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Abstract 

This work was carried out on a series of twenty-two (22) benzimidazole de-
rivatives with inhibitory activities against Mycobacterium tuberculosis H37Rv 
by applying the Quantitative Structure-Activity Relationship (QSAR) method. 
The molecules were optimized at the level DFT/B3LYP/6−31 + G (d, p), to 
obtain the molecular descriptors. We used three statistical learning tools 
namely, the linear multiple regression (LMR) method, the nonlinear regres-
sion (NLMR) and the artificial neural network (ANN) method. These methods 
allowed us to obtain three (3) quantitative models from the quantum descrip-
tors that are, chemical potential (μ), polarizability (α), bond length l (C = 
N), and lipophilicity. These models showed good statistical performance. 
Among these, the ANN has a significantly better predictive ability R2 = 
0.9995; RMSE = 0.0149; F = 31879.0548. The external validation tests verify 
all the criteria of Tropsha et al. and Roy et al. Also, the internal validation 
tests show that the model has a very satisfactory internal predictive charac-
ter and can be considered as robust. Moreover, the applicability range of 
this model determined from the levers shows that a prediction of the pMIC 
of the new benzimidazole derivatives is acceptable when its lever value is 
lower than 1. 
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1. Introduction 

Tuberculosis is an infectious and contagious disease caused by Koch’s bacillus 
(strains of the Mycobacterium tuberculosis complex). This infectious agent is 
transmitted by air, via droplets containing the bacteria and expectorated by the 
cough of the patients. Tuberculosis is present in all regions of the world [1]. In 
2019, the WHO Region with the highest number of new TB cases was Southeast 
Asia (44% of all new cases), followed by the African Region (25%) and the 
Western Pacific Region (18%). In 2019, 87% of all new cases occurred in the 30 
countries with the highest TB burden. Two-thirds of new cases were concen-
trated in eight countries: India, Indonesia, China, the Philippines, Pakistan, Ni-
geria, Bangladesh, and South Africa [2]. In Ivory Coast, data from the World 
Health Organization (WHO) 2020 report indicate that the incidence of TB is 137 
cases per 100,000 populations. The number of notified cases was 21,498 in 2019 
and 19,976 in 2020 [3]. However, TB is a treatable and curable disease. Patients 
with drug-susceptible active tuberculosis receive a standard 6-month course of 
four antimicrobial drugs and are given information and support by a trained 
health worker or volunteer. Despite this treatment, resistance to isoniazid and 
rifampicin, the two most effective first-line anti-TB drugs, has been observed [2]. 
In 2019, 206,030 cases of multidrug-resistant tuberculosis or rifampin-resistant 
tuberculosis were detected and reported worldwide, a 10% increase from 186,883 
cases in 2018. The design of anti-tuberculosis antibiotics above any resistance of 
Mycobacterium tuberculosis remains a challenge for the scientific community. It 
is in this context that, pharmacochemists are interested in the research of com-
pounds with pharmacological activities of pharmaceutical interest [4]. Raynaud 
et al. [5] have shown that benzimidazole derivatives possess activity against My-
cobacterium tuberculosis H37rv. Benzimidazole derivatives are associated with a 
wide range of biological activities. They have anticancer [6], anti-VIH [7], an-
tibacterial [8], anti-inflammatory [9], antihistamine, antioxidant [10], antihyper-
tensive [11] activities etc. 

Quantitative structure-activity relationship (QSAR) is a technique that con-
sists in relating the molecular structure to a well-defined parameter such as bio-
logical activity. This method allows to reduce the excessive number of experi-
ments, sometimes long, dangerous and costly in terms of time and money [12] 
[13]. The overall objective of this work is to develop reliable models to explain 
and predict the MIC (minimum inhibitory concentration in μg/ml) antituber-
culosis activity of a series of twenty (22) benzimidazole derivatives (Figure 1).  

2. Materials and Methods 
2.1. Computational Theory Level 

In order to predict the antitubercular activity of benzimidazole derivatives, de-
scriptors were determined by quantum chemical calculations using Gaussian 09 
[14]. DFT methods are known for their ability to provide a multitude of mo-
lecular properties in QSAR studies [15] [16] [17]. These increase the predictive  
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Figure 1. Molecular structure, code and inhibitory concentration (MIC) of the twenty-two (22) benzimidazole derivatives. 

 
capability of QSAR models while shortening the computational time and cost 
implication in the design of new drugs [18] [19]. The twenty-two (22) compounds 
used to conduct this work have minimum inhibitory concentration (MIC) values 
that range from 0.08 to 100 μg/mL. Minimum inhibitory concentration (MIC) is 
an indicator of the effectiveness of a given compound in inhibiting a specific 
biological or biochemical function. Concentration values are usually expressed 
as the inverse of the logarithm of activity based on decimal places ( )( )10log C−  
to obtain better mathematical values when structures are biologically active [20] 
[21]. The anti-tuberculosis activity will be expressed by the potential inhibitory 
concentration pMIC defined by Equation (1): 

3
10

MICpMIC log 10
M

− = − ∗ 
 

                   (1) 

where MIC, the minimum inhibitory concentration in μg/mL. 
The data modeling was developed using three statistical learning methods. 

These are the Linear Multiple Regression (LMR) and Non-Linear Multiple Re-
gression (NLMR) methods that are integrated in Excel [22] and XLSTAT [23]. 
The last method is that of artificial neurons which is included in the JMP Pro 
software [24]. 

2.2. Molecular Descriptors Used  

In the development of our QSAR model, quantum descriptors have been calcu-
lated. In particular, chemical potential (μ), polarizability (α), bond length (l (C = 
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N)) and lipophilicity (logP). The chemical potential μp measures the tendency of 
the electron cloud to escape from the molecule. Also, the larger the value of this 
parameter, the greater the reactivity of the molecule with a nucleophile. 

2
I AEµ +

= −                        (2) 

With:  

HOI E= −                          (3) 

BVAE E= −                         (4) 

The polarizability designates a phenomenon caused by the moment of the 
electric charges of the atom. A molecule placed in an electric field E undergoes a 
deformation and acquires an induced dipole electric moment proportional to the 
field E, the polarizabilities are expressed in Å3. They have the dimension of a 
volume. The atomic polarizability increases with the size of the atoms [25]. 

0 Eα ε µ=                         (5) 

where:  
α: Polarizability coefficient;  

0ε : Dielectric constant; 
μ: Induced dipole electric moment. 
The geometric descriptor used is the bond length l (C = N) in Armstrong (Å) 

(Figure 2). This descriptor is illustrated by the figure below around the ben-
zimidazole ring.  

Lipophilicity reflects the ability of a molecule to adhere to a lipidic environ-
ment, oil, cell membrane, lipidic solvent, etc. [26]. This physico-chemical de-
scriptor is generally evaluated by the distribution of the molecule, neutral, solu-
ble, between water and another immiscible solvent: most often n-octanol (or oc-
tan-1-ol) [26] [27] [28] [29]. This parameter is estimated from the logP value. 
The logP is equal to the logarithm of the ratio of the concentrations of the test 
substance in octanol and in water logP = log(Coct/CWater). Indeed, if the logP is 
positive and very high, it expresses the fact that the molecule considered is much 
more soluble in octanol than in water, which reflects its lipophilic character, and 
conversely, if the logP is negative it means that the molecule considered is hy-
drophilic. A zero logP means that the molecule is as soluble in one solvent as in 
the other. In this work, the software Chemsketch [30] allowed us to determine 
the values of logP. In practice we express the lipophilicity by the decimal loga-
rithm of the partition coefficient logP. Thus: 
 

 

Figure 2. Geometric descriptor of the benzimidazole derivatives used: the bond length l 
(C = N) in Armstrong (Å). 
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If logP > 0; then P > 1, the molecule is lipophilic. It is soluble in the lipidic 
phase. It is then not polar. 

If logP < 0; then P < 1, the molecule is hydrophilic. It is soluble in water. It is 
then polar. 

2.3. Estimation of the Predictive Capacity of a QSAR Model 

The quality of a model is determined based on different statistical criteria of 
analysis including the coefficient of determination R2, standard deviation (S) or 
Root Mean Square Error (RMSE), cross-validation correlation coefficients 2

CVQ  
and Fischer F. R2, S and F refer to the fit of the simulated and experimental val-
ues. They represent the predictive capacity within the limits of the model, and 
allow us to estimate the accuracy of the values calculated on the test set [31] [32]. 
As for the cross-validation coefficient 2

CVQ , it provides information on the pre-
dictive character of the model. This predictive potential is said to be “internal” 
because it is calculated from the structures used to build the model. The coeffi-
cient of determination R2 gives an evaluation of the dispersion of the theoretical 
values around the experimental values. The quality of the modeling is better 
when the points are close to the fit line [33]. The fit of the points to this line can 
be evaluated by the coefficient of determination. 

( )
( )

2
, ,2

2
, ,

ˆ
1 i exp i theo

i exp i exp

y y
R

y y

−
= −

−

∑
∑

                     (6) 

where:  

,i expy : Experimental value of anti-tuberculosis activity; 

,ˆi theoy : Theoretical value of anti-tuberculosis activity; 

,i expy : Mean value of experimental values of anti-tuberculosis activity. 
The closer the R2 value is to 1, the more the theoretical and experimental val-

ues are correlated 
The Root Mean Square Error RMSE is another statistical indicator used. It al-

lows to evaluate the reliability and the precision of a model:  

( )2
, ,RMSE

1
i exp i theoy y

n k

−
=

− −
∑

                    (7) 

The Fisher F test is also used to measure the level of statistical significance of 
the model, i.e. the quality of the choice of descriptors constituting the model  

( )
( )

2
, ,

2
, ,

1i theo i exp

i exp i theo

y y n kF
ky y

− − −
= ∗

−

∑
∑

                  (8) 

The coefficient of determination of the cross-validation 2
CVQ  allows to evalu-

ate the accuracy of the prediction on the training set. It is calculated using the 
following relation: 

( ) ( )
( )

2 2
, , , ,2

2
, ,

i theo i exp i theo i exp
cv

i theo i exp

y y y y
Q

y y

− − −
=

−

∑ ∑
∑

             (9) 
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2.4. Acceptance Criteria of a Model 

The performance of a mathematical model, according Eriksson et al. [34], is 
characterized by a value of 2 0.5cvQ >  for a satisfactory model, when for the ex-
cellent model 2 0.9cvQ > . According to these authors, given a set of tests, a model 
will perform well if the acceptance criterion 2 2 0.3cvR Q− <  is met. 

According to Tropsha et al. [35] [36] [37], or the external validation set, the 
predictive power of a model can be obtained from five criteria. These criteria are 
the following:  

1) 2 0.7TestR > , 
2) 2 0.6Cv TestQ > , 
3) 2 2

0 0.3TestR R− ≤ , 

4) 
2 2

0

2 0.1Test

Test

R R

R

−
<  et 0.85 1.15k≤ ≤ ,                            (10) 

5) 
2 2

0

2 0.1Test

Test

R R

R

′−
<  et 0.85 1.15k ′≤ ≤ . 

In addition, Roy and Roy [38], have refined the prediction method of a QSAR 
model. They have developed quantities 2

mr  and 2
mr∆ , called metric values. 2

mr  
determines the closeness between the observed activity and the prediction. The 
metric values 2

mr  and 2
mr∆  are calculated from the observed and predicted ac-

tivities. Currently, these two different variants 2
mr  and 2

mr∆  can be calculated 
for the test set (internal validation) or for the test set (external validation). A 
QSAR model is acceptable to these authors, if both of these criteria are met. 

2 2
2 0.5

2
m m

m
r r

r
′+

= >                        (11) 

2 2 2 0.2m m mr r r′∆ = − <  

where ( )( )2 2 2 2
01mr r r r= ∗ − −  et ( )( )2 2 2 2

01mr r r r′ ′= − −∗ . 

2.5. Statistical Analysis 
2.5.1. Linear and Non-Linear Multiple Regressions (LMR and NLMR) 
The statistical method of multiple linear regression (MRL) is used to examine 
the relationship between a dependent variable (Property) and various independ-
ent variables (Descriptors). This statistical approach limits the differences be-
tween the actual and predicted values. It was also used to select the descriptors 
used as input parameters in the multiple non-linear regression (NLMR). As for 
the NLMR analysis, it is also used to refine the structure-property relationship in 
order to quantitatively assess the property. It is the most common tool for study-
ing multidimensional data. It is based on the following pre-programmed func-
tions of XLSTAT: 

( ) ( )1 2 3 4 12 22 32 42y a bx cx dx ex fx gx hx ix= + + + + + + + +         (12) 

where , , , ,a b c d   represent the parameters and, 1 2 3 4, , , ,x x x x   represent the 
variables. 
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2.5.2. Artificial Neural Network (ANN) 
Artificial neurons are inspired by the human biological neuron. As such, they 
are made up of cells or neurons linked together by connections that allow them 
to send and receive signals from other cells. These networks are mathematical 
models composed of several neurons, arranged in different layers. In principle, 
the network is composed of three layers: an input layer, a hidden layer and an 
output layer, connected by a complex network. [39] [40]. The most commonly 
used networks are multilayer perceptrons (MLPs) whose neurons are usually di-
vided into layers [41]. In this paper, the artificial neural network was made from 
the 4-3-1 multilayer perceptron network, i.e., the network consists of five (4) 
neurons in the input layer, three (3) neurons in the hidden layer and one (1) 
neuron in the output layer. The output layer consists of a sigmoid function. The 
architecture of the ANN models used is described in Figure 3 below. 

2.6. Area of Applicability 

The domain of applicability of a QSAR model is the physicochemical, structural 
or biological field in which the model equation can be used to make predictions 
about new drugs [42]. It corresponds to the area of the chemical space including 
the compounds of the training set and similar compounds, which are close in 
this same space [43]. In particular, the model, which is built on the basis of a 
limited number of compounds, by relevant descriptors cannot be a universal tool 
to predict the activity of any other molecule with certainty. It appears necessary, 
to determine the DA of any QSAR model. This is recommended by the Organi-
zation (OECD) in the development of a QSAR model of economic cooperation 
and development [44]. There are different methods to establish the domain of 
applicability of a model [43]. Among these, the method used in this work is the 
leverage approach. This method is based on the variation of the standardized re-
siduals of the dependent variable with the distance between the values of the de-
scriptors and their mean, called leverage [45]. The hii are the diagonal elements 
of a matrix H called hat matrix. H is the projection matrix of the experimental 
values of the explained variable expeY  in the space of the predicted values of the 
explained variable predY  such that: 
 

 

Figure 3. Diagram of the structure of a multilayer perceptron. 
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pred expeY HY=                         (13) 

H is defined by the expression (12): 

( ) 1t tH X X X X
−

=                      (14) 

The field of applicability is delimited by a threshold value of the lever noted 

h*. In general, it is fixed at 13 p
n
+ , where n is the number of compounds in the  

training set, and p is the number of descriptors in the model [46] [47]. For stan-
dardized residuals, the two limit values generally used are ±3σ, σ being the stan-
dard deviation of the experimental values of the quantity to be explained [48]: it 
is “the rule of the three sigmas” [49]. 

3. Results and Discussion 

In our QSAR study, we used a series of twenty-two (22) benzimidazole deriva-
tives. These compounds were synthesized and tested on Mycobacterium tuber-
culosis H37Rv. The compounds were split into two groups, fifteen (15) were used 
for the learning set and seven (7) for the validation set. This part of the work will 
concern the modeling of the antitubercular activity of the benzimidazole deriva-
tives based on the descriptors presented in Table 1. The values of the descriptors 
as well as those of the experimental biological activities of the molecules are re-
corded in Table 1.  

3.1. Interdependence of Descriptors 

In order to better understand the interdependence of the descriptors used, we 
present the values of the partial correlation coefficients aij of these descriptors in 
Table 2.  

The partial correlation coefficients aij contained in Table 2 between the pairs 
of descriptors (µ, α), (µ, l (C = N)), (µ, logP), (α, l (C = N)), (α, logP), (l (C = N), 
logP) are less than 0.7 (aij < 0.7). This demonstrates the independence of the de-
scriptors used to develop the models. 

3.2. Modeling of Mycobacterium tuberculosis H37Rv Activity 

In the model formula, the negative or positive sign of the coefficient of a de-
scriptor reflects the effect of proportionality between the evolution of the in-
hibitory concentration MIC and this physicochemical parameter of the regres-
sion equation. Thus, the negative sign indicates that when the value of the de-
scriptor is high, the MIC inhibitory concentration decreases, whereas the posi-
tive sign expresses the opposite effect. In this work, three statistical analysis tools 
were used: Multiple Linear Regression (MLR), Multiple Nonlinear Regression 
(MNLR) and Artificial Neural Network (ANN). 

3.2.1. Multiple Linear Regression (MLR) 
The equation of the QSAR model is presented below. The statistical indicators 
are given in Table 3. 
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Table 1. Physicochemical descriptors and experimental pMICs of the learning and vali-
dation sets. 

Molecules 
µ 

(eV) 
α 

(Å3) 
l (C = N) 

(Å) 
logP pMIC 

Training Set 

BZM2 −3.5455 248.1263 1.3126 5.8700 5.6290 

BZM3 −4.9862 255.3323 1.3138 4.9700 4.1710 

BZM4 −3.7021 267.5480 1.3218 5.2300 4.5991 

BZM6 −3.6587 256.3247 1.3018 4.2000 4.1185 

BZM7 −3.8331 283.6173 1.3017 5.4000 4.5022 

BZM9 −4.0971 255.4973 1.3011 4.5400 3.8890 

BZM10 −4.0244 310.8677 1.3019 5.9500 3.8927 

BZM11 −4.1378 338.7730 1.3020 7.1600 4.2642 

BZM13 −4.1931 269.7247 1.3099 3.8700 3.8012 

BZM14 −4.1352 322.5207 1.3102 5.6300 3.8790 

BZM15 −3.5924 280.8597 1.3085 6.1800 4.7372 

BZM16 −3.9000 308.1380 1.3200 5.5400 4.0340 

BZM19 −4.2359 293.4540 1.3035 5.5200 3.5960 

BZM21 −3.6102 214.6073 1.3143 5.6200 5.7093 

BZM22 −3.1385 218.2873 1.3140 5.6200 6.5058 

Test Set 

BZM1 −3.2413 220.4227 1.3132 4.6600 5.2224 

BZM5 −4.5969 279.8017 1.3245 4.7300 3.7777 

BZM8 −3.9554 227.5893 1.3012 3.3300 3.5029 

BZM12 −4.3856 309.2930 1.3013 6.2900 4.2546 

BZM17 −3.7969 230.3647 1.3142 5.0500 4.6922 

BZM18 −3.9513 239.7053 1.3027 3.7600 3.8227 

BZM20 −3.6134 204.8540 1.3147 5.1900 5.5445 

 
Table 2. Correlation matrix between the different physico-chemical descriptors. 

Variables µ α l (C = N) logP 

µ 1.0000 
   

α −0.3950 1.0000 
  

l (C = N) 0.1685 −0.3032 1.0000 −0.0240 

logP 0.1715 0.4270 −0.0240 1.0000 
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Table 3. Statistical analysis ratio of the minimum inhibitory concentration (pMIC) po-
tential of benzimidazole derivatives of RML model. 

Number of observations N 15 

Coefficient of determination R2 0.9204 

Standard deviation RMSE 0.2661 

Fischer test F 150.311 

Cross-validation correlation coefficient 2
CVQ  0.9204 

Confidence level α >95% 

 

( )thpMIC 0.59453 0.01829 6.69316 C N 0.56907 logl Pµ α= ∗ − ∗ + ∗ = + ∗  

The negative sign of the coefficient of polarizability (α) reflects that antitu-
bercular activity will be improved for low values of this descriptor. In contrast, 
the positive sign of the coefficient of chemical potential (μ), C = N bond length 
and lipophilicity (LogP) indicates that high values of these descriptors will im-
prove anti-tuberculosis activity.  

The coefficient of determination (R2 = 0.9204), shows that the predicted pMIC 
values contain 92.04% of the experimental values. The Fisher test value (F = 
150.311) is very high compared to the critical value, from the Fisher table Fcr = 
2.96 [50]. This value 150.311 of the Fisher test, higher than the critical value, 
shows that the error committed is lower than what the model explains [50]. The 
standard deviation (RMSE = 0.2661) expresses the small deviation of the pre-
dicted values from the experimental mean. This model presents a correlation co-
efficient of the cross-validation 2

cvQ  equal to 2 0.9204cvQ = . This value, higher 
than 0.9, reflects a so-called excellent model according to Erikson et al. [34]. This 
model is acceptable because it is in agreement with the acceptance criteria of 
these authors 2 2 0.9204 0.9204 0.000 0.3cvR Q− = − = < . All these statistical in-
dicators show that the model developed explains the anti-tuberculosis activity in 
a statistically significant and satisfactory manner. These different results are con-
firmed by the regression plot of the MLR model presenting the theoretical anti-
malarial activity as a function of the experimental activity represented in Figure 
4. 

The regression curve of the MLR model shows that all points are around the 
regression line. This result indicates that there is a small difference (RMSE = 
0.2661) between the values of pMICexp and pMICth, thus a good similarity in 
these values. This similarity is illustrated in Figure 5.  

1) Internal validation 
Internal validation of the MLR model was performed using the Leave One Out 

(LOO) procedure and the randomization test. 
a) Leave-One-Out (LOO) procedure 
The leave-one-out (LOO) cross-validation procedure was applied on the 15 

molecules of the training set. The results obtained are presented in Table 4. 
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Figure 4. The regression line of the MLR model. 
 

 

Figure 5. Similarity curve of experimental and predicted values of the MLR model. 
 
Table 4. Statistical parameters of the leave-one-out (LOO) cross-validation of the MLR 
model. 

MOLECULES pMICexp pMICpred R2 RMSE F 2
LOOQ  

BZM2 5.6290 5.4476 0.9104 0.2741 121.9910 
 

BZM3 4.1710 3.3711 0.9347 0.2514 171.7805 
 

BZM4 4.5991 4.7457 0.9223 0.2756 142.3927 
 

BZM6 4.1185 4.2946 0.9214 0.2752 140.7552 
 

BZM7 4.5022 4.3021 0.9241 0.2724 146.2007 
 

BZM9 3.8890 4.2365 0.9281 0.2599 154.9143 
 

BZM10 3.8927 4.0446 0.9193 0.2755 136.6950 0.7936 

BZM11 4.2642 4.0091 0.9234 0.2729 144.7556 
 

BZM13 3.8012 3.3932 0.9274 0.2595 153.3583 
 

BZM14 3.8790 3.5492 0.9262 0.2631 150.7110 
 

BZM15 4.7372 5.0507 0.9285 0.2636 155.8035 
 

BZM16 4.0340 4.0333 0.9186 0.2790 135.4085 
 

BZM19 3.5960 4.0320 0.9316 0.2472 163.3645 
 

BZM21 5.7093 6.0453 0.9137 0.2658 127.1142 
 

BZM22 6.5058 5.8983 0.8981 0.2351 105.7664 
 

Averages 0.9219 0.2647 143.4008 
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The results show that the models constructed, after the removal of one of the 
compounds from the training set (first column of the table), have statistical pa-
rameters (R2 and RMSE) of the same order as those of the initial model, overall. 
The average values of these parameters are R2 = 0.9219, RMSE = 0.2647. We find 
values almost identical to those of the initial model. The cross-correlation coeffi-
cient 2

cvQ , is equal to 0.7936. This value is higher than the minimum required 
value of 0.5 according to Tropsha et al. [51] [52]. In addition, we note that 

2 2 0.1283 0.3cvR Q− = <  [53]. All this shows that the RML model has a very sat-
isfactory internal predictive character and can be considered as robust [54]. 

b) Randomization test  
The randomization test of the MLR model was performed on the molecules of 

the training set by randomly permuting the values of the activities while keeping 
the descriptors for model building. We stopped at ten (10) iterations. The ran-
domized coefficients of determination ( 2

rR ) for each iteration are listed in Table 
5.  

From the values in Table 5, the value of Roy’s parameter ( 2 0.5593pR = ) was 
determined. This value ( 2 0.5593pR = ) is lower than the coefficient of determi-
nation of the model (0.9204). These different results show that the is not due to 
chance and can be considered as robust. 

2) External validation 
The external validation of the RML model was performed on the molecules of 

the validation set (Table 1) using the Tropsha criteria [51] [52] and Roy [38]. 
The Tropsha and Roy criteria checks are recorded in Table 6 and Table 7 re-
spectively.  
 
Table 5. Randomized coefficients of determination ( 2

rR ) of the ten (10) iterations. 

Iteration 1 2 3 4 5 6 7 8 9 10 

2
rR  0.6765 0.6646 0.5768 0.5524 0.5891 0.4757 0.5593 0.5109 0.3665 0.5384 

 
Table 6. Tropsha criteria checks of the external validation set of the MLR model. 

Statistical parameters Tropsha criteria [35] [36] [37]  

2R  >0.7 0.881 

2
CVQ  >0.6 0.746 

2 2
0R R−  ≤0.3 0.001 

2 2
0

2

R R
R
−

 <0.1 0.001 

k 0.85 1.15k≤ ≤  1.054 

2 2
0

2

R R
R

′−
 <0.1 0.011 

k′  0.85 1.15k′≤ ≤  0.946 
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Table 7. Roy criteria checks of the external validation set of the MLR model. 

Indicators 2
mr  2

mr′  
2 2

2

2
m m

m
r rr

′+
=  2 2 2

m m mr r r′∆ = −  

Value 0.857 0.795 0.826 0.062 

 
The values in Table 6 show that all Tropsha criteria are met, so the model is 

acceptable for predicting the antitubercular activity of benzimidazole deriva-
tives.  

The analysis in Table 7 shows that the 2
mr  is greater than 0.5 and the 2

mr∆  is 
less than 0.2. This result reflects that the model meets Roy’s criteria. We can 
therefore affirm that the model is robust and has a good predictive power. 

3.2.2. Non-Linear Multiple Regression NLMR 
The equation of the QSAR model is presented below. The statistical indicators 
are given in Table 8. 

( )

( )

th

2 2

2 2

pMIC 2682 5.81274 0.04293 4118 C N

0.01167 log 0.61675 0.00006

1566 C N 0.03466 log

l

P

l P

µ α

µ α

= − + ∗ − ∗ + ∗ =

+ ∗ + ∗ + ∗

− ∗ = + ∗

 

The coefficient of determination (R2 = 0.9648), shows that the predicted pMIC 
values contain 96.48% of the experimental values. The Fisher test value (F = 
356.324) is very high compared to the critical value, from the Fisher table Fcr = 
2.96 [50]. This value 356.324 of the Fisher test, higher than the critical value, 
shows that the error committed is lower than what the model explains [50]. The 
standard deviation (RMSE = 0.2396) expresses the small deviation between the 
predicted values and the experimental mean. This model presents a correlation 
coefficient of the cross-validation 2

cvQ  equal to 2 0.9648cvQ = . This value, higher 
than 0.9, reflects a so-called excellent model according to Erikson et al. [34]. This 
model is acceptable because it is in agreement with the acceptance criteria of 
these authors 2 2 0.9648 0.9248 0.000 0.3cvR Q− = − = < . All these statistical in-
dicators show that the model developed explains the TB activity in a statistically 
significant and satisfactory way. These different results are confirmed by the re-
gression plot of the NLMR model presenting the theoretical anti-tuberculosis ac-
tivity as a function of the experimental activity represented in Figure 6. 

The regression curve of the RML model shows that all points are around the 
regression line. This result indicates that there is a small difference (RMSE = 
0.2396) between the values of pMICexp and pMICth, thus a good similarity in 
these values. This similarity is illustrated in Figure 7.  

1) Internal validation 
a) Randomization test 
The NLMR model randomization test was performed on the molecules in the 

training set by randomly permuting the activity values while retaining the de-
scriptors for model building. We stopped at ten (10) iterations. The randomized 
coefficients of determination ( 2

rR ) for each iteration are listed in Table 9. 
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Figure 6. The regression line of the NLMR model. 
 

 

Figure 7. Similarity curve of experimental and predicted values of NLMR model. 
 
Table 8. Statistical analysis ratio of potential inhibitory concentration (pMIC) of ben-
zimidazole derivatives from the NLMR model. 

Number of observations N 15 

Coefficient of determination R2 0.9648 

Standard deviation RMSE 0.2396 

Fischer test F 356.3245 

Cross-validation correlation coefficient 2
CVQ  0.9648 

Confidence level α >95% 

 
Table 9. Randomized coefficients of determination ( 2

rR ) of the ten (10) iterations. 

Iteration 1 2 3 4 5 6 7 8 9 10 

2
rR  0.7125 0.6809 0.5593 0.7279 0.7767 0.7009 0.6906 0.8160 0.7013 0.4854 

 
From the values in Table 9, the value of Roy’s parameter ( 2 0.5102pR = ) was 

determined. This value ( 2 0.5102pR = ) is lower than the coefficient of determi-
nation of the model (0.9648). These different results show that the is not due to 
chance and can be considered as robust. 

2) External Validation 
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External validation of the NLMR model was performed on the molecules in 
the validation set (Table 1) using the Tropsha [51] [52] and Roy [38]. The 
Tropsha and Roy criteria checks are recorded in Table 10 and Table 11, respec-
tively.  

The values in Table 10 show that all Tropsha criteria are met, so the model is 
acceptable for predicting the antitubercular activity of benzimidazole derivatives.  

The analysis in Table 11 shows that 2
mr  is greater than 0.5 and the 2

mr∆  is 
less than 0.2. This result reflects that the model meets Roy’s criteria. We can 
therefore affirm that the model is robust and has good predictive power. 

3.2.3. Contribution of the Descriptors of the MLR and NLMR Models 
The study of the relative contribution of the descriptors in predicting the antitu-
bercular activity of benzimidazole derivatives was performed. The different con-
tributions are presented in the pie chart in Figure 8. 
 

 

Figure 8. Contribution of descriptors in the models. 
 
Table 10. Tropsha criteria checks of the external validation set of the NLMR model. 

Statistical parameters Tropsha criteria [35] [36] [37]  
2R  >0.7 0.824 

2
CVQ  >0.6 0.623 

2 2
0R R−  ≤0.3 0.003 

2 2
0

2

R R
R
−

 <0.1 0.003 

k 0.85 1.15k≤ ≤  1.053 

2 2
0

2

R R
R

′−
 <0.1 0.079 

k′  0.85 1.15k′≤ ≤  0.944 

 
Table 11. Roy criteria checks of the external test set of the NLMR model. 

Indicators 2
mr  2

mr′  
2 2

2

2
m m

m
r rr

′+
=  2 2 2

m m mr r r′∆ = −  

Value 0.782 0.613 0.698 0.169 
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From Figure 5, we can see that polarizability (α) is the descriptor with the 
highest contribution compared to the other descriptors. Thus, polarizability (α) 
is the priority descriptor in predicting anti-tuberculosis activity. 

3.2.4. Area of Applicability of the MLR and NLMR Models 
The applicability domain of the MLR and NLMR models was determined by the 
leverage method. The hii-lever values of the molecules in the training set calcu-
lated from the MINTAB software are listed in Table 12.  

The values of the hii levers in Table 12 and the standardized residues of the 
molecules were used to plot the graph of standardized residues versus hii levers 
in Figure 9. 
 

 

Figure 9. Graph of standardized residuals of antituberculosis activity according to the 
levers of the MLR and NLMR models. 
 
Table 12. Lever values of the molecules in the training set. 

Molecules hii 

BZM2 0.1805 

BZM3 0.8071 

BZM4 0.3483 

BZM6 0.4100 

BZM7 0.1632 

BZM9 0.2761 

BZM10 0.1914 

BZM11 0.5144 

BZM13 0.3772 

BZM14 0.2320 

BZM15 0.1594 

BZM16 0.4418 

BZM19 0.1446 

BZM21 0.3637 

BZM22 0.3904 
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For the 15 molecules of the training set and the 4 descriptors of the model, the 
threshold value of the h* levers is 1. The extreme values of the standardized re-
siduals are ±3 according to the “three sigma rule” [49]. These different values 
delimit the field of applicability [55] of the model as indicated on the graph in 
Figure 6. Figure 6 shows us that all the molecules have levers lower than the 
threshold lever (h* = 1) and values of the standardized residues between +3 and 
−3. This result thus translates that all the molecules belong to the applicability 
domain. 

3.2.5. Artificial Neural Network (ANN) 
The values of the descriptors as well as those of the experimental biological ac-
tivities of the molecules used for the development of the ANN model are listed 
in Table 13.  
 
Table 13. Experimental physicochemical and pMIC descriptors of the ANN model train-
ing and validation sets. 

Molécules µ α l (C = N) logP pMIC 

 Training Set 

BZM1 −3.2413 220.4227 1.3132 4.6600 5.2224 

BZM2 −3.5455 248.1263 1.3126 5.8700 5.6290 

BZM3 −4.9862 255.3323 1.3138 4.9700 4.1710 

BZM4 −3.7021 267.5480 1.3218 5.2300 4.5991 

BZM5 −4.5969 279.8017 1.3245 4.7300 3.7777 

BZM8 −3.9554 227.5893 1.3012 3.3300 3.5029 

BZM9 −4.0971 255.4973 1.3011 4.5400 3.8890 

BZM10 −4.0244 310.8677 1.3019 5.9500 3.8927 

BZM12 −4.3856 309.2930 1.3013 6.2900 4.2546 

BZM13 −4.1931 269.7247 1.3099 3.8700 3.8012 

BZM15 −3.5924 280.8597 1.3085 6.1800 4.7372 

BZM16 −3.9000 308.1380 1.3200 5.5400 4.0340 

BZM19 −4.2359 293.4540 1.3035 5.5200 3.5960 

BZM20 −3.6134 204.8540 1.3147 5.1900 5.5445 

BZM21 −3.6102 214.6073 1.3143 5.6200 5.7093 

 Test Set 

BZM6 −3.6587 256.3247 1.3018 4.2000 4.1185 

BZM7 −3.8331 283.6173 1.3017 5.4000 4.5022 

BZM11 −4.1378 338.7730 1.3020 7.1600 4.2642 

BZM14 −4.1352 322.5207 1.3102 5.6300 3.8790 

BZM17 −3.7969 230.3647 1.3142 5.0500 4.6922 

BZM18 −3.9513 239.7053 1.3027 3.7600 3.8227 

BZM22 −3.1385 218.2873 1.3140 5.6200 6.5058 
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The equation of the QSAR model is presented below. The statistical indicators 
are given in Table 14. 

th
1

2 3

pMIC 5.18377051213999 7.94306843387908
9.74799637991962 6.75806419946355

X
X X

= − ∗
+ ∗ + ∗

 

With: 

( )((
( )

)

1 TanH 0.5 17.676793613319 0.585007547192468

0.0129725702462401 5.65823485396223 C N

0.84970063740487 log

X

l

P

µ

α

= − − ∗

+ ∗ + ∗ =

+ ∗

 

( )((
( )

)

2 TanH 0.5 45.1752463091173 1.24094592928177

0.00456140471899028 30.772101165482 C N

0.214326830401005 log

X

l

P

µ

α

= ∗ − − ∗

− ∗ + ∗ =

+ ∗

 

((
( )

)

3 TanH 0.5 52.1085892484661 1.76468372023022

0.0184209118191153 41.7842796272828 C N

0.846662473397522 log

X

l

P

µ

α

= ∗ + ∗

+ ∗ − ∗ =

+ ∗

 

The coefficient of determination (R2 = 0.9995), shows that the predicted pMIC 
values contain 96.48% of the experimental values. The value of the Fisher test (F 
= 31879.0548) is very high compared to the critical value, from the Fisher table 
Fcr = 2.96 [50]. This value 31879.0548 of Fisher’s test, higher than the critical 
value, shows that the error committed is lower than what the model explains 
[50]. The standard deviation (RMSE = 0.0149) expresses the small deviation of 
the predicted values from the experimental mean. This model has a cross-validation 
correlation coefficient 2

cvQ  equal to 2 0.9995cvQ = . This value, higher than 0.9, 
reflects a so-called excellent model according to Erikson et al. [34]. Ce modèle 
est acceptable car il is in agreement with the acceptance criteria of these authors 

2 2 0.9995 0.9995 0.000 0.3cvR Q− = − = < . All these statistical indicators show that 
the model developed explains the TB activity in a statistically significant and sat-
isfactory manner. These different results are confirmed by the regression plot of 
the ANN model presenting the theoretical anti-tuberculosis activity as a function 
of the experimental activity represented in Figure 10. 
 
Table 14. Statistical analysis ratio of potential inhibitory concentration (pMIC) of ben-
zimidazole derivatives of ANN model. 

Number of observations N 15 

Coefficient of determination R2 0.9995 

Standard deviation RMSE 0.0149 

Fischer test F 31879.0548 

Cross-validation correlation coefficient 2
CVQ  0.9995 

Confidence level α >95% 
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Figure 10. The regression line of the ANN model. 
 

The regression curve of the ANN model shows that all points are around the 
regression line. This result indicates that there is a small difference (RMSE = 
0.0149) between the values of pMICexp and pMICth, thus a good similarity in these 
values. This similarity is illustrated in Figure 11.  

1) Internal Validation 
a) Leave-One-Out (LOO) Procedure 
The internal validation of the RML model was performed using the leave-one-out 

(LOO) cross validation technique on the 15 molecules of the training set. The 
results obtained are gathered in Table 15.  

The results show that the models constructed, after the removal of one of the 
compounds from the training set (first column of the table), have statistical pa-
rameters (R2 and RMSE) of the same order as those of the initial model, overall. 
The average values of these parameters are 2

LOOR  = 0.9661, RMSELOO = 0.1216. 
We find values almost identical to those of the initial model. The cross-correlation 
coefficient 2

LOOcvQ , is equal to 0.7936. This value is higher than the minimum 
required value of 0.5 according to Tropsha et al. [51] [52]. In addition, we note 
that 2 2

LOO LOO 0.1283 0.3cvR Q− = <  [53]. All this shows that the ANN model has 
a very satisfactory internal predictive character and can be considered as robust 
[54]. 

b) Randomization Test 
The randomization test of the ANN model was performed on the molecules of 

the training set by randomly permuting the values of the activities while keeping 
the descriptors for model building. We stopped at ten (10) iterations. The ran-
domized coefficients of determination ( 2

rR ) for each iteration are listed in Table 
16. 

From the values in Table 16, the value of Roy’s parameter ( 2 0.5445pR = ) was 
determined. This value ( 2 0.5445pR = ) is lower than the coefficient of determi-
nation of the model (0.9995). These different results show that the is not due to 
chance and can be considered as robust. 

2) External Validation 
External validation of the ANN model was performed on the molecules in the  
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Figure 11. Similarity curve of experimental and predicted values of the ANN model. 
 
Table 15. Statistical parameters of the leave-one-out (LOO) cross-validation of the ANN 
model. 

MOLECULES pMICexp pMICpred R2 RMSE F 2
LOOQ  

BZM1 5.2224 5.2343 0.9404 0.1797 189.5224 
 

BZM2 5.629 5.3197 0.9467 0.1599 240.4986 
 

BZM3 4.171 4.0152 0.9438 0.1815 233.5587 
 

BZM4 4.5991 4.5930 0.9551 0.1625 260.2607 
 

BZM5 3.7777 3.9481 0.9622 0.1454 305.6039 
 

BZM8 3.5029 3.6221 0.9738 0.1174 446.1816 
 

BZM9 3.889 3.8686 0.9546 0.1607 252.5907 0.9609 

BZM10 3.8927 3.8648 0.9647 0.1419 327.7217 
 

BZM12 4.2546 4.1230 1 1.19E−09 5.4754E+18 
 

BZM13 3.8012 3.6863 0.9999 0.0032 643424.4387 
 

BZM15 4.7372 4.9377 0.9552 0.1617 256.0626 
 

BZM16 4.034 4.0750 0.9671 0.138 353.3991 
 

BZM19 3.596 3.8548 0.9438 0.174 204.1541 
 

BZM20 5.5445 5.6447 0.9996 0.0147 31774.1965 
 

BZM21 5.7093 5.6137 0.9852 0.0828 801.8245 
 

Averages 0.9661 0.1216 3.65E+17 
 

 
Table 16. Randomized coefficients of determination ( 2

rR ) of the ten (10) iterations. 

Iteration 1 2 3 4 5 6 7 8 9 10 

2
rR  0.8082 0.7445 0.8252 0.7422 0.6354 0.6975 0.7506 0.5905 0.6283 0.6042 

 

validation set (Table 13) using the Tropsha criteria [51] [52] and Roy [38]. The 
Tropsha and Roy criteria checks are recorded in Table 17 and Table 18 respec-
tively. 

The values in Table 17 show that all Tropsha criteria are met, so the model is 
acceptable for predicting the antitubercular activity of benzimidazole derivatives. 
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The analysis in Table 18 shows that 2
mr  is greater than 0.5 and the 2

mr∆  is 
less than 0.2. This result reflects that the model meets Roy’s criteria. We can 
therefore affirm that the model is robust and has good predictive power. 

3.2.6. Domain of Applicability of the ANN Model 
The applicability domain of the model was determined by the leverage method. 
The hii-lever values of the molecules in the training set calculated from the 
MINTAB software are listed in Table 19.  

The values of the hii levers in Table 19 and the standardized residues of the 
molecules were used to plot the graph of standardized residues versus hii levers 
in Figure 12. 
 
Table 17. Tropsha criterion checks of the ANN model external test set. 

Statistical parameters Tropsha criteria [35] [36] [37]  

2R  >0.7 0.9827 
2
CVQ  >0.6 0.9671 

2 2
0R R−  ≤0.3 0.007 

2 2
0

2

R R
R
−

 <0.1 0.007 

k 0.85 1.15k≤ ≤  1.0105 

2 2
0

2

R R
R

′−
 <0.1 0.012 

k′  0.85 1.15k′≤ ≤  0.9886 

 
Table 18. Roy criteria checks of the external validation set of the ANN model. 

Indicators 2
mr  2

mr′  
2 2

2

2
m m

m
r rr

′+
=  2 2 2

m m mr r r′∆ = −  

Value 0.902 0.876 0.889 0.026 

 

 

Figure 12. Graph of standardized residuals of antituberculosis activity according to the 
levers of the ANN model. 
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Table 19. Lever values of the molecules in the training set. 

Molecules hii 

BZM1 0.3055 

BZM2 0.1855 

BZM3 0.6113 

BZM4 0.2664 

BZM5 0.4629 

BZM8 0.5277 

BZM9 0.2162 

BZM10 0.2921 

BZM12 0.3776 

BZM13 0.3121 

BZM15 0.2250 

BZM16 0.3961 

BZM19 0.1739 

BZM20 0.3212 

BZM21 0.3267 

 
For the 15 molecules of the training set and the 4 descriptors of the model, the 

threshold value of the h* levers is 1. The extreme values of the standardized re-
siduals are ±3 according to the “three sigma rule” [49]. These different values 
delimit the field of applicability [55] of the model as shown on the graph in Fig-
ure 12. Figure 12 shows us that all the molecules have levers lower than the 
threshold lever (h* = 1) and standardized residue values between +3 and −3. 
This result means that all the molecules belong to the applicability domain. 

4. Conclusion 

At the end of this work we determined three (3) mathematical relationships be-
tween the potential minimum inhibitory concentration (pMIC) of benzimida-
zole derivatives against Mycobacterium tuberculosis strain H37Rv and their phys-
icochemical descriptors. Chemical potential (μ), polarizability (α), bond length l 
(C = N), and lipophilicity (logP) are the parameters that explain the antituber-
cular activity of benzimidazole derivatives significantly. Statistical data learning 
methods such as multilinear regression (MLR), nonlinear multiple regression 
(NLMR) as well as artificial neural network (ANN) methods were used. The sta-
tistical indicators of these models (MLR, NLMR, ANN) show that they are ac-
ceptable, robust and have good predictive power. In this work, due to its statisti-
cal indicators, the artificial neuron method (ANN) (R2 = 0.9995; RMSE = 0.0149; 
F = 31879.0548) proved to be the best statistical learning method for predicting 
the anti-tuberculosis activity of benzimidazole derivatives. Moreover, the appli-
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cability range of this model determined from the levers shows that a prediction 
of the pMIC of the new benzimidazole derivatives is acceptable when its lever 
value is less than 1. In perspective we intend to use the artificial neural network 
model to predict the biological activity of new benzimidazole derivatives.  
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