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Abstract 
The present aim is to update, upon arrival of new learning data, the parame-
ters of a score constructed with an ensemble method involving linear discri-
minant analysis and logistic regression in an online setting, without the need 
to store all of the previously obtained data. Poisson bootstrap and stochastic 
approximation processes were used with online standardized data to avoid 
numerical explosions, the convergence of which has been established theoreti- 
cally. This empirical convergence of online ensemble scores to a reference 
“batch” score was studied on five different datasets from which data streams 
were simulated, comparing six different processes to construct the online scores. 
For each score, 50 replications using a total of 10N observations (N being the 
size of the dataset) were performed to assess the convergence and the stability 
of the method, computing the mean and standard deviation of a convergence 
criterion. A complementary study using 100N observations was also performed. 
All tested processes on all datasets converged after N iterations, except for 
one process on one dataset. The best processes were averaged processes using 
online standardized data and a piecewise constant step-size. 
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1. Introduction 

When considering the problem of predicting the values of a dependent variable y, 
whether continuous (in the case of regression) or categorical (in the case of clas-
sification), from observed variables 1, , px x , which are themselves continuous 
or categorical, many different predictors can be constructed to address this 
problem. The principle of ensemble methods is to construct a set of “basic” indi-
vidual predictors (using classical methods) whose predictions are then aggre-
gated by average or by vote. Provided that the individual predictors are relatively 
good and sufficiently different from each other, ensemble methods generally 
yield more stable predictors than individual predictors [1]. 

This set of individual predictors can be constructed through different means, 
used separately or in combination, in order to obtain differences between them. 
Various types of regressions or rules of classification can be used as well as 
different samples (e.g. bootstrap), different variable selection methods (random, 
stepwise selection, shrinkage methods, etc.) or more generally by introducing a 
random element in the construction of predictors. Bagging [2], boosting [3], 
random forests [1] or Random Generalized Linear Models (RGLM) [4] are ex-
amples of ensemble methods. Another method for constructing an ensemble 
score in seven steps was recently proposed in Duarte et al. [5], used in Lalloué et 
al. [6] and will be used as a reference in this article: 

1) Selection of 1n  classification rules. 
2) Generation of 2n  bootstrap samples which are the same as for the 1n  

rules. 
3) Choice of 3n  modalities of a random selection of variables. For each boot-

strap sample, selection of m variables according to these modalities.  
4) Selection of *m  variables among m by a classical method (stepwise, shrin-

kage, etc.). 
5) For each classification rule, construction of the 2 3n n  predictors corres-

ponding to the bootstrap sample and the selected variables. 
6) For each classification rule, aggregation of predictors into an intermediate 

score. 
7) Aggregation of the 1n  intermediate scores from the previous step by avera- 

ging or voting. 
Herein, we consider the case where y is a binary variable and the classification 

rules are linear discriminant analysis (LDA) and logistic regression (LR). 
In the context of online data, i.e. a flow of data arriving continuously, one wish-

es to be able to update such an ensemble score when new data becomes available, 
without having to store all of the previously obtained data and without performing 
the entire analysis. To achieve this goal, stochastic approximation processes [7] 
[8] [9] can be used. In particular, processes that we have previously studied theo-
retically [10] [11] will be detailed in Section 2.  

However, the theoretical guarantees of convergence already demonstrated for 
this type of process provide little information on the practical choices to be made 
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in order to obtain the best performances: e.g. “classical” or averaged processes [8] 
[10] [11], continuously decreasing step-size or decreasing piecewise constant step- 
size [11] [12] or constant step-size [10], use at each step of a mini-batch of ob-
servations or all observations up to the current step in the case of LDA [10]. 
Therefore, Section 3 is dedicated to the empirical testing of several online en-
semble scores on several datasets, using several stochastic approximation pro- 
cesses for each classifier and comparing the accuracy of the estimations. To avoid 
a numerical explosion in the presence of heterogeneous data or outliers, an on-
line standardization of the data is used as tested in [10] [11]. Moreover, an in-
adequate choice of the step-size can also lead to a numerical explosion in the 
non-asymptotic phase of the process or slow down its convergence. Thus, several 
types of step-sizes are tested. A conclusion of this study is that processes which 
have the best performance among those tested are not the classical processes 
with a continuously decreasing step-size and a mini-batch of observations at 
each step in the case of LDA. 

2. Theoretical Construction and Update of an Online  
Ensemble Score 

In order to be able to update online the ensemble score defined in [5] based on 
linear discriminant analysis and logistic regression, each bootstrap sample and 
each predictor must be updated when new data arrive [13]. Once the predictors 
are updated, the intermediate scores and the resulting final ensemble score are 
obtained using the same aggregation rules as for the offline ensemble method. 

2.1. Updating the Bootstrap Samples 

Starting from a sample size of n, the usual construction of a bootstrap sample 
consists in drawing at random with replacement n elements of the sample. In the 
case of a data stream, the Poisson bootstrap method proposed by Oza and Rus-
sell [14] can be used to update a bootstrap sample: for any new data, for each 
bootstrap sample ( )21, ,ib i n=  , a realization ik  of a random variable under 
a Poisson law with parameter 1 is simulated, and the new data is added ik  
times to sample ib . These new data can then be used to update the predictors 
defined using sample ib . 

2.2. Updating the Predictors 

Recursive stochastic approximation algorithms which take into account a 
mini-batch of new data at each step can be used to update the predictors. Such 
algorithms have been developed to estimate linear [10] or logistic [11] regression 
parameters, or to estimate the class centers in unsupervised classification [15] or 
the principal components of a factor analysis [16]. These algorithms do not re-
quire storing data and can, within a fixed timeframe, process more data than 
offline methods. Stochastic approximation algorithms able to update predictors 
obtained by linear discriminant analysis (LDA, equivalent to linear regression in 
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the case of a binary dependent variable) and logistic regression (LR) are de-
scribed below. 

2.2.1. Updating Logistic and Linear Regressions Using a Mini-Batch of  
Observations at Each Step 

Note that all stochastic approximation algorithms described in this section use 
an online standardization of the data. Indeed, in practical applications, an in-
adequate choice of step-size of these processes or the presence of heterogeneous 
data or outliers can lead to numerical explosion issues in the non-asymptotic 
phase of the stochastic approximation process. To avoid numerical explosions in 
the presence of heterogeneous data, an online standardization of the data is 
proposed [10] [11]; in the case of a data stream, the moments of the regression 
variables are a priori not known, but can be estimated online in order to perform 
the standardization. However, in this instance, the convergence of the stochastic 
approximation process is not ensured by classical theorems and was therefore 
proven in [10] in the case of linear regression, and in [11] in the case of logistic 
regression. Moreover, a too rapid decrease in step-size may reduce the speed of 
convergence in the non-asymptotic phase of the process. For this reason, fol-
lowing [12], the use of a decreasing piecewise constant step-size has been tested 
in [11].  

Consider first the case of logistic regression. Let S be a random variable taking 

its values in { }0,1  and ( )1 1pR R R ′=   with 1, , pR R  being random va-

riables taking values in  , ( )1 0pm E R E R ′   =     , cR R m= − , kσ  the 

standard deviation of kR , Γ  the diagonal square matrix with diagonal ele-

ments 1

1 1, , ,1pσ σ
 , cZ R= Γ  the standardized R vector, ( )1,1pθ +  the vec-

tor of parameters and ( ) e
1 e

u

uh u =
+

. The vector θ  is the unique solution of 

the system of equations 1 eln 0
e

Z x

x Z xS

′

′

  +
∇ =  
   

 , and thus of 

( )( ) 0.Z h Z x S ′ − =                      (1) 

Let ( )( ), , 1n nR S n ≥  denote an i.i.d. sample of ( ),R S  and for { }1, ,k p∈  , 
k
nR  denote the average of the sample ( )1 , ,k k

nR R  of kR  and  

( ) ( )2 2

1

1k k k
n i ni

nV R R
n =

= −∑  its variance (both computed recursively), nR  the 

vector ( )1 0p
n nR R ′
  and nΓ  the diagonal matrix with diagonal elements 

1

1 1, , ,1

1 1
p

n n
n nV V

n n− −

 . 

Assume that a mini-batch of nm  new observatons ( ),i iR S  constituting an 
i.i.d sample of ( ),R S  is taken into account at step n. Denote 1n ii

nM m
=

= ∑  
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and { }1 1, ,n n nI M M−= +  . Define for nj I∈ , ( )1 1n nj M j MZ R R
− −

= Γ −  the 
vector jR  standardized with respect to estimations of the means and variances 
of the components of R at step 1n − . Recursively define the stochastic approxi- 
mation process ( ), 1nX n ≥  and the averaged process ( ), 1nX n ≥ : 

( )( )1
1

n

n n n j j n j
j In

X X a Z h Z X S
m+

∈

′= − −∑                 (2) 

( )
1

1 1
1

1 1
1 1

n

n i n n n
i

X X X X X
n n

+

+ +
=

= = − −
+ +∑              (3) 

In the case of linear regression, the same type of process is used in [10] taking 
( )h u u= . 
The following theorem is established for linear regression in [10] and for lo-

gistic regression in [11]. Assume: 
(H1a) There is no affine relation between the components of R. (H1b) The 

moments of order 4 of R exist. 

(H2a) 0na > , 1 nn a∞

=
= ∞∑ , 

1
n

n

a
n

∞

=
< ∞∑ , 2

1 nn a∞

=
< ∞∑ . 

Theorem. Under H1a, H1b and H2a, ( ), 1nX n ≥  and ( ), 1nX n ≥  converge 
almost surely to θ . 

In [10] and [11], these processes were compared to others (with or without 
online standardization, and with or without averaging) on real or simulated data. 
Empirical results showed the interest of using online standardization of the data 
to avoid numerical explosions as well as the better performance of averaged 
processes using a piecewise constant step-size (see Section 3). 

2.2.2. Updating Linear Regression Using All Observations up to the  
Current Step 

Recursively define the stochastic approximation processes ( ), 1nX n ≥  and 

( ), 1nX n ≥ : 

( ) ( )1
1

1 ,
n n

i

n

n n n j j n j j M j M
i j In

X X a Z Z X S Z R R
M+

= ∈

′= − − = Γ −∑ ∑          (4) 

( )
1

1 1
1

1 1
1 1

n

n i n n n
i

X X X X X
n n

+

+ +
=

= = − −
+ +∑              (5) 

Note that 1 1

1 1
n n n ni ij j M j j M M Mi j I i j I

n n

n nZ Z R R R R
M M= ∈ = ∈

 
′ ′ ′= Γ − Γ 

 
∑ ∑ ∑ ∑    

and 1 1

1 1
n n ni ij j M j j M Mi j I i

n n
j I

n n

Z S R S R S
M M= ∈ = ∈

 
= Γ − 

 
∑ ∑ ∑ ∑ ,  

1

1 n

n

M
M ii

n

S S
M =

= ∑ . Thus, the updating does not necessitate storing previous data  

since all empirical means and variances can be recursively computed. The same 
type of process would not be possible without storing the data for logistic regres-
sion, since in this case, jZ  in ( )j j nZ h Z X′   should be updated for all j. 

Denote by maxλ  the largest eigenvalue of the covariance matrix of R. As-
sume: 
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(H2b) 
max

1
na a

λ
 

= < 
 

 or ( )10,n na a∞→ = ∞∑ . 

Theorem. Under H1a, H1b and H2b, ( ), 1nX n ≥  and ( ), 1nX n ≥  converge 
almost surely to θ . 

This theorem was also proven in [10]. Empirical results again showed the in-
terest of using online standardization of the data as well as all observations up to 
the current step to avoid numerical explosions and to increase the speed of con-
vergence. 

It is therefore possible to use the processes described in this section to update 
the predictors by linear discriminant analysis and logistic regression in the en-
semble score, taking into account the sample of new data generated by the Pois-
son bootstrap at each step for each predictor. 

3. Empirical Study of Convergence 
3.1. Material and Methods 
3.1.1. Datasets 
Four datasets available on the Internet and one dataset derived from the EPHESUS 
study [17] were used, all of which have previously been utilized to test the per-
formance of stochastic approximation processes with online standardized data in 
the case of online linear regression [10] and online logistic regression [11]. The 
Twonorm, Ringnorm, Quantum and Adult datasets are commonly used to test 
classification methods. Twonorm and Ringnorm, introduced by Breiman [18], 
contain simulated data with homogeneous variables. Quantum contains ob-
served “clean” data, without outliers and with most of its variables on a similar 
scale. Adult and HOSPHF30D contain observed data with outliers, as well as he-
terogeneous variables of different types and scales. A summary of these datasets 
is provided in Table 1.  

The following preprocessing was performed on the data: 
• Twonorm and Ringnorm: no preprocessing. 
• Quantum: a stepwise variable selection (using AIC) was performed on the 

6197 observations without any missing value. The dataset with complete ob-
servations for the 12 selected variables was used. 

• Adult2: from the Adult dataset, modalities of several categorical variables 
were merged (in order to obtain a larger number of observations for each 
modality) and all categorical variables were then replaced by sets of binary 
variables, leading to a dataset with 38 variables. 

• HOSPHF30D: 13 variables were selected using a stepwise selection. 
From each dataset, a data stream was simulated step by step by randomly 

drawing, with replacement, 100 new observations at each step. Online scores 
were then constructed and updated from these data streams. 

3.1.2. Reference Batch Score 
For each dataset, a batch ensemble score was constructed using an adapted me-
thod from Duarte et al. [5] with the following parameters: 
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1) Two classification rules were used: linear discriminant analysis (LDA) and 
logistic regression (LR). 

2) A total of 100 bootstrap samples were drawn for both rules (i.e. the same 
samples were used by each rule). 

3) All available variables were included. 
4) For each classification rule, the 100 associated predictors were aggregated 

by arithmetic mean and the coefficients subsequently normalized such that the 
score varied between 0 and 100 (as described in [5], Subsection 4.4.2).  

5) The aggregation between the two intermediate scores LDAS  and LRS  was 
achieved by arithmetic mean: ( )LDA LR1S S Sλ λ= + −  with 0.5λ = . 

The score obtained for each dataset was used as a “gold standard” to assess the 
convergence of the tested online processes (Figure 1). 

 
Table 1. Description of the datasets. 

Dataset Na N pa p Source 

Twonorm 7400 7400 20 20 http://www.cs.toronto.edu/~delve/data/datasets.html  

Ringnorm 7400 7400 20 20 http://www.cs.toronto.edu/~delve/data/datasets.html  

Quantum 50,000 15,798 78 12 
derived from 

https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data  

Adult2 45,222 45,222 14 38 
derived from 

http://www.cs.toronto.edu/~delve/data/datasets.html  

HOSPHF30D 21,382 21,382 29 13 derived from EPHESUS study 

Na: number of available observations; N: number of selected observations; pa: number of available parameters; p: number of se-
lected parameters. 
 

 
Figure 1. Methodology of construction and update of the online ensemble score. 
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3.1.3. Tested Processes 
Types of processes: Three different types of stochastic processes ( nX ) were 

used as defined below. 
1) “Classical” stochastic gradient (notation C_ _ _). At step n, card n nI m=  

observations ( ),j jR S  were taken into account and the process was updated 

recursively: ( )( )1
1

nn n n j j n jj I
n

X X a Z h Z X S
m+ ∈

′= − −∑   , with jZ  the vector of 

standardized explanatory variables, { }0,1jS ∈ , ( )h u u=  for the LDA, and 

( ) e
1 e

u

uh u =
+

 for the LR. 

2) “Averaged” stochastic gradient (notation A_ _ _): 1
1 1

1
1

n
n iiX X

n
+

+ =
=

+ ∑ . 

3) Only in the case of the LDA: a process taking into account all of the pre-
vious observations ( ),j jR S  at each step until the current step, 1 nj I I∈   

(final mention “all”) [10]: ( )1 1

1
i

n
n n n j j n ji j I

n

X X a Z Z X S
M+ = ∈

′= − −∑ ∑   ,  

( )n nj M j MZ R R= Γ −  

In all cases, the explanatory variables were standardized online (notation _S _ _): 
the principle and practicality of this method to avoid numerical explosions have 
already been shown [10] [11]. Indeed, for some datasets (Adult2, HOSPHF30D), 
processes with raw data led to a numerical explosion, contrary to those with on-
line standardized data. 

Step-size choice: Tested step-sizes na  were either:  
1) Continuously decreasing: ( )na c b n α= +  (notation _ _ _V);  
2) Constant: 1na p=  (with p the number of explanatory variables) (nota-

tion _ _ _C);  

3) Piecewise constant [12]: n
na c b

α

τ
  = +    

 ( .    being the integer part, 

τ  the size of the level) (notation _ _ _P).  
In all cases, 2 3α =  was taken as suggested by Xu [8] in the case of linear 

regression, 1b =  and 1c = . 
Tested processes: Six couples of processes were tested (Table 2). The latter 

were among those which performed best in the studies published for online LDA 
[10] and for online LR [11], or represented “usual” processes frequently used 
(apart from online data standardization). A total of 100 new observations were 
used per step. Each process was applied to each of the streams generated from 
the datasets.  

In the notation describing a couple of processes, the first term is for the LDA 
and the second for the LR. For example, AS100Call-AS100P200 is the couple 
formed using for the LDA an averaged process (A) with online standardization 
of the data (S), 100 new observations per step (100), constant step-size (C), 
taking into account all the observations up to the current step (all), and for the 
LR an averaged process (A) with online standardization of the data (S), 100 new  
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Table 2. List of the couples of processes studied. 

Couple  Process type Step-size Level size 
Use of all observations  
until the current step 

AS100C-AS100P200 
LDA process Averaged Constant - No 

LR process Averaged Piecewise constant 200 No 

AS100Call-AS100P200 
LDA process Averaged Constant - Yes 

LR process Averaged Piecewise constant 200 No 

AS100P50-AS100P50 
LDA process Averaged Piecewise constant 50 No 

LR process Averaged Piecewise constant 50 No 

AS100P50all-AS100P50 
LDA process Averaged Piecewise constant 50 Yes 

LR process Averaged Piecewise constant 50 No 

CS100V-CS100V 
LDA process Classical Continuously decreasing - No 

LR process Classical Continuously decreasing - No 

CS100Vall-CS100V 
LDA process Classical Continuously decreasing - Yes 

LR process Classical Continuously decreasing - No 

All processes used online standardized data and 100 new observations per step. 
 

observations per step (100) and a piecewise constant step-size with levels of size 
200 (P200). 

Note that the six couples of processes can be grouped in three pairs. In each 
pair, for the LDA part, one couple of processes uses 100 observations at each 
step and the other all observations up to the current step, the processes for the 
LR part being the same.  

Convergence criterion: The convergence criterion used was the relative dif-

ference of the norms 
ˆb
N

b

θ θ

θ

−
 between the bθ  vector of coefficients ob-

tained for the batch score and the ˆ
Nθ  vector of coefficients estimated by a  

process after N iterations, the variables being standardized and the score being 
normalized to vary between 0 and 100 [5]. Convergence was considered to have 
occurred when the value of this criterion was less than the arbitrary threshold of 
0.05. Three indicators were compared for each couple of processes: the criterion 
value for the synthetic score SLDA obtained by aggregating the LDAs, the criterion 
value for the synthetic score SLR obtained by aggregating the LRs, and the crite-
rion value for the final score S. 

3.1.4. Convergence and Stability Analyses 
In order to study the empirical convergence of the process, an analysis using a 
total of 10N observations was performed for each couple of processes. Since 100 
observations are introduced at each step, the number of iterations of the process 
is N/10. Due to the stochastic nature of the processes studied, some variability is 
expected in the results. In order to evaluate this variability, the entire analysis 
using 10N observations was replicated 50 times for each couple of processes and 
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for each dataset. The mean, standard deviation (SD) and relative standard devia-
tion (RSD), i.e. the standard deviation divided by the mean, of the criterion values 
were studied for the intermediary and final scores. For each dataset, the average 
of the criterion values of all couples of processes was also studied. 

For each replication and each dataset, the performance of the couples of 
processes were ranked from the best (lowest relative difference of the norms for 
the final score S) to the worst (highest relative difference of the norms for S). 
Thereafter, the mean rank of each couple and its associated standard deviation 
over the 50 replications were computed, first by dataset, and finally over all da-
tasets. 

To study the long-term convergence of the process, a single analysis using 
100N observations was performed for each couple of processes. Again, for each 
dataset, the values of the criterion for the intermediary and final scores were 
studied, and the couples of processes were ranked from the best to the worst. 
The mean rank over all datasets was used to compare the global performance of 
the couples. All analyses were performed with R 3.6.2. 

3.2. Results 
3.2.1. Convergence and Stability Analysis for 10N Observations 
When replicating each couple of processes 50 times, the mean criterion values 
were lower than 0.05 for all couples of processes applied on Twonorm, Ring-
norm and Quantum datasets (Table 3). However, only three out of six couples 
of processes converged for Adult2 (AS100C-AS100P200, AS100P50all-AS100P50 
and AS100Call-AS100P200) as well as for HOSPHF30D (AS100P50-AS100P50, 
AS100P50all-AS100P50 and AS100Call-AS100P200). Note that for Twonorm, 
Ringnorm and Quantum, the maximum criterion values (not shown) for all 
couples of processes were always lower than 0.05 (i.e. even the worst performing 
processes still converged), whereas it was not the case for certain couples applied 
on Adult2 and HOSPHF30D.  

Generally, intermediate LDA scores had smaller mean values, i.e. a faster con-
vergence, than intermediate LR scores. However, the worst performing interme-
diary process was the LDA process AS100P50 applied on Adult2. In most cases, 
the mean criterion value for the final S score was between those of the two in-
termediate scores SLDA and SLR. For some couples of processes applied on some 
datasets (for instance AS100Call-AS100C on Adult2 or AS100C-AS100P200 on 
HOSPHF30D), this led to a convergence towards the reference of the final score 
while one of the intermediate scores had not yet converged according to the cri-
terion. 

When studying the rankings of the couples of processes over the 50 replica-
tions, the best couple of processes overall was AS100P50all-AS100P50. This couple 
was consistently among the three best couples, and had the best performance for 
three datasets. Note that the three best couples of processes across all datasets 
were those using all observations until the current step for the LDA intermediary 
scores.  
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Table 3. Mean, standard deviation and relative standard deviation of the criterion after 50 replications. 

 
Twonorm Ringnorm Quantum Adult2 HOSPHF30D 

Mean SD RSD Mean SD RSD Mean SD RSD Mean SD RSD Mean SD RSD 

AS100C- 
AS100P200 

SLDA 0.0042* 0.0007 15.7% 0.0066* 0.0012 18.4% 0.0116* 0.0069 59.8% 0.0542 0.0151 27.9% 0.0669 0.0398 59.5% 

SLR 0.0026* 0.0004 15.2% 0.0074* 0.0014 18.7% 0.0104* 0.0059 56.3% 0.0224* 0.0138 61.9% 0.0488* 0.0375 76.7% 

S 0.0028* 0.0004 14.6% 0.0070* 0.0013 18.6% 0.0108* 0.0064 59.4% 0.0339* 0.0164 48.3% 0.0529 0.0382 72.3% 

AS100Call- 
AS100P200 

SLDA 0.0011* 0.0001 12.3% 0.0016* 0.0003 17.4% 0.0073* 0.0039 53.5% 0.0564 0.0182 32.2% 0.0444* 0.0329 74.1% 

SLR 0.0026* 0.0004 15.2% 0.0074* 0.0014 18.7% 0.0104* 0.0059 56.3% 0.0224* 0.0138 61.9% 0.0488* 0.0375 76.7% 

S 0.0016* 0.0002 14.2% 0.0038* 0.0007 17.5% 0.0075* 0.0039 51.5% 0.0350* 0.0171 48.7% 0.0434* 0.0320 73.7% 

AS100P50- 
AS100P50 

SLDA 0.0079* 0.0012 14.8% 0.0127* 0.0026 20.1% 0.0121* 0.0072 59.8% 1.8030 0.8576 47.6% 0.0670 0.0403 60.1% 

SLR 0.0021* 0.0002 12.0% 0.0046* 0.0008 17.7% 0.0091* 0.0054 59.3% 0.0371* 0.0179 48.2% 0.0458* 0.0319 69.8% 

S 0.0042* 0.0006 13.4% 0.0080* 0.0016 20.0% 0.0101* 0.0063 62.4% 1.1174 0.5210 46.6% 0.0493* 0.0360 72.9% 

AS100P50all- 
AS100P50 

SLDA 0.0011* 0.0001 12.3% 0.0016* 0.0003 17.5% 0.0073* 0.0039 53.6% 0.0175* 0.0099 56.8% 0.0444* 0.0329 74.4% 

SLR 0.0021* 0.0002 12.0% 0.0046* 0.0008 17.7% 0.0091* 0.0054 59.3% 0.0371* 0.0179 48.2% 0.0458* 0.0319 69.8% 

S 0.0014* 0.0002 12.1% 0.0027* 0.0005 17.1% 0.0071* 0.0037 52.1% 0.0205* 0.0123 59.7% 0.0434* 0.0287 66.1% 

CS100V- 
CS100V 

SLDA 0.0021* 0.0004 17.6% 0.0033* 0.0005 16.6% 0.0206* 0.0122 59.3% 0.0910 0.0305 33.6% 0.0912 0.0624 68.4% 

SLR 0.0045* 0.0003 7.5% 0.0016* 0.0003 16.3% 0.0382* 0.0044 11.5% 0.2329 0.0233 10.0% 0.1499 0.0353 23.5% 

S 0.0026* 0.0003 10.3% 0.0022* 0.0004 16.5% 0.0240* 0.0075 31.3% 0.0554 0.0114 20.6% 0.0918 0.0506 55.1% 

CS100Vall- 
CS100V 

SLDA 0.0012* 0.0002 13.3% 0.0016* 0.0003 17.8% 0.0074* 0.0038 51.4% 0.0978 0.0204 20.8% 0.0438* 0.0322 73.7% 

SLR 0.0045* 0.0003 7.5% 0.0016* 0.0003 16.3% 0.0382* 0.0044 11.5% 0.2329 0.0233 10.0% 0.1499 0.0353 23.5% 

S 0.0024* 0.0002 9.9% 0.0016* 0.0003 17.3% 0.0206* 0.0039 19.0% 0.0536 0.0087 16.2% 0.0855 0.0371 43.4% 

Average (for S scores) 0.0025 0.0003 12.4% 0.0042 0.0008 17.8% 0.0133 0.0053 45.9% 0.2193 0.0978 40.0% 0.0610 0.0371 63.9% 

*denotes criteria values < 0.05. SD: standard deviation; RSD: relative standard deviation. 
 

The observed differences in the average criterion were greater between datasets 
rather than between couples of processes (Table 4). Indeed, the means of each 
couple of processes were the lowest for Twonorm and Ringnorm compared to the 
other datasets. Conversely, all couples had their worst results for HOSPHF30D. 
Generally, all couples of processes performed better when applied on simulated 
data (Twonorm and Ringnorm) rather than on observed data (Quantum, Adult2, 
HOSPHF30D). This was also true when comparing the standard deviations and 
RSDs. 

When comparing the overall variability of the rankings between the couples, 
AS100P50all-AS100P50 and AS100Call-AS100P200, the two best performing couples 
of processes on average, also had the lowest standard deviations for the mean 
overall rank (1.17 and 1.12 respectively), while the couple with the largest stan-
dard deviation was CS100Vall-CS100V (1.72). It appears that the two best couples 
of processes consisted of averaged processes with a piecewise constant or a con-
stant step-size for one process in the case of LDA. It also appears that these two 
processes in the case of LDA used all observations up to the current step instead 
of a mini-batch of observations.  
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3.2.2. Convergence Analysis for 100N Observations 
When studying the couples of processes after using 100N observations (i.e. N 
iterations) in order to assess the “long-term” convergence, the final online S 
score was very similar (criterion value < 0.05) to the reference “batch” score for 
all of the couples on four of the five datasets tested (Table 5).  

 
Table 4. Mean (SD) rank of the processes across the 50 replications, by dataset and overall (ordered by overall rank). 

Dataset Twonorm Ringnorm Quantum Adult2 HOSPHF30D Overall 

AS100P50all-AS100P50 1.04 (0.20) 3.00 (0.00) 1.68 (0.98) 1.40 (0.81) 2.54 (1.62) 1.93 (1.17) 

AS100Call-AS100P200 1.96 (0.20) 4.00 (0.00) 2.10 (0.84) 2.90 (1.15) 2.52 (1.27) 2.70 (1.12) 

CS100Vall-CS100V 3.40 (0.61) 1.06 (0.24) 5.24 (0.56) 4.08 (1.01) 4.60 (1.63) 3.68 (1.72) 

AS100C-AS100P200 4.42 (0.81) 5.06 (0.24) 3.64 (1.03) 2.56 (1.05) 3.56 (1.43) 3.85 (1.30) 

CS100V-CS100V 4.18 (0.66) 1.94 (0.24) 5.58 (0.70) 4.06 (0.98) 4.66 (1.62) 4.08 (1.53) 

AS100P50-AS100P50 6.00 (0.00) 5.94 (0.24) 2.76 (0.94) 6.00 (0.00) 3.12 (1.27) 4.76 (1.66) 
 
Table 5. Criterion value after 100N observation used for intermediary and final scores. 

Processes Twonorm Ringnorm Quantum Adult2 HOSPHF30D Mean rank 

AS100C-AS100P200 

SLDA 0.0006* 0.0007* 0.0028* 0.0066* 0.0165* 

2.8 SLR 0.0007* 0.0007* 0.0033* 0.0069* 0.0206* 

S 0.0006* 0.0007* 0.0030* 0.0067* 0.0190* 

AS100Call-AS100P200 

SLDA 0.0006* 0.0007* 0.0046* 0.0153* 0.0060* 

2.4 SLR 0.0007* 0.0007* 0.0033* 0.0069* 0.0206* 

S 0.0005* 0.0007* 0.0039* 0.0120* 0.0149* 

AS100P50-AS100P50 

SLDA 0.0006* 0.0007* 0.0027* 2.756 0.0176* 

3.4 SLR 0.0006* 0.0007* 0.0032* 0.0346* 0.0203* 

S 0.0005* 0.0007* 0.0029* 1.6968 0.0192* 

AS100P50all-AS100P50 

SLDA 0.0006* 0.0007* 0.0046* 0.0100* 0.0060* 

1.8 SLR 0.0006* 0.0007* 0.0032* 0.0346* 0.0203* 

S 0.0005* 0.0007* 0.0039* 0.0193* 0.0147* 

CS100V-CS100V 

SLDA 0.0010* 0.0020* 0.0073* 0.0076* 0.0165* 

5.2 SLR 0.0033* 0.0009* 0.0168* 0.1002 0.0566 

S 0.0015* 0.0014* 0.0083* 0.0414* 0.0289* 

CS100Vall-CS100V 

SLDA 0.0005* 0.0006* 0.0033* 0.0287* 0.0153* 

5.4 SLR 0.0033* 0.0009* 0.0168* 0.1002 0.0566 

S 0.0017* 0.0007* 0.0090* 0.0281* 0.0290* 

Average (for S scores) 0.0009 0.0008 0.0052 0.3007 0.0210  

*denote criteria values < 0.05. First abbreviation: LDA process; Second abbreviation: LR process. Type of processes: C for classical 
SGD, A for ASGD. Data: R for raw data, S for online standardization of the data (1st number: number of new data per step). 
Step-size: V for continuously decreasing, C for constant, P for piecewise constant (2nd number: size of the steps of the piecewise 
constant step-size). 
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Only the AS100P50-AS100P50 couple applied to the Adult2 dataset did not 
converge after 100N iterations (criterion = 1.697). More precisely, the result for 
the LDA part of this couple differed substantially from its batch counterpart 
(criterion = 2.756), whereas the LR part appeared to converge to the batch LR 
part (criterion = 0.035). 

For each couple of processes, the best performances were achieved for the 
Twonorm and Ringnorm datasets, which consist of simulated data. The worst 
performances were obtained for Adult2 and HOSPHF30D datasets, which con-
tain observed data. 

Although these results are not directly comparable with the average results 
using 10N observations presented in the previous subsection (since there was 
only one replication using 100N observations), it should be noted that the crite-
rion values of all couples of processes on all datasets were lower after 100N ob-
servations than the mean values after 10N observations, except for the LDA and 
global scores of AS100P50-AS100P50 applied on Adult2. 

When the couples of processes were ranked from best to worst for each data-
set and the average ranks were calculated across all datasets (Table 5), the two 
worst performing couples were CS100Vall-CS100V and CS100V-CS100V, i.e. 
the only two couples using classical processes and a continuously decreasing 
step-size. The best couple was again AS100P50all-AS100P50. It appears that the 
two best couples of processes were the same as for 10N observations and that the 
two worst couples were classical processes with a continuously decreasing step- 
size. 

4. Conclusions 

This study presented the construction of an online ensemble score obtained by 
aggregation of two rules of classification, LDA and LR, and bagging. The online 
ensemble score was constructed by using Poisson bootstrap and by associating 
stochastic approximation processes with online standardized data of different 
types, averaged or not, using either a mini-batch of data at each step or all 
observations up to the current step in the case of LDA, and different choices 
of step-sizes, whose convergence has already been theoretically established. The 
convergence of this overall online score towards the “batch” score was studied 
empirically. It appears that the two best processes were averaged processes with 
a piecewise constant step-size or a constant step-size for one process in the case 
of LDA and with the use of all observations up to the current step in the case of 
LDA instead of a mini-batch of observations. Thus, these were not the classical 
processes with a continuously decreasing step-size and a mini-batch of observa-
tions at each step in the case of LDA. 

This study can be extended in several directions. More than two models of 
classification could be taken into account. Other classification models could be 
used such as the probit model. Other experiments could be carried out using 
randomly selected variables with different modalities of random selection [5] [6]. 
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This study can also be extended to the regression framework when y is a conti-
nuous variable. 
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