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Abstract 
We realize the function projective synchronization (FPS) between two dis-
crete-time hyperchaotic systems, that is, the drive state vectors and the re-
sponse state vectors can evolve in a proportional scaling function matrix. In 
this paper, a systematic scheme is explored to investigate the function projec-
tive synchronization of two identical discrete-time hyperchaotic systems us-
ing the backstepping method. Additionally, FPS of two different hyperchaotic 
systems is also realized. Numeric simulations are given to verify the effec-
tiveness of our scheme. 
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1. Introduction 

Many researchers have been dealing with synchronizing chaotic dynamical sys-
tems extensively [1] [2] [3]. Due to potential applications, many types of chaos 
synchronization in dynamical systems such as complete, phase, lag, cluster, and 
anticipated synchronization, etc [4] [5] [6] [7] [8] are widely investigated. Espe-
cially, amongst all kinds of chaos synchronization, the projective synchroniza-
tion reported by Mainieri and Rehacek is one of the most noticeable ones that 
the drive and response vectors evolve proportionally in a scale matirx [9]. The 
projective synchronization is usually reported only in partial-linearity systems 
early. Subsequently, the projective synchronization is extended to non-partially- 
linear systems [10]-[15]. 

Because of much more complicated structure and higher unpredictability, 
hyperchaotic systems have been broadly applied in secure communications [16], 
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lasers [17], optimal control [18], and so on. Many researchers investigate chaos 
(hyperchaotic) synchronization in continuous-time systems using different me-
thods. However, many mathematical models are defined with discrete-time dy-
namical systems [19] [20] [21] [22]. Therefore, more and more attention is paid 
to the synchronization and control in discrete-time chaotic systems, especially in 
discrete-time hyperchaotic systems. 

Backstepping design method [23] [24] plays a very important role in con-
structing the associated Lyapunov functions and feedback controllers. In this pa-
per, we investigate the function projective synchronization (FPS) by exploring a 
systematic and automatic algorithm [22], by which the discrete-time drive system 
and response system, whether is with strict-feedback form or not, can be projec-
tively synchronized via suitable controllers. By means of symbolic-numeric com-
putation, the proposed scheme is used to realize FPS of 3D discrete-time hyper-
chaotic systems between two identical Rösler systems [25], and two different sys-
tems of Rösler system and the Henon system [26], respectively. Moreover, nu-
merical simulations are given to verify the availability of the proposed scheme. 

The rest of this paper is organized as follows. In Section 2, the definition of 
FPS in discrete-time hyperchaotic systems and the Lyapunov stability theory are 
introduced. In Section 3, we first illustrate the general theory of FPS in two iden-
tical Rössler hyperchaotic discrete-time systems, and then give the numerical 
simulation of the associated results. We also discuss the FPS of the two different 
discrete-time hyperchaotic systems (the Henon hyperchaotic system and the 
Rössler hyperchaotic system) in Section 4. Finally, some conclusions and discus-
sions are given in Section 5. 

2. Function Projective Synchronization between Two  
Discrete-Time Chaotic Systems 

In this section, we give the conception of FPS in discrete-time hyperchaotic dy-
namical systems as we defined earlier [15]. 

Consider the two hyperchaotic systems in discrete-time style, which are de-
scribed as follows: the drive system (a) ( ) ( )( )1X k F X k+ = , and the response 
system with controllers (b) ( ) ( )( ) ( ) ( )( )1 ,Y k G Y k u X k Y k+ = + . Where  

( ) ( ) ( ) ( )( )1 2 3, ,X k x k x k x k= , ( ) ( ) ( ) ( )( )1 2 3, ,Y k y k y k y k= , k Z Z −∈ ,  
( ) ( )( ) 3,u X k Y k R∈ . Additionally, (c) the error system  

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )

1 2 3

1 1 1 2 2 2 3 3 3

, ,

, , .

E k E k E k E k

x k f X k y k x k f X k y k x k f X k y k

=

= − − −
 

If there exist suitable controllers  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 2 3, , , , , ,u x k y k u X k Y k u X k Y k u X k Y k= , satisfying 
( )( )lim 0k E k→∞ = , one can say that there exists function projective synchro-

nization (FPS) in the above drive (a) and response systems (b). 
Furthermore, consider the error discrete-time (c) generated by the drive sys-

tem (a) and the response system (b). Let ( ) ( )( )
( ) ( )1 4 0 1,2,3

, , 0
iE k i

L E k E k
≡ =

= , 
when ( ) ( ) ( )1 0L k L k L k∆ = + − ≤ , with the equality holding if and only if 
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( ) ( )0 1,2,3iE k i≡ = , we can say that systems (a) and (b) are function projective 
synchronized, according to the Lyapunov stability theory. 

Here we would like to point out that the controller u desponds on the syn-
chronization method chosen. In fact, when ( ) ( )0 1,2,3iE k i≡ = ,  

( )1u f F G−= − , where ( )( ) ( )( ) ( )( )( )1 2 3, ,f diag f x k f x k f x k= . That is to say, 

( )1u f F G−= −  is the situation when all the error functions equal to zero and 
the corresponding controller is trivial situation. For ( ) 0iE k = , we need only to 
solve the equations  

( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( )

1 2 3

1 1 1 2 2 2 3 3 3

, ,

, ,

0,0,0

E k E k E k

x k f X k y k x k f X k y k x k f X k y k= − − −

=

  

to obtain the trivial controller “u”. Therefore, here we just regard the general 
condition ( )( )lim 0k E k→∞ = . 

In this paper, we would like to propose a systematic and constructive scheme 
to search the controllers between 3D hyperchaotic discrete-time systems [25] [26] 
with strict-feed form are function projective synchronized. 

3. FPS between Two Identical Three-Dimensional  
Discrete-Time Hyperchaotic Systems 

In this section, we consider the FPS of two identical Rössler hyperchaotic systems 
[25]. The discrete-time drive and response systems are described as following:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 3 2 4 1

2 2 3 1 1 2

3 5 6 2 3 7 3

1 1 ,

1 ,

1 1 ,

x k a x k a x k

x k a x k a x k x k

x k a a x k x k a x k

δ δ

δ δ

δ δ δ

+ = + +

+ = + +

+ = + + +

          (1) 

and  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 3 2 4 1 1

2 2 3 1 1 2 2

3 5 6 2 3 7 3 3

1 1 ,

1 ,

1 1 .

y k a y k a y k u

y k a y k a y k y k u

y k a a y k y k a y k u

δ δ

δ δ

δ δ δ

+ = + + +

+ = + + +

+ = + + + +

        (2) 

As we all know, the dynamic system will have different dynamic behavior when 
choosing different parameter values. When 1 1.9a = − , 2 0.2a = , 3 0.5a = , 

4 2.3a = − , 5 2a = , 6 0.6a = − , 7 1.9a = −  and 1δ = , hyperchaos occurs in 
both the systems (1) and (2) without the controllers. In this section, we choose 
the values of the parameters in the systems (1) and (2) as the above values. The 
synchronization process for the above discrete-time dynamical systems, with the 
powerful Lyapunov stability theory and backstepping design method is intro-
duced in detail as follows. We select  

( ) ( ) ( )( ) ( )( )( )1 2 3 1, , 2,1 tanh , 2f x f x f x x k= + − . So the error states should be 
( ) ( ) ( )1 1 12E k x k y k= − , ( ) ( ) ( )( )( ) ( )2 2 1 21 tanhE k x k x k y k= − + ,  

( ) ( ) ( ) ( )3 3 2 3E k x k x k y k= − . Substituting (1) and (2) into the above error states, 
we can obtain the discrete-time error dynamical system  
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )( ) ( )( ( )
( ) ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 3 2 4 1 3 2

4 1 1

2 3 2 4 1 2 3 1 1

2 2 2 3 1 1 2

3 6 2 3 7 3 6 2 3

7 3 5 3

1 1 2

2 1 2 , ,

1 1 tanh 1

, ,

1 1 2

2 1 3 2 , .

E k a x k a x k a y k

a y k u x y

E k a x k a x k a y k a y k

y k u x y a x k a x k x k

E k a x k x k a x k a y k y k

a y k a u x y

δ δ δ

δ

δ δ δ δ

δ δ

δ δ δ

δ δ

+ = + + −

− + −

+ = − + + + +

+ + + + +

+ = + + +

+ + + +  

(3) 

3.1. General Theory 

According to the improved backstepping method [27] and Lyapunov stability 
theory, a systematic and constructive algorithm to derive the controllers ( ),u x y  
will be given step by step, in order to realize the FPS between the systems (1) and 
(2). 

Theorem 1: (Lyapunov’s Stability Theory) Let 0x =  be an equilibrium for 
( )x f x=  and nD R⊂  be invariant, and let :V D R→  be a continuously 

differentiable function such that: when { }\ 0x D∈ , ( )0 0V =  and ( ) 0V x > ; 
when x D∈ , ( )0 0V ≤ . Then 0x =  is stable. Moreover, when { }\ 0x D∈ , 
( ) 0V x < , then 0x =  is asymptotically stable. 
Here we extent the above theory to the discret-time hyperchaotic systems. 
Step 1. Let the first partial Lyapunov function be ( ) ( )1 1L k E k=  and the 

second error variable be  
( ) ( ) ( )2 1 11 11 .E k E k c E k= + −                    (4) 

Then we can obtain the derivative of ( )1L k   

( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 1 21 1 .L k E k E k c E k E k∆ = + − ≤ − +         (5) 

Step 2. The third error variable is described as  
( ) ( ) ( ) ( )3 2 21 1 22 21 .E k E k c E k c E k= + − −               (6) 

And the derivative of ( )2L k  is defined as follows  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 21 1 22 2 31 1 .L k E k E k c E k c E k E k∆ = + − ≤ + − +   (7) 

Step 3. Let  

( ) ( ) ( ) ( )3 31 1 32 2 33 31 0.E k c E k c E k c E k+ − − − =             (8) 

With the help of symbolic computation and the associated stability theory, it 
is not difficult to get the controllers from the above Equations (4) to (8). 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 2 2 1 11 1 3 2

4 1 1 11 1 3 2 4 1 1

1, tanh
2

,

u x y y k x k y k x k c x k a x k

a x k x k c y k a y k a y k y k

δ

δ δ δ

= − + − +

+ + + − − −

 

( ) ( )( ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( )( ( ) ( ) ( )( ( )
( )) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )) ( ) ( ) ( )( )( )

2 2 3 1 1 2 2 3 2 1 1 1

1 1 3 2 4 1 2 1 3

3 2 1 4 22 2 3 2 1 4

1 2 21 1 21 1 22 2 22 2 1

3 3 3 2 1 4 1

,

tanh

tanh tanh

2 tanh

2 1 tanh ,

u x y a x k a x k x k a y k y k x k a y k

a y k a x k a x k a x k y k

a x k x k a c y k a x k x k a

x k y k c x k c y k c x k c y k x k

x k y k a x k x k a x k

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ

= + + − − +

− − + +

− + + − +

+ − + − +

− − + + +
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 31 1 32 2 32 2 32 2 1 33 3

6 2 3 7 3 3 31 1 33 3

6 2 3 7 3 3 5

1, tanh
2

3

u x y c x k c x k c y k c y k x k c x k

a x k x k a x k x k c y k c y k

a y k y k a y k y k a

δ δ

δ δ δ

= + − − +

− − − − +
− − − −

(9) 

Then suppose the Lyapunov function be  
( ) ( ) ( ) ( )1 1 2 2 3L k E k d E k d E k= + + , 2 1 1d d> > . We get the derivative of the 

Lyapunov function ( )L k  from (4) and (7) as following 

( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( )
2 31 1 21 11 1 2 32 1 22 2

2 33 1 2 2

1

1 1 1

.

L k L k L k

d c d c c E k d c d c E k

d c d d E k

∆ = + −

≤ + + − + + − +

+ + −

(10) 

We choose the appropriate values for these constants 11 21 22 31 32 33, , , , ,c c c c c c  
to satisfy  

1 21 2 31 11

1 22 2 32 1

2 1
33

2

1,

1,

.

d c d c c

d c d c d
d dc

d

+ + <

+ < −

−
<

                    (11) 

Therefore, ( )L k∆  is negative definite which means that the close-loop dis-
crete-time system  

( )
( )
( )

( )
( )
( )

1 11 1

2 21 22 2

3 31 32 33 3

1 0 0
1 0
1

E k c E k
E k c c E k
E k c c c E k

+    
    + =    

    +     

 

is globally asymptotically stable and ( )lim 0k iE k→+∞ = . So discrete-time hyper-
chaotic system (1) and (2) are function projective synchronized. 

3.2. Numerical Simulation Results 

In this subsection, some numerical simulations are used to verify the effective-
ness of the obtained controllers ( ),u x y . Here we choose 11 0.3c = , 21 0.02c = , 

22 0.4c = , 31 0.05c = , 32 0.1c = , 33 0.2c = − , 1 4d = , 2 6d = , such that the 
corresponding ( ) 0L k∆ ≤ , according to the condition equations in (11). Other-
wise, we choose the parameters in the systems (1) and (2) as 1 1.9a = − , 2 0.2a = , 

3 0.5a = , 4 2.3a = − , 5 2a = , 6 0.6a = − , 7 1.9a = −  and 1δ = , and the cor-
responding initial values [ ( )1 0 0.1x = , ( )2 0 0.2x = , ( )3 0 0.3x = ] and  
[ ( )1 0 0.1y = − , ( )2 0 0.2y = − , ( )3 0 0.3y = − ], respectively. The pictures of the 
error states are displayed in Figures 1(a)-(c). Obviously, 1E , 2E  and 3E  con-
verge to zero finally after the controllers are activated. This is to say, all the state va-
riables tend to be synchronized in the function proportion ( )( )( )12,1 tanh , 2x k+ − . 
And the attractors of the two systems with controllers are shown in Figure 2. 
Then in Figures 3(a)-(c), we respectively put the trajectories of the response 
system with the controllers and the trajectories of the drive system in the same 
plane, and it is not difficult to find that ratio of the amplitudes of the two sys-
tems is a function scaling factor. 
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(a) 

 
(b) 

 
(c) 

Figure 1. The orbits of the error states. (a) The orbit of 1E ; (b) The orbit 
of 2E ; (c) the orbit of 3E . 

 

 

Figure 2. The two systems after being synchronized with  

( ) ( ) ( )( ) ( )( )( )1 2 3 1, , 2,1 tanh , 2f x f x f x x k= + − : the blue one  

denotes the trajectory of the response system with the controllers, 
and the red one denotes the trajectory of the drive system. 
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(a) 

 
(b) 

 
(c) 

Figure 3. Characteristics of ( )ix k  and ( )( )1,2,3iy k i =  versus ( )t k : 

the red circle orbits denote for ( )ix k  of the drive system and the blue 

cross orbits denote for ( )iy k  of the response system. 

4. FPS between Two Different Three-Dimensional  
Discrete-Time Hyperchaotic Systems 

We now consider FPS between the Henon-like map [26] and the above hyper-
chaotic system (1). Here we choose Henon-like map as drive system and hyper-
chaotic Rössler system as response system to realize FPS of two different chaotic 
dynamic systems with the backstepping method. The drive system and the re-
sponse system with controllers are rewritten as follows: the drive system  

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2
1 3 2

2
2 2 1

3 1

1 1 ,

1 1 ,

1 .

x k x k x k

x k x k x k

x k x k

α

β α

β

+ = + −

+ = + −

+ =
                   (12) 

and the response system  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 3 2 4 1 1

2 2 3 1 1 2 2

3 5 6 2 3 7 3 3

1 1 ,

1 ,

1 1 .

y k a y k a y k u

y k a y k a y k y k u

y k a a y k y k a y k u

δ δ

δ δ

δ δ δ

+ = + + +

+ = + + +

+ = + + + +
         (13) 
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The projections of the hyperchaotic attrator of systems (12) and (1) are dis-
played in Figure 4(a) and Figure 4(b), respectively. 

Then we also use the backstepping design method to realize the FPS of the 
two different discrete-time hyperchaotic systems (12) and (1). Here we choose 

( ) ( ) ( )( ) ( )1 2 3 2
1

1, , 1, , 1
1

f x f x f x
x k

 
= − − −  + 

, that is to say  

( ) ( ) ( )

( ) ( )
( )

( )

( ) ( ) ( )

1 1 1

2 2 22
1

3 3 3

,
1 ,

1

.

E k x k y k

E k x k y k
x k

E k x k y k

= +

= +
+

= +

                  (14) 

According to (12) and (13), we can obtain the error dynamical system  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2
1 2 3 3 2 4 1 1

1 1 2 3 2 22
2 1 2 22 2

2 3

3 1 5 6 2 3 7 3 3

1 1 1 ,

1 1 ,
1 1

1 1 .

E k x k x k a y k a y k u

a y k a y k u y k
E k x k x k

x k x k

E k x k a a y k y k a y k u

α δ δ

δ δ
α β

α

β δ δ δ

+ = − + + + + + +

+ + +
+ = − + + +

− + + +

+ = + + + + +   

(15) 

Based on the steps of backstepping methods [27] with the above Equations (4) 
to (8), we have the controllers  

 

 
(a) 

 
(b) 

Figure 4. Phase portraits of the hyperchaotic systems: (a) The orbit 
of the drive system (12); (b) The orbit of the response system (1). 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )) ( )( )

2 2 2 2
1 3 1 2 4 1 1 1 2 1 2

2 2 2 2 2
4 1 2 1 2 1 3 1 1 1

2
3 2 2 3 11 1 11 1 11 1 1

3 2
11 1 1

1

1 ,

u a x k y k a x k y k x k x k y k y k

a y k x k x k x k x k x k x k y k x k

a y k x k x k c x k c y k c x k y k

c x k x k

δ δ α

δ α

δ

= − + − + −

+ − − + + +

+ − + − − − +

− +

 

( ) ( )( ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 3 2 3
2 1 2 2 3 21 1 3 21 1 3

2 2 2
21 1 1 21 1 3 21 3 1 21 3 1

2 4 2 2 2 2
22 3 2 2 3 2 3 1 3 3

2 2 3 4 4 3 2 4
2 3 1 3 3 1 2 1 2

4 2 2 2
1 3 1

2 2 2

2 ( ) 2

2 2

2 2

2

u x k x k a y k c x k x k c x k x k

c x k y k c x k x k c x k y k c x k y k

c x k y k x k x k x k x k x k x k y k

x k y k x k x k y k x k x k x k x k

x k x k x k

α δ

α α

α α α

α α

= − − + − −

− − − −

− − + −

+ − − −

− + ( ) ( ) ( ) ( ) ( )2 4 2
2 1 3 1 32 2x k x k x k x k x kα α− −

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2
1 2 2 3 2 3 1 2 3

2 2 2 4 3 2
2 1 21 1 2 1 21 1 2 3

2 2
21 1 2 3 21 2 3 1

2 3 2 2
22 1 2 3 1 2 3 3

2 3 2 4 2 4
1 2 3 21 1 2 21 2 1

2 2 2

2 2 2

2 2

2 2

2

x k x k x k x k x k x k x k x k x k

x k x k c x k x k y k c x k x k x k

c x k x k x k c x k x k y k

c x k x k x k x k x k x k y k

x k x k x k c x k x k c x k y k

β β β α

β α α α

α α

α α

αβ α α

+ + + +

+ − − +

+ +

+ +

− − −

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 2 2 2 3
21 1 2 21 1 3 1 21 1

2 2 2 5 2 4 4
21 1 3 1 22 1 2 22 2 2 1

2 2 2 2
22 1 2 3 22 2 2 22 1 2 3

2 2 4 2 2
22 2 1 2 3 1 2 3

2 2 2 5
2 3 3 22 2 1 2

2 2

2 2

2 2

2 2

2 2

c x k x k c x k x k y k c x k

c x k x k y k c x k x k c x k y k x k

c x k x k x k c x k y k c x k x k x k

c y k x k x k y k x k x k y k

x k x k y k c x k x k x k

α

α α α

α

α α

α α β

+ − −

− − − −

− + −

− − +

+ − + − ( ) ( )2 3
1 22 x k x kαβ

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 2 2 2
2 3 1 2 3 1 1 1

2 3 2 2
2 1 3 3 3 1 3 21 1 21 1

2 3 2 2 2 2 2 2
1 3 1 3 1 2 3 3 3

2 4 2
3 3 2 1 2 1 1 2

2 4 2 4 2
22 2 3 21 1 3 2 3 1 2

2

2 2 2

2

2

2 2 2

x k x k x k x k x k a x k y k

a x k y k x k x k x k y k c x k c y k

x k x k x k x k x k x k x k x k y k

x k y k x k x k y k a y k y k

c x k x k c x k x k x k y k x k x k

αβ β δ

δ

α

α δ

α α

− + +

+ − − − − −

− − + −

− + + + +

− − − +

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )) ( )( )

2 3 2 2 2 5 2 2 4
2 2 1 3 2 1 2

2 2 2 2
1 21 1 2 1 22 2 3 2 3

2 3 4 2 2
21 1 2 21 1 2 21 2 1

2 2 4 2 4 2 2
1 2 3 1 2 3 1 2 3

2 2 2
21 1 2 3 1 1

2 2

2 2 2 2

2 2

2 2

2 1 ,

x k x k x k x k x k x k x k

x k c x k x k y k c x k x k y k y k

c x k x k c x k x k c x k y k

x k x k x k x k x k x k x k x k x k

c x k x k x k y k x k

α αβ α α β α

α α

α α α

α α β

α

− − − + +

+ + + −

− + +

− + +

+ +

 

( ) ( ) ( )( ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2 3
3 6 1 2 3 7 1 3 5 1 1

3 2 2
31 1 6 2 3 31 1 1 32 1 2

2 2 2
33 1 3 7 3 33 1 3 1 3 5

1 31 1 31 1 32 2 32 2 33 3

2 3 3
33 3 3 22 1 2 22 2

( )

2 2

u a x k y k y k a x k y k a x k x k

c x k a y k y k c x k y k c x k x k

c x k x k a y k c x k y k x k y k a

x k c x k c y k c x k c y k c x k

c y k y k c x k x k c x k

δ δ δ β

δ

δ δ

β

α α

= − + + +

− + − −

− + − + +

+ − − − − −

− + + + ( ))3x k
  

(16) 

Here numerical simulations are also used to verify the effectiveness of the ob-
tained controllers ( ),u x y  above. Without losing generality, we take the same 
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parameter values of 11 21 22 31 32 33 1 2, , , , , , ,c c c c c c d d  in section 3, and take the initial 
values as [ ( )1 0 0.1x = , ( )2 0 0.2x = , ( )3 0 0.3x = ] and [ ( )1 0 0.5y = − ,  

( )2 0 0.2y = , ( )3 0 0.1y = ], respectively. The figures of the error states are shown 
in Figures 5(a)-(c). That is easy to see, all the three orbits of ( )1,2,3iE i =  
converge to zero finally after the controllers 1 2 3, ,u u u  are activated. So all the state  

variables tend to be synchronized in proportion 
( )2

1

11, , 1
1 x k

 
− − −  + 

. The at-

tractors of the two systems with controllers tending to a function scaling factor, 
are displayed in Figure 6. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. The trajectories of the error states. (a) The orbit of 1E ; (b) The 
orbit of 2E ; (c) The orbit of 3E . 
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Figure 6. The two systems after being synchronized with  

( ) ( ) ( )( ) ( )1 2 3 2
1

1, , 1, , 1
1

f x f x f x
x k

 
= − − −  + 

: the red one is the drive 

system with the controllers, and the blue one is the response system. 

5. Conclusion 

In conclusion, the conception of the function projective synchronization be-
tween discrete-time hyperchaotic dynamical systems is presented. According to 
backstepping design method with controllers, a systematic, automatic and con-
structive scheme is explored in order to investigate FPS between the discrete- 
time drive systems and response systems, whether is in strict-feedback forms or 
not. Additionally, the proposed scheme is used to realize the function of projec-
tive synchronization between the identical discrete-time hyperchaotic systems 
from Rössler system and two different hyperchaotic systems which are the 
hyperchaotic Rössler system and the Henon map, respectively. With the aid of 
symbolic computation Maple, the numerical simulations are shown to perform the 
process of the synchronization and the effectiveness of the above-designed con-
troller successfully. 
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