to the NRIG than the 

other special case of the GHD when 
3
2

λ = − .  

 

 
Figure 2. Fitting the proposed model to RRC log weekly returns. 

 

 

Figure 3. Fitting the proposed model to CVX log weekly returns. 
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Figure 4. Fitting the proposed model to s&p500 index log weekly returns. 
 

Table 6. Estimates of p for the data sets.  

dataset p̂  

RRC 0.95772 

CVX 0.79194 

s&p500 0.66996 

6. Conclusions 

Two special cases of the Generalized Inverse Gaussian have been shown to be 
Weighted Inverse Gaussian distributions. Their mixture has been used as a mix-
ing distribution for Normal Variance-Mean mixture to a Normal Weighted In-
verse Gaussian Model. The mean and variance of the proposed model have been 
obtained. 

Three data sets: Range Resource Corporation (RRC), Shares of Chevron Cor-
poration (CVX) and s&p500 index for the period 3/01/2000 to 1/07/2013 with 
702 observations have been used for data analysis. An iterative scheme has been 
presented for parameter estimation by the EM algorithm. The iterative scheme 
demonstrates a monotonic convergence. The method of moment estimates for 
NIG worked well for the three data sets. The model fits the data sets well.  
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