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Abstract 
Since the onset of the COVID-19 epidemic, the world has been impressed by 
two things: The number of people infected and the number of deaths. Here, 
we propose a mathematical model of the spread of this disease, analyze this 
model mathematically and determine one or more dominant factors in the 
propagation of the COVID-19 epidemic. We consider the S-E-I-R epidemic 
model in the form of ordinary differential equations, in a population struc-
tured in susceptibles S, exposed E as caregivers, travelers and assistants at pub-
lic events, infected I and recovered R classes. Here we decompose the re-
covered class into two classes: The deaths class D and the class of those who 
are truly healed H. After the model construction, we have calculated the basic 
reproduction number 0R , which is a function of certain number of parame-
ters like the size of the exposed class E. In our paper, the mathematical analysis, 
which consists in searching the equilibrium points and studying their sta-
bility, is done. The work identifies some parameters on which one can act to 
control the spread of the disease. The numerical simulations are done and 
they illustrate our theoretical analysis. 
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1. Introduction 

All the presentations of evolution of the propagation of COVID-19 show an in-
creasing proportion of the number of death. It seemed very important to manage 
the increase in the number of death because this one has a psychological impact 

How to cite this paper: Diallo, O., Kone, 
Y., Sanogo, C. and Pousin, J. (2022) A Ma-
thematical Model of COVID-19: Analysis 
and Identification of Parameters for Better 
Decision Making. Applied Mathematics, 13, 
205-214. 
https://doi.org/10.4236/am.2022.132016 
 
Received: November 20, 2021 
Accepted: February 22, 2022 
Published: February 25, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2022.132016
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2022.132016
http://creativecommons.org/licenses/by/4.0/


O. Diallo et al. 
 

 

DOI: 10.4236/am.2022.132016 206 Applied Mathematics 
 

on the population. Otherwise, it is very important to find a strategy (mathemat-
ical, biological, clinical therapeutic, educational, behavioral changes, etc.) in or-
der to avoid ulterior spread of this epidemic. In spite of their limit and insuffi-
ciency, mathematical models and computer simulations have become very useful 
in analysis of the spread and control of infectious diseases. They must together, 
build and test better elaborated theories to help complex biological systems to 
get quantitative conjectures and determine sensitivity parameters to control infec-
tious diseases. Modeling is very crucial in epidemiology since in most cases we 
cannot perform biological experiments and do not have a pharmaceutical solu-
tion. Mathematical modeling must be used to develop and understand in a rele-
vant way the epidemiological phenomenon, as well as to quantify the likely ef-
fects of different intervention strategies (see Li Li et al. [1]; M.E. Halloran et al. 
[2]; T. House et al. [3]). 

An important aspect of the mathematical study in epidemiology is the formu-
lation or design of the model. For the COVID-19, because of its complexity (type 
of contamination, duration of the disease before the death) the eradication of this 
epidemic remains a challenge for us. That is why, we propose here a new model 
which allows for complete mathematical analysis. 

In the model, the class D that we consider as a class of removed is in fact the 
subpopulation of deceased whose real cause of death is another disease. The di-
vision of the class of removed into two classes is important; Transfers in class D 
are sensitive and even indicate the extent of the disease. That is why in the simu-
lation, we are more interested in δ  and µ . 

The paper is organized as follows: After this introduction in section 1, the model 
is presented in section 2; In section 3, we study the dynamic of the differential 
equations system which proceeds from the transfer diagram. We notice that, the 
basic reproduction number 

max
0

Eβ
δ γ

=
+

R  

which depends on certain parameters or data, has a strong relationship between 
the basic reproduction rate 0R  and the number of people exposed. The stabili-
ty of the equilibrium points is studied. In section 4, we propose some control 
strategies. Conclusions and discussions are given in section 5. 

2. The Model Construction  

More complex epidemiological models, like most demographic models incorpo-
rating the entire population, susceptible as well as infected and recovered or 
without recovered, have been studied (see Anderson and May 1991 [4]; Roxana 
Lopez-Cruz [5]; Hethcote, H. W., van den Driessche, P. [6]; Liu, W. M., Levin, S. 
A., Iwasa, Y. [7]). We refer to these types of models to deepen the reflection about 
the models’ construction and their analysis. The model which we consider here 
is based on the classical S-E-I-R model, where S denotes the susceptible class, E 
denotes the exposed class, I denotes the infected class and R is the recovered 
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class, but, we have separated this last class into two subgroups. D becomes the 
subpopulation of recovered who die from the disease in question and H denotes 
the subpopulation of recovered who are truly healed. The transfer between the 
mentioned classes and subgroups are schematically described by the following 
diagram noted (Figure 1): 

1) Γ  denotes the influx or recruitment in the susceptible subpopulation;  
2) α  denotes the rate of exposure of susceptible individuals to the disease;  
3) ( ),I tβ  expresses the incidence function it may vary periodically with 

time. We take the usual case ( ) ( ),I t t Iβ β=  (Glendinning, P., Perry L. P. [8]; 
Liu, W. M., Hethcote, H. W., Levin, S. A. [9]), where ( )tβ  (called the trans-
mission rate) is either constant, or a periodic modulation about a constant value, 
here we take ( ) ( )( )0 11 sint tβ β β ω= + , 0β  is the probability of having contact 
with an infected individual and 1β  is the probability of being infected by this 
contact;  

4) γ  expresses the healing rate from the disease;  
5) δ  is supposed to be the death rates from the disease in the subpopulations 

of infected, and  
6) µ  is the death rate from another disease in reality;  
7) η  expresses the natural death rate.  
The size of the population at time t is denoted by ( )N t  and it is expressed as 

the following sum: ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t D t H t= + + + + . These assumptions 
lead to the following structured S-E-I-[D/H] dynamic model. 

( )

( ) ( )

d
d
d ,
d
d ,
d
d
d
d
d

S S
t
E S I t E E
t
I I t E I
t
D I D
t
H I H
t

α

α β η

β δ γ

δ µ

γ η

 = Γ −

 = − −

 = − +



= −

 = −

                  (1) 

3. The Model Dynamic 

In the study of population dynamic, we use mathematical model in order to un-
derstand the interaction between the populations and calamities which threaten 
them of extinction. Among these calamities, one can identify predator-prey, 
ecological upheavals, epidemics, …, etc. In the case of epidemic, the mathemati-
cal models have developed indicators, such as the basic reproduction number or 
endemic threshold which enable us to know the strains of the phenomenon, the 
equilibrium points and their stability. We will calculate the basic reproduction 
number of (1), which will tell us the sensitive parameters of the spread of the 
disease and then we will analyze the stability of the equilibrium points.  
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Figure 1. Transfer diagram between the classes. 

3.1. The Basic Reproduction Number 

We will use the technique due to Diekmann (1990) [10] and developed by Van 
den Driessche and Watmough (2002) [11] to calculate the basic reproduction 
number. So, we take ( )

[ ]
( )

0
max ,

max
i t t

t iβ β β
∈

= = , a constant that expresses the 
transmission rate. The infective compartments being I, so that we start with the 
infective class, re-arranging the Equations in (1), which can be rewritten as fol-
lows: 

( )max

max

d
d
d
d
d
d
d
d
d
d

I IE I
t
S S
t
E S IE E
t
D I D
t
G I H
t

β δ γ

α

α β η

δ µ

γ η

 = − −

 = Γ −

 = − −



= −

 = −

                  (2) 

From (2) we obtain: 

max

0
0
0
0

IEβ 
 
 
 =
 
 
 
 

  and 

( )

max

I
S

IE S E
I D
I H

δ γ
α

β α η
δ µ
γ η

+ 
 −Γ 
 = − +
 

− + 
 − + 

  

The derivatives of   and   are given by ( )maxF Eβ= , and ( )V δ γ= +  
respectively. 

The inverse of V is given by 1 1V
δ γ

− =
+

. 

So, a calculation of 1FV −  gives the well-known basic reproduction number: 
The number of secondary infections caused by an infective among a population 
of exposed in one infectious period. This one of the (1) models is:  

max
0

Eβ
δ γ

=
+

R  

3.2. Stability of the DFE 

We consider the differential equations system (1), where 2 ;0;0;0;0
3

O  
 
 

 is the 
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disease-free-equilibrium point. The Jacobian matrix at the disease-free-equilibrium 
is:  

( )

0 0 0 0
0 0 0

0 0 0 0
0 0 0
0 0 0

J

α
α η

δ γ
δ µ
γ η

− 
 − 
 = − +
 

− 
 − 

 

The eigenvalues equation is:  

( )( )
( )

0 0
0 0

0 0

α λ
η λ µ λ α η λ

δ γ λ

− −
− − − − − − =

− + −
 

This is equivalent to:  

( )( ) ( )( )( )( ) 0η λ µ λ δ γ λ α λ η λ− − − − − + − − − − − = . 

We obtain the eigenvalues which are: 1 4λ λ η= = − ; 2λ µ= − ; ( )3λ δ γ= − + ; 

5λ α= − . So, at the disease-free-equilibrium, we have five negative eigenvalues.  
In conclusion, the disease-free-equilibrium is stable. 

3.3. Stability of the Endemic Equilibrium 

A simple calculation gives us the endemic equilibrium point which is  

( ) ( ) ( )
* * * * * *; ; ; ; ; ; ; ;P S E I D H δ γ δ γ

α β δ γ µ δ γ η δ γ
 Γ + Γ Γ Γ

= =   + + + 
 

The Jacobian matrix J at the endemic equilibrium point *P  is: 

0 0 0 0

0 0

0 0 0 0

0 0 0
0 0 0

α

α β η δ γ
δ γ

β
δ γ

δ µ
γ η

− 
 

 Γ − +  +  
  Γ

  +  
 −
 

− 

 

The eigenvalues equation is:  

0 0 0 0

0 0

0
0 0 0

0 0 0
0 0 0

α λ

α β η λ δ γ
δ γ

β λ
δ γ

δ µ λ
γ η λ

− −

 Γ
− − + + 

= Γ
− + 

− −
− −

 

This is equivalent to:  
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( )( )

0 0

0

0

α λ

η λ µ λ α β η λ δ γ
δ γ

β λ
δ γ

− −

 Γ
− − − − − − + = + 

 Γ
− + 

 

We find  

( )( ) 3 2 0β αβη λ µ λ λ λ η α λ β α αβ
δ γ δ γ

    Γ Γ
− − − − − + − − + Γ + − + Γ =    + +    

; (3) 

Let’s make some assumptions:  
1) 0Γ =  corresponds mathematically to the influx equal to zero and practi-

cally to the closing of country borders; Equation (3) becomes  

( )( ) ( )2 0λ η λ µ λ λ λ η α α − − − − − + − − − =   

We get one eigenvalue 1 0λ = , two negative eigenvalues which are 2λ η= −  
and 3λ µ= − . As equation ( )2 0λ λ η α α − + − − − =   has as discriminant 

( )2
1 4η α α∆ = − − − , the eigenvalues 4λ  and 5λ  are: either negative reals, or 

conjugate complexes of negative real parts. Since the algebraic and geometric 
multiplicity of 1 0λ =  coincide, we conclude that the endemic equilibrium is 
stable. 

2) For 0Γ ≠ , we return to the eigenvalues equation:  

( )( ) 3 2 0β αβη λ µ λ λ λ η α λ β αβ
δ γ δ γ

    Γ Γ
− − − − − + − − + Γ + + Γ =    + +    

. 

We have two negative eigenvalues which are: 1λ η= −  and 2λ µ= − . The 
other three are possible solutions to the equation  

3 2 0β αβλ λ η α λ β αβ
δ γ δ γ

    Γ Γ
− + − − + Γ + + Γ =    + +    

. 

The coefficient of 3λ−  being 1 0− < . 
a) If 2 0∆ > , (here 2∆  is the derivative of the discriminant of  

( ) 2 0f β αβλ λ η α λ β αβ
δ γ δ γ

    Γ Γ
= − − + Γ + + Γ =    + +    

), six cases can arise, the  

existence of: a single positive root; a single negative root; a double negative root 
and a single positive root; three distinct positive roots; and a simple negative 
root and two positive roots. These roots are real and can be positive or negative 
according to the study of third degree polynomial functions. So, *P  can be sta-
ble, asymptotically stable or unstable for 1) according to the parameter values.  

b) If 2 0∆ ≤ , four cases can arise: the existence of a single root greater than 

3

β η α
δ γ

Γ
− −

+ , a single root equal to 
3

β η α
δ γ

Γ
− −

+ , a triple root and a single 
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root less than 
3

β η α
δ γ

Γ
− −

+ . All these roots are reals greater than zero, then *P  

is not stable.  

3.4. Simulations 

In our simulations, we used the Malian data as values of certain parameters. The 
standard situation in Mali is linked in Figure 2(a). The figures: Figure 2(b); 
Figure 3(a) and Figure 3(b); Figure 4(a) and Figure 4(b) are obtained by va-
rying the parameters 0β , δ  and µ  to see their impact on the spread of the 
disease. It appears from our observations that 0β  and 1β  are dominant para-
meters in the spread of the disease; δ  and µ  make it possible to control the 
number of deaths on two aspects: Finding a drug for the declared disease (this 
refers to medical research) and treating common diseases (so that µ  is zero). 
Figures 5(a)-(c) indicates the evolution of the number of infected according to 
the values of 0β . 

4. Control of Epidemic 

In general, the basic reproduction rate makes it possible to control an epidemic. 
The expression of our basic reproduction rate indicates that we can act on the 
following data: 0β , 1β , E  and Γ , ( )δ γ+ . The interpretation of these pa-
rameters to decrease 0R , so controlling the disease is respectively to:  

 

 

Figure 2. Simulation of system (1). (a) 0.0533857Γ = ; 0.9557α = ; 0 0.569625β = ; 1 0.775β = ; 0.125125ω = ; 

0.01106η = ; 0.369δ = ; 0.70031γ = ; 0.45µ = ; [ ]0;15t∈ ; ( ) ( )0 0 0 0 0, , , , 06.00;03.00;01.00;0.0;0.0S E I D H = . (b) 

0.0533857Γ = ; 0.9557α = ; 0 0.00569625β = ; 1 0.775β = ; 0.125125ω = ; 0.01106η = ; 0.369δ = ; 

0.70031γ = ; 0.45µ = ; [ ]0;15t∈ ; ( ) ( )0 0 0 0 0, , , , 06.00;03.00;01.00;0.0;0.0S E I D H = .  
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Figure 3. Simulation of system (1). (a) 0.0533857Γ = ; 0.9557α = ; 0 0.569625β = ; 1 0.775β = ; 0.125125ω = ; 

0.01106η = ; 0.369δ = ; 0.70031γ = ; 0.45µ = ; [ ]0;15t∈ ; ( ) ( )0 0 0 0 0, , , , 06.00;03.00;01.00;0.0;0.0S E I D H = . (b) 

0.0533857Γ = ; 0.9557α = ; 0 0.569625β = ; 1 0.775β = ; 0.125125ω = ; 0.01106η = ; 0.1069δ = ; 0.70031γ = ; 
0.45µ = ; [ ]0;15t∈ ; ( ) ( )0 0 0 0 0, , , , 06.00;03.00;01.00;0.0;0.0S E I D H = . 

 

 
Figure 4. Simulation of system (1). (a) 0.0533857Γ = ; 0.9557α = ; 0 0.569625β = ; 1 0.775β = ; 0.125125ω = ; 

0.01106η = ; 0.369δ = ; 0.70031γ = ; 0.45µ = ; [ ]0;15t∈ ; ( ) ( )0 0 0 0 0, , , , 06.00;03.00;01.00;0.0;0.0S E I D H = . (b) 

0.0533857Γ = ; 0.9557α = ; 0 0.569625β = ; 1 0.775β = ; 0.125125ω = ; 0.01106η = ; 0.369δ = ; 0.70031γ = ; 

0µ = ; [ ]0;15t∈ ; ( ) ( )0 0 0 0 0, , , , 06.00;03.00;01.00;0.0;0.0S E I D H = . 
 

1) Decrease travel or cancellation to reduce the probability of having contact 
with an infected person (which corresponds to the confinement measure);  

2) Protect yourself to avoid that in case of contact with an infected person, 
there is no contamination (which corresponds to the wearing of gloves, masks 
and regular washing or disinfection of hands);  
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Figure 5. Infected curve. (a) 0.1Γ = ; 0.2α = ; 0 0.3β = ; 1 0.3β = ; 0.6ω = ; 0.01η = ; 0.9E = ; 0.3δ = ; 0.1γ = ; 

0.01µ = ; [ ]0;100t∈ ; 0 01.00I = . (b) 0.1Γ = ; 0.2α = ; 0 0.35β = ; 1 0.3β = ; 0.6ω = ; 0.01η = ; 0.9E = ; 0.3δ = ; 

0.1γ = ; 0.01µ = ; [ ]0;100t∈ ; 0 01.00I = . (c) 0.1Γ = ; 0.2α = ; 0 0.5β = ; 1 0.3β = ; 0.6ω = ; 0.01η = ; 0.9E = ; 

0.3δ = ; 0.1γ = ; 0.01µ = ; [ ]0;100t∈ ; 0 01.00I = . 
 

3) Reduce the size of the class E, which amounts to reducing the number of 
people exposed to the disease (this corresponds to the screening and isolation of 
people tested positive);  

4) Close the country borders; we saw in 3.3 that when 0Γ =  (which corresponds 
to the closing of country borders), that the endemic equilibrium is stable;  

5) Increase the recovered rate (death + healed); this means reducing the treat-
ment time and increasing the cure rate. This decreases the size of the I class and 
therefore reduces the risk of the epidemic spreading;  

6) Treat common illnesses. 

5. Conclusion and Discussion 

Managing an epidemic has never been easy, especially when it is not known. But, 
for their control, many epidemics have common measures such as yourself pro-
tection measures. In the case of COVID-19, controlling the size of the class E of 
the exposed individual seems important for us. This is the screening piste. The 
other pistes are no less important, but screening seems more effective and even 
has a favorable link with other control measures to reduce the spread of the epi-
demic. We plan to work on the impact of treatment time on the spread of the 
disease in our next paper.  
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