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Abstract 
Incalaue is a tributary of Lugenda River in NSR (Niassa Special Reserve) in 
North-Eastern Mozambique. NSR is a data-poor remote area and there is a 
need for rainfall-runoff data to inform decisions on water resources man-
agement, and scientific methods are needed for this wide expanse of land. 
This study assessed the potential of a combination of NASA-POWER (Na-
tional Aeronautics and Space Administration and Prediction of Worldwide 
Energy Resources) remotely sensed rainfall data and FAO (Food and Agri-
culture Organization of the United Nations) soil and land use/cover data for 
modelling rainfall-runoff in Incalaue river basin. DEM (Digital Elevation 
Model) of 1:250,000 scale and a grid resolution of 30 m × 30 m downloaded 
from USGS (the United States Geological Survey) website; clipped river basin 
FAO digital soil and land use/cover maps; and field-collected data were used. 
SWAT (Soil and Water Assessment Tool) model was used to assess rainfall 
-runoff data generated using the NASA-POWER dataset and gauged rainfall 
and river flow data collected during fieldwork. FAO soil and land use/cover 
datasets which are globally available and widely used in the region were used 
for comparison with soil data collected during fieldwork. Field collected data 
showed that soil in the area is predominantly sandy loam and only sand con-
tent and bulk density were uniformly distributed across the soil samples. 
SWAT model showed a good rainfall-runoff relationship using NASA-POWER 
data for the area (R2 = 0.7749) for the studied period (2019-2021). There was 
an equally strong rainfall-runoff relationship for gauged data (R2 = 0.8131). 
There were uniform trends for the rainfall, temperature, and relative humidi-
ty in NASA-POWER meteorological data. Timing of peaks and lows in rain-
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fall and river flow observed in the field and modelled were confirmed by res-
idents as the trend in the area. This approach was used because there was no 
historical rainfall and river flow data since the river basin is ungauged for hy-
drologic data. The study showed that NASA-POWER data has the potential 
for use for modelling the rainfall-runoff in the basin. The difference in rain-
fall-runoff relationship with field-collected data could be because of land-
scape characteristics or topsoil layer not catered for in the FAO soil data. 
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1. Introduction 

Modelling of landscape rainfall-runoff to determine amounts and contributing 
areas is important for land to use/cover planning, and environmental manage-
ment as this offers information on river water source areas [1] [2] [3]. Know-
ledge of land use/cover (LULC) variations and changes are important in rain-
fall-runoff studies to determine factors affecting overland flow and water losses. 
The quantity and characteristics of rainfall-runoff in a landscape are affected by 
a combination of LULC as well as slope and soil characteristics which are unique 
for different landscapes. Modelling landscape hydrology with distributed models 
is important to understand river flow changes at spatial and temporal scales [4] 
[5].  

Impacts of climate variability and land use/cover change on landscape hy-
drology are difficult to determine in ungauged river basins because of the diffi-
culty to estimate meteorological parameters and their surface rainfall-runoff ef-
fects [6]. River flow data is one of the major challenges in river basins hydrology 
studies and Predictions in Ungauged Basins (PUB) should carefully limit uncer-
tainty in assessments [7]. The commonly used regionalization approach can be 
erroneous and should be attempted only with great care, and it is important to 
use reliable online proven site-specific datasets [8]. The global meteorology, sur-
face solar energy, and climatology data are important parameters that are usually 
overestimated due to their change dynamics broadly being at a large landscape 
scale. This challenge in the hydrological sciences was appreciated in the Interna-
tional Association of Hydrological Sciences (IAHS) initiative aimed at achieving 
advances in PUB [9].  

Soil water influences vegetation patterns and stands in landscapes and these 
important determinant factors of rainfall-runoff generation in a river basin [10]. 
Understanding factors that influence rainfall-runoff in river basins is important 
to estimate environmental management needs to sustain water availability [11]. 
Conservation ecologists in wildlife areas require knowledge of the spatial distri-
bution of factors that influence rainfall-runoff and water availability impacts in 
habitats [12].  
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SWAT model has been applied in many parts of the world at various spatial 
and temporal scales, and environmental conditions to predict land use/cover and 
change impacts on water availability [13] [14] [15] [16]. SWAT is a physical-
ly-based and semi-distributed model that can be used at the watershed scale to 
predict water yields in river basins in areas of different LULC and soils. The 
model was chosen for this study because of its high adaptability to investigate a 
wide range of related parameters in river basin rainfall-runoff assessments and 
flexibility in ungauged basins [15] [17] [18] [19]. Understanding rainfall-runoff 
relationship; river flow trends; and prediction is necessary to support decision 
making for achieving sustainable water resources management in river basins 
[15]. The SWAT model is useful to investigate hydrological processes for water 
resources planning and management [13] [14] [15]. The objective of this paper 
was to run a SWAT model and assess the relationship between gauged data and 
NASA-POWER data using FAO soil data, and to test the potential of this remotely 
sensed data for river flow prediction in absence of intensive hydro-meteorological 
monitoring.  

2. Study Area 

Incalaue river basin (695.5 km2) is located in Niassa Special Reserve (NSR) partly 
located both in Cabo Delgado and Niassa Provinces in Northern Mozambique 
(Figure 1). NSR is a wildlife reserve area that hosts scattered human population 
settlements. NSR is the country’s largest protected area, spanning 42,300 km2. 
The reserve is the largest and best-preserved tract of Miombo woodland left in 
Africa [20]. The region has to mean annual rainfall ranging from 800 mm to 
1450 mm and the climate is strongly seasonal, with the annual rainfall occur-
ring for 4 - 5 months between December to April [21]. In the dry seasons, rivers 
have little or no river flow with deviations between seasons which creates uncer-
tainty not only to the local communities but also tourism in NSR [20] [22]. 

Incalaue is a tributary of the Lugenda River whose basin covers a wide ex-
panse in the reserve. Soils are dominated by shallow layers on granite rock which 
makes them well-drained [23]. Vegetation in the area has broadly been classified 
as dry woodland [24].  

This northern Mozambique region is particularly data-poor and most re-
search there has only been on land use/cover as well as carbon and fire dynamics 
[20] [25]. There is a mixture of LULC classes dominated by woodland vegetation 
interspersed with rock-inselbergs. The river flow levels reduce drastically and 
usually dry up during the dry season; the area has a few groundwater points; ve-
getation shed leaves in the dry season, and river flows in the rainy season some-
times overtop the river banks (Figure 2). There are human population settle-
ments in areas of Lisongole and Ntimbo 1 on opposite sides of the river (both 
≤10 km away from the nearest river bank); and there is also Mbatamila camp 
(the administrative field office location for reserve management) in the basin 
upstream. Communities in the basin depend on landscape ecosystem services 
and biodiversity for their livelihoods [20]. 
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Figure 1. Location of Incalaue River basin. 

 

 
Figure 2. Wildlife face dry season with low water (a) and (b) and the river has very high 
river flows in the rainy season (c) and (d). 
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3. Materials and Methods 

Successful prediction of river flows and scenarios require the exercise to reduce a 
wide range of predictive uncertainties on rainfall products challenges in land 
use/cover mapping [26]. This study attempts to address this challenge by using 
of SWAT model to assess rainfall-runoff simulation using field-collected data to 
test the reliability of NASA-POWER meteorological data to simulate river flow. 
The SWAT model is based on geography and natural hydrological processes at 
the watershed scale based on a combination of land use, soil, and slope parame-
ters. In this paper, we assess the potential of NASA-POWER data to model rain-
fall-runoff using its relationship with gauged data when run in the SWAT model. 

3.1. Catchment Delineation 

A digital elevation model (DEM) of 1:250,000 scale and a grid resolution of 30 m 
× 30 m for the study area was obtained from the USGS website. This DEM was 
projected using Universal Transverse Mercator 36 South (UTM-36S). DEM fill-
ing and correction was done using the artificial “sinks” method. A threshold 
value of 500 pixels was selected. In this method, flow direction and accumulation 
grids were used to determine the accumulated weight of each pixel on a down-
slope and a threshold value (500 pixels), beyond which all grid pixels were con-
sidered being stream pixels. This approach was also used to map catchment 
boundary by using contributing up-slope area method. The model catchment 
boundaries and stream networks were both generated from the DEM using 
ArcGIS 10.4.1.  

3.2. Land Use and Soil Data 

The study area was clipped from the FAO Digital Soil Map of Mozambique. Av-
erage physical properties for water holding capacity; hillslope length; hillslope; 
upslope contributing area; and maximum cover of land that is impervious were 
assumed to depend mainly on the slope of the basin and considered automatic 
for the DEM (Figure 2).  

The study used Landsat a multispectral image with a 30-meter resolution for 
land use classification. The Landsat satellite image scene was obtained from the 
USG archives (https://ers.cr.usgs.gov/) for land use classification (Table 1). Land 
use/cover map was then reclassified to reflect classes in the basin for use in 
SWAT. 

Image pre-processing and atmospheric correction; supervised classification 
and maximum likelihood algorithm were done in ArcGIS 10.4.1 and ENVI 5.1 
software versions. The image was pre-georeferenced for WGS 84/UTM.  

The basin has a sharp elevation gradient (799 m.asl - 277 m.asl) and the Inca-
laue River drains the catchment with tributaries of Nipatembe, Lulo and Manyan-
ganya (Figure 3). There are 6 vegetation classes of high-density woodland, me-
dium-density woodland, low-density woodland, wooded grassland, mountain 
forests, and wetland (Figure 4). The rest of the basin area is built-up area, 
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burned vegetation areas and inselbergs. Soil samples were taken at the corners of 
5 square meter sampling plots, and samples were uniformly mixed for classifica-
tion. Soil depth pits were dug in the center of the plot as deep as possible until 
the hard rock would be reached. These soil sampling plots were put randomly 
inaccessible vegetation classes in the area (Table 2). 

Vegetation and soil sampling would be done simultaneously at the same loca-
tion during fieldwork. Vegetation in a location that was confirmed to exist in a 
class was based on the mapping of known classes [27] [28]. The soil pits could 
not be dug due to wildlife hazard risks in the mountain forest and wetland vege-
tation classes as these are not accessible because of wildlife concentration in 
these habitats. In the area, grass, shrub and bush vegetation have been reported 
to grow roots at least 1 m depth [29]. 

3.3. Meteorological Data  

NASA-POWER satellite-based weather data was used to calibrate the SWAT 
model for comparison with field data. POWER provides a gridded database of 
freely available global meteorology and surface solar energy climatology data. 
The data is available to download with a resolution of 1/2 by 1/2 arc degree lon-
gitude and latitude making it potentially suitable for hydrometeorological stu-
dies. Data generation is funded through the NASA Earth Science Directorate 
Applied Science Program. The NASA POWER data has largely been used in 
agroclimatology modelling [16] [30]-[36]. The model has been used for estimat-
ing the renewable energy potential in Africa [37]. NASA-POWER data was 
downloaded for a center point for the catchment at latitude −12.333 and longi-
tude 37.8125. 

SWAT model-generated data was used to generate historical meteorological 
data for the basin for the model since the basin ungauged. In the SWAT model, 
there is a WXGEN weather generator model which is used to generate acceptable 
 
Table 1. Source and characteristics of satellite image used. 

Image 

Details   

Path/Row Image Date 
Number of 

Bands 
Spatial 

Resolution 
Path/Row 

L8 OLI 166/069 13/07/2019 3 30 m 166/069 

 
Table 2. Accessible soil sampling sites village locations in vegetation classes. 

Land use/cover Symbol Location 

High density woodland A Between Ntimbo and Lisongole 

Wooded grassland B Near Ntimbo 1 

Medium density wooded C Near Ntimbo 1 

Low density woodland D Between Incalaue and Lisongole 

https://doi.org/10.4236/cweee.2022.112004


E. Natumanya et al. 
 

 

DOI: 10.4236/cweee.2022.112004 71 Computational Water, Energy, and Environmental Engineering 

 

 
(a) 

 
(b) 

Figure 3. Hill-slope map (a) and flow accumulation map (b). 
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Figure 4. Land use and land cover classes (2019). 

 
climatic data for modelling purposes [18] [38]. Using the Green & Ampt method 
for infiltration, maximum temperature, minimum temperature, solar radiation 
and relative humidity, the weather generator independently generates the dis-
tribution of rainfall within the day; and wind speed is generated independently. 
This tool was downloaded from the SWAT website  
(http://www.brc.tamus.edu/swat/soft_links.html). SWAT WXNGEN data could 
be available for the area up to 2014 and we depended on its relationship with 
NASA-POWER to adopt the latter for modelling of the remaining time. In the 
model, missing weather data were given a negative value (−99.0) in the model 
which instructs the weather generator of the model to generate weather data for 
that day.  

3.4. River Flow Data 

Flow data is one of the major challenges to water modelling in ungagged catch-
ments. In this study, the SWAT model inbuilt rainfall-runoff model was used to 
get the flow for use in modelling because there was no nearby catchment that 
was gauged. There was a good correlation coefficient (0.8) for rainfall-runoff 
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modelled using the FAO dataset for the period 1980-2014 and thus SWAT 
WXGEN data was adopted for calibration (Figure 5). A coefficient of determi-
nation commonly known as R-squared (or R2) is a measure of the amount of va-
riance in the dependent variable that is explained by the independent variable. It 
shows the strength of a linear relationship between two variables and examines 
how differences in one variable can be explained by the difference in a second 
variable. 

SWAT data available for the area for the years 1980 to 2014 showed rain-
fall-runoff with flow peaks at the end of the year and the start of the next year 
(October to April). The minimum flow levels, when averaged, showed that 
monthly river flow can be zero during the dry season with river flow peaks for 
year being January to April with a low minimum for the months of June to Oc-
tober. The strong coefficient of determination (R2 = 0.8) shows a good water 
balance in the basin. This shows that the variance in the river flow is explained 
by rainfall variation which makes the relationship reliable for the generation of 
river flow from rainfall data. 

3.5. Community Consultations and Experiences  

Household interviews were used to collect data from the local community 
knowledge and experiences on seasonal rainfall-runoff, water availability, trends 
and threats to water availability. This approach was used to gather information 
verify modelled data since the basin is ungauged. Community consultations 
were held in the human settlement areas of Ntimbo 1 and Lisongole in the 
downstream area. Sampling was done by randomly selecting household heads or 
adult family members who had stayed in the area for >20 years. This was used 
the back-up remotely sensed data on trends and field-collected data. 

The estimated number of households was 123; where 56 were in Ntimbo 1 and 
67 in Lisongole. Interviews were held in the dry season timing in the afternoons 
 

 
Figure 5. Rainfall-runoff relationship generated using FAO dataset for the period 
(1980-2014). 
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when people are not in gardens. This approach of opening up household inter-
viewee was used to avoid bias as members are randomly selected depending on 
availability in homesteads while ensuring efficiency by sampling adults with ex-
perience of the area [39]. The closeness of communities using the river at similar 
points ensures data reliability and further enhances historical data reliability.  

3.6. Statistical Data Analyses 

Data analysis was done in Microsoft Excel.  

4. Results 
4.1. Field Collected Data  

Soils data showed that wooded grasslands had the most uniformly mixed soil 
among sampling sites in areas with less stony compacted soil (Table 3). In the 
area, grass, shrub and bush vegetation have been reported to grow roots at least 
one-meter depth [29]. 

The shallow stony soil that was not very easy to dig through in the wet soil 
zone is a sign of compaction that leads to higher rainfall-runoff given that it is a 
hilly landscape. Soil samples were taken to the laboratory at Eduardo Mondlane 
University in Maputo for laboratory analysis and these showed soil groups in 
vegetation classes (Table 4). 

The soils were predominantly sandy and sand particle size (Table 5). This 
kind of soil in this sloping landscape means more rainfall-runoff and sedimenta-
tion.  

Soils were mainly composed of particle sizes in the classes of <2 mm classes 
which shows sand soil with smaller granules and this makes it to be prone to 
erosion that can cause dense sedimentation in the river channel. The uniformity 
of samples from different sampling sites was tested to estimate deviations in dis-
tribution across the landscape using log-log plots (Figure 6). The results above 
showed that it is only sand content and bulk density that can be related to all the 
sampling sites. The study results above interestingly show that FAO characteri-
zation of the soil misses the top-soil layers and characteristics and these are even 
most important on river flow generation, composition and quality. The study 
thus shows a need for soil characterization to support rainfall-runoff studies. 
 
Table 3. Soil characteristics. 

 A B C D 

Mottles (<wet zone>) Yes No Yes Yes 

Granules (<wet zone>) No No No Yes 

Stones (<wet zone>) Yes No Yes No 

Biomass Roots Roots Roots Roots 

Depth of top layer (m) 1.9 1.8 2.1 1.5 
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Table 4. Soil laboratory analysis. 

Code 
Bulk 

density 
(g/cm^3) 

% P 
(Porosity) 

Cohesion 
(kPa) 

Organic 
matter 

(%) 

Sand 
(%) 

Clay 
(%) 

Silt 
(%) 

Textural  
class 

A1 1.73571 62.01 0.68 1.34 86.34 6.34 7.32 Loamy sand 

A2 1.72152 54.15 0.19 0.37 87.93 9.17 2.90 Loamy sand 

A3 1.94549 64.04 0.38 0.75 86.67 5.92 7.40 Loamy sand 

A4 1.72515 71.29 0.24 0.48 82.49 10.21 7.30 Loamy sand 

B1 1.92918 34.04 0.08 0.16 77.46 17.53 5.01 Sandy loam 

B2 1.95855 41.78 0.08 0.16 81.11 12.11 6.78 Sandy loam 

B3 1.71013 33.32 0.14 0.27 80.79 14.77 4.43 Sandy loam 

C1 1.8318 24.31 0.05 0.11 76.24 19.39 4.36 Sandy loam 

C2 1.71884 55.96 0.27 0.53 88.75 5.87 5.38 Sand 

C3 1.82883 26.28 0.76 1.50 90.59 4.95 4.46 Sand 

C4 1.75473 39.00 0.62 1.23 80.01 9.49 10.49 Loamy sand 

C5 1.72667 32.07 0.33 0.64 82.54 10.98 6.49 Loamy sand 

D1 1.91944 38.50 0.27 0.53 88.70 8.35 2.95 Loamy sand 

D2 1.92657 39.07 0.27 0.53 87.97 8.66 3.37 Loamy sand 

 
Table 5. Sand particle size. 

Code >2 mm >1 mm >0.6 mm >0.25 mm <0.25 mm 

A1 0.247 2.108 4.594 7.257 3.485 

A2 0.07 1.202 3.503 7.359 6.087 

A3 0.028 1.208 3.106 7.319 5.900 

A4 0.1 1.079 2.557 6.21 7.023 

B1 0.047 1.489 4.061 6.837 3.030 

B2 0.017 0.946 3.467 6.946 5.366 

B3 0.042 1.19 3.63 7.067 4.472 

B4 0.028 1.379 3.739 6.982 3.598 

C1 0.576 2.62 3.874 7.052 4.027 

C2 0.211 2.789 5.249 6.903 3.147 

C3 2.125 2.054 1.964 3.775 6.095 

C4 1.406 2.302 2.521 4.28 6.105 

 
There is no data available on groundwater harvest in the area and only one 

borehole was observed within the catchment at Lisongole village and another in 
a nearby town of Mecula. This means that groundwater springs and contribution 
to river flow cannot be completely ruled out. However, in the bigger landscape 
and within the basin itself there are dambos which are shallow vegetated areas 
with wetter vegetation in the dry season and micro-dambos were observed to  
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Figure 6. Log-log plots of parameters in soil samples. 

 
have groundwater small streams directly flowing to the rivers through small 
wetlands that do not dry in the dry season. Dambo areas have been reported in 
the area as shallow wet areas in a landscape that have wetter vegetation annually 
in this area with a tropical sub-humid climate characterized by a strong lengthy 
dry season [24] [40]. 

4.2. Model Results 

NASA-POWER data shows seasonal similarity with gauged rainfall but with 
much higher values (Figure 7).  

NASA-POWER data confirmed additionally that June, July, August and Sep-
tember as the dry moths and this could imply the reduced river flow and river 
channel sedimentation in this wet season as was confirmed by the SWAT model. 
The similarity in rainfall trends but a weaker rainfall-runoff relationship for 
gauged data can be attributed to landscape characteristics such as water losses 
from catchment storage. The NASA-POWER meteorological data shows a good 
seasonal trend for temperature, relative humidity and rainfall again in support of 
reliability for the study (Figure 8).  

SWAT model WXGEN rainfall data generates a close rainfall-runoff relation-
ship compared to when NASA-POWER is used (Figure 9). 

Data collected by this study also showed a positive trend a good pattern for 
rainfall and river flow. The peaks for the two years of fieldwork are December  
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Figure 7. Relationship between gauged rainfall and NASA-POWER data. 

 

 
Figure 8. NASA-POWER modelled meteorological data. 

 

 
Figure 9. Rainfal-runoff model using NASA-POWER data. 
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and April in each case the dry season starting in May (Figure 10). 
The rainfall relationship over the two years of fieldwork shows a positive 

trend but with a stronger relationship than observed in SWAT model generated 
WXGEN data and NASA-POWER data (Figure 11).  

Rainfall and river flow data recorded during fieldwork also showed a positive 
rainfall-runoff relationship with seasons of no rainfall and no river flow periods, 
and little rainfall and no river flow because of the sandy soil and catchment wa-
ter storage. The short database collected cannot effectively explain the lower 
coefficient of variation and the relationship.  

4.3. Field Data Collected from the Community and Observations 

Data from the community showed reliance of groundwater springs and con-
firmed modelling trends. The study showed that area climate variations more 
than human factors influence of river water availability and trends (Table 6). 

The field data collected and observations were similar to community reports 
and the situation means vulnerability for human settlement community about 
 

 
Figure 10. Field collected rainfall over the study time. 
 

 
Figure 11. Rainfal-runoff model using gauged data. 
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Table 6. Community collected data on river flow, water use and land use/cover threats. 

Potential activity Observed in the field/reported Potential impact on the environment 

Water availability in 
the river and trends 

Yes (Observed sharp reduction in seasonal  
water availability instream for two years  
for dry and wet seasons). 

Very high flows in the rainy season and water not 
available for flow in the river the dry season only 
existing in small pools. 

Rainfall run off 
patterns and nature 

Yes (observed higher rainfall-runoff peak for 
second monitoring season). Reported rainfall 
increase and higher flow peaks but longer low 
flow and no flow seasons 

High hydrologic response slope curve can mean 
sharp rainfall-runoff hydrograph curve and dry 
season low water availability instream. 

Rainfall trends 

• Change in timing of rainy season towards 
start and earlier in the year (October to 
Deceember) from end-year away from 
December toJanuary 

• Increase in length of dry seasons 
• Increase in amounts for rainfall events 
• Increase intensity of dry season rain days 

Seasonal changes can affect water availability 
instream 

River flow trends 
• Higher river flow peaks 
• Shorter time of flow seasonal flows 
• Less sedimentation 

High flows in the rainy season observed only for 
the field data collection time 

 

 
Figure 12. Rainfall and discharge trends for Incalaue basin modelled using NASA-POWER data. 

 
water availability and sustainability which requires integrated water resources 
management and water supply investment. This study found a rainfall-runoff 
trend as was reported by the community further supporting the potential of the 
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SWAT model to generate rainfall-runoff using NASA-POWER data (Figure 12). 
There is a small and more stable change in river flow over the peak seasons in 
the time peri0d of 2001-2021 studied. This shows increase in water loss possibly 
by natural landscape processes and changes than human influences causes be-
cause no rainfall-runoff storage was observed or reported in the catchment. 
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