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Abstract 

Solving for currents of an electrical circuit with resistances and batteries has 
always been the ultimate test of proper understanding of Kirchoff’s rules. Yet, 
it is hardly ever emphasized that a systematic solution of more complex 
cases requires good understanding of the relevant part of Graph theory. Even 
though this is usually not covered by Physics’ curriculum, it may still be of 
interest to some teachers and their mathematically inclined students, who may 
want to learn details of the rigorous approach. The purpose of this article is to 
provide a concise derivation of a linear set of equations leading to a unique 
solution of the problem at hand. We also present a simple computer program 
which builds such a solution for circuits of any textbook size. 
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1. Introduction 

In introductory Physics courses, such as [1], students are taught Kirchoff’s cur-
rent and voltage laws (aka junction and loop rules); to demonstrate their proper 
understanding, they are then asked to solve a given electrical circuit (involving 
resistors and sources of voltage) for the resulting currents. This article summa-
rizes the classical approach of several books (e.g. [2] and [3]) to develop a syste-
matic way of building the solution by employing the power of graph theory, and 
provides the corresponding Mathematica program to demonstrate it. There is a 
multitude of other books and articles on specific aspects of applying graphs to 
various topics, such as, for example, [4] and [5]—too numerous to provide their 
exhaustive list. 

Before we start, we need to point out that the two fields we are combining in 
this article (namely Graph Theory and basic Physics) use rather diverging ter-
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minology; here we consistently utilize the notation of Graph Theory: Kirchoff’s 
junctions are called nodes, his loops become cycles (loop itself acquires a differ-
ent meaning), and connections between junctions are links. We start with a few 
basic definitions and results of the graph theory; more details can be found in 
[6]. 

2. Graphs 

A graph is a collection of vertices (or nodes, in our terminology) visually re- 
presented by small circles, together with a collection of edges or links (drawn as 
straight-line segments) connecting some pairs of nodes to one another. Nodes 
joined by a link are called adjacent, or being neighbors of each other; a link is 
incident to each of its end nodes. To study electrical circuits, our graphs are also 
subject to the following restrictions: 

1) Two nodes are not allowed to be joined by more than one link (when it 
does happen in a circuit, we show how to deal with it), 

2) We also do not allow loops—links joining a node to itself (such part of a 
circuit would be trivial to solve); these two conditions amount to saying that the 
graph is simple, 

3) The graph must be connected (see subsequent definition—disconnected 
circuits would be easy to deal with separately); in addition to this, we do not al-
low links whose removal would result in a disconnected graph, as such links 
would carry no current (even if they contain a battery), which would again ena-
ble us to deal with the resulting two parts individually. 

Consider a sequence of k distinct nodes, with consecutive nodes being adja-
cent; the corresponding k − 1 links constitute a path, where all nodes along a 
path are thereby connected to each other. When any two nodes of a graph are 
connected by at least one path, the graph itself is called connected. When the 
first and last node of a path are further joined by an existing link, the path be-
comes a cycle. Note that our restrictions imply that every link of a graph is a 
part of at least one cycle (removing the link must leave the graph connected by 
Condition 3, so there must be yet another path connecting its two end nodes, 
which thus completes a cycle). 

A tree is a collection of links (and their incident nodes) which is connected 
and contains no cycle. 

2.1. Spanning Tree 

For a connected graph, this is a tree connecting all its nodes (let us denote their 
number by n); note that there are normally many spanning trees of a graph, each 
of them having exactly n − 1 links. It is always possible to find a spanning tree by 
the following process: start with an arbitrary link and its two incident nodes, 
then add a neighbor of one of these nodes (plus the corresponding link) to the 
existing selection; repeat till there are no nodes left. Until reaching the last node, 
there must always be at least one such neighbor (otherwise, the original graph 
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would not have been connected). The links not used to complete a spanning tree 
constitute the corresponding co-tree with exactly ( )1m n− −  links, where m is 
the total number of links in the graph. 

Adding any one of the co-tree links to the corresponding spanning tree nec-
essarily creates a cycle (since all nodes are already connected by the tree’s links, 
adding a link between any two of them is bound to achieve this). Thus created 

( )1m n− −  cycles (discarding the links of the spanning tree not involved in 
creating the cycle) are called fundamental cycles (relative to the spanning tree). 
Note that any cycle of the graph can be expressed as a Δ-sum of those funda-
mental cycles with which the cycle shares a co-tree link (see [7]), where the 
Δ-sum of two cycles consists of links which belong to either one of the two cycles 
but not both (clearly a commutative and associative operation: the Δ-sum of 
several cycles keeps only the links common to an odd number of these cycles, 
discarding the rest). 

2.2. Directed Graphs 

These are essential for describing electrical circuits; this time, every link must be 
also assigned a direction (visualize it as an arrow pointing from one node to the 
other). The n by m incidence matrix of a directed graph has a row for each of 
the graph’s nodes, and a column for each of its links, while its elements indicate 
whether the link is incident to the node by having the value of either +1 or −1 
(depending on whether the link’s arrow is pointing out or into the node, respec-
tively), and the value of 0 when it is not incident. Note that each column of this 
matrix has always exactly one +1 and one −1, the remaining elements being 0 
(every link has exactly two end nodes). In a connected graph, the only linear 
combination of rows of the incidence matrix to result in a zero vector is then the 
sum of all rows (times an inconsequential constant) since, to achieve a zero sum, 
coefficients of two rows (aka nodes) must equal to each other whenever the two 
nodes are adjacent, further implying that they must be identical for all connected 
nodes. The incidence matrix is thus of rank n − 1; after deleting any one of its 
rows, the remaining rows (we denote the resulting matrix  ) are linearly in-
dependent. Therefore =i 0 , where 0  is a column vector of n − 1 zeros and 
i  is the vector of the links’ currents, thus enforces Kirchoff’s law of currents at 
each node (including the one which was deleted). 

It is easy to show that an n − 1 by n − 1 sub-determinant of the   matrix is 
equal to 0 whenever its columns (aka links) contain a cycle. This is because 
columns of a cycle can be added/subtracted (the sign is chosen so as to follow 
the cycle in a consistent, one-way direction) to yield a zero vector (as each node 
is entered and left exactly once, contributing +1 and −1 to the row’s total), mak-
ing them linearly dependent. On the other hand, an n − 1 by n − 1 sub-deter- 
minant of the   matrix is equal to either +1 or −1 whenever the columns (aka 
links) contain no cycle (note that n − 1 links without a cycle constitute a span-
ning tree), since then there is exactly one nonzero term in the usual ( )1 !n −  
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term expansion of such a sub-determinant (there is only one way of matching 
incident nodes to links of a spanning tree, after one of the nodes has been de-
leted to create matrix  ; make this node the root of the tree to visualize the 
unique link↔ node correspondence). Since ( )Tdet   is equal to the sum of 
squares of all the n − 1 by n − 1 sub-determinants of   (by Cauchy-Binet 
formula), its value must thus equal to the total number of different spanning 
trees of the graph. 

2.3. Circulation Matrix 

Next, using a specific spanning tree, we assign each fundamental cycle of a di-
rected graph a consistent orientation (of its co-tree link) and define an  

( )1m n− −  by m circulation matrix   whose elements specify which links 
(columns of  ) form each such fundamental cycle (represented by a row of  ) 
by using +1 (when the cycle follows the link’s direction) or −1 (when moving 
against it); 0 implies that the link is not a part of the cycle. 

We now show that an ( )1m n− −  by ( )1m n− −  sub-determinant of this ma-
trix equals 0 whenever the selected columns/links contain a bond; to define a 
bond, we separate nodes of a graph into two distinct sets and remove the links 
which span the divide (having one end on each side); when the nodes of each 
side remain connected, the removed links constitute a bond. Similarly to funda-
mental cycles, each bond is given a consistent (from one side of the divide to the 
other; either choice is good) orientation. Note that the sum/difference (when 
following/going against, the bond’s orientation) of those links (columns) of   
which form a bond results in a zero vector (each fundamental cycle/row, when 
crossing the divide, must then come back, thus contributing +1 and −1 to the 
sum), making these columns linearly dependent. Also note that any collection of 
links whose removal would make the graph disconnected must contain a bond. 

On the other hand, when the ( )1m n− −  removed links do not contain a 
bond (equivalently, when they form one of the many possible co-trees, i.e. re-
moving them keeps the graph connected by the remaining n−1 links), the cor-
responding sub-determinant equals to either +1 or −1. This follows from the 
following relationship between two circulation matrices (based on two different 
spanning trees and the corresponding co-trees/fundamental cycles) 

1 1 2 2| S= ⋅                            (1) 

where 1 2| S  denotes the 1  matrix, reduced to those columns/links which 
belong to co-tree 2S ; note that elements of the resulting ( )1m n− −  by  

( )1m n− −  matrix indicate which links of co-tree 2S  are a part of each indi-
vidual fundamental cycle (row) of 1 , and whether their directions agree or are 
opposite. We then correspondingly add/subtract fundamental cycles/rows of 

2  to convert them back to fundamental cycles/rows of 1  (this is a directed 
version of the previous Δ-sum algorithm, carried out by the indicated matrix 
multiplication in (1); whether to add, subtract or ignore a row of 2  is deter-
mined by its co-tree link (being a part of the 1  cycle and having the same di-
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rection, opposite direction, or not being a part of it at all, respectively—see [8] [9]). 
Keeping only the 1S  columns of each side of (1) and computing the resulting 

determinant yields 

( ) ( ) ( )1 1 1 2 2 1det | det | det |S S S=                  (2) 

Since the determinant on the left-hand side has only one non-zero term (there 
is only one unique way or matching fundamental cycles to the corresponding 
co-tree links), the determinant’s value is thus either +1 or −1. And since both 
determinants on the right hand must be integers, +1 or −1 are the only two pos-
sibilities for each of them as well. 

This proves that ( )2det | 1S =  for any spanning tree   and any (not nec-
essarily the corresponding) co-tree S; when it is not a co-tree, S must contain 
a bond (removing links of S makes the graph disconnected), implying that 

( )det | 0S = . 
Using the Cauchy-Binet formula, we thus get 

( ) ( )2T

All 
det det |

S
S= ∑                      (3) 

where S is an arbitrary selection of ( )1m n− −  columns of the   matrix. The 
resulting sum thus yields the number of the graph’s co-trees (equivalently, of the 
graph’s spanning trees). 

It is a simple observation that rows of   and   are mutually orthogonal 
(when a cycle enters a node, it must also leave it, contributing +1 and −1 to the 
dot product of any such pair of rows). This further implies that the determinant  

of the combined matrix 
 
 
 




 is also equal to the number of spanning trees, but  

it may come with a negative sign. The next line shows why 

( ) ( )

2
T T

T

T

T T

det det  

det

det det

        = ⋅              
 

=  
 

=

 
 

 

 
 

 

                (4) 

This means that each spanning tree (selection of columns of  ) and its 
co-tree (the corresponding columns of  ) contributes exactly one non-zero 
term (equal to 1 or −1) to the usual m! term expansion of the determinant of  
 
 
 




; these are the only nonzero terms of this expansion, and they must all have 

the same sign. 

2.4. Kirchoff Laws 

It is easy to see that = i v  enforces Kirchoff’s voltage law for each funda-
mental cycle (and thus for any cycle, as we show shortly), where   is a main- 
diagonal matrix of resistances (one for each link) and v  is the corresponding 
vector of applied voltages. From what we have done so far, it follows that the  
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determinant of  
 
 




 is equal to (up to a sign) the sum over all co-trees of  

the product of the corresponding resistances. Note that the rank of the last ma-
trix thus remains equal to m whenever at least one term of this sum remains 
positive (i.e. links with zero resistance are a subset of a spanning tree, so that the 
corresponding co-tree links are all positive). An equivalent condition is that the 
set of zero-resistance links does not contain a cycle; this will thus ensure that the 
following m by m system of equations  

   
⋅ =   

   


 

0
i

v
                          (5) 

has a unique solution for i . Note that allowing zero-resistance links with at 
least one voltage source form a cycle would result in infinite current (a short 
circuit); without such voltage source, there is infinitely many finite solutions (the 
subsequent program returns one of them). 

Also note that any cycle can be built from fundamental cycles, as we have al-
ready shown. Meeting Kirchoff’s voltage law for all fundamental cycles then en-
sures its validity for any cycle. 

3. Electrical Circuits 

Having thus found a symbolic solution to an electric circuit consisting of resistors, 
batteries (idealized sources of voltage with no internal resistance), and connecting 
links (also of negligible resistance), we now convert the algorithm into the corres-
ponding Mathematica program. As input, we need to specify the value of resis-
tance in each link (when there is more than one resistor, just add the resistances), 
and of the total voltage of batteries in each link (there is usually only one, if any); 
note that, unlike resistances, each voltage may have either sign, depending wheth-
er its direction agrees (or not) with the link’s orientation. The program then 
yields the resulting current flowing through each link (also of either sign). Ra-
ther than using specific units, we just assume that they are matched in the fol-
lowing way: a battery of voltage v, connected (in a closed loop) to a resistor of 
resistance r, generates a current (in the voltage’s direction) of magnitude v/r.  

3.1. Mathematica Program 

A complete information about any such circuit can be encoded by first labelling 
all its nodes using n  distinct symbols, and then providing a list (in any order) 
of all links, together with the corresponding resistance and voltage. For each link 
we thus have to enter up to four symbols/numbers, identifying: the incident nodes 
(their order specifies the link’s orientation), the corresponding resistance, and 
the battery’s voltage. When there is no battery, specify only the nodes and resis-
tance; when both the voltage and resistance are zero, the two nodes will suffice. 

Thus completed list is then used as an argument of the following Mathematica 
program: 
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circuit[in_]:= 
Module[{inp = Map[PadRight[#, 4] &, in], lk, r, v, gr, K, C, fc}, 
lk = Map[Take[#, 2] &, inp];  
gr = Graph[lk/. {a_, b_} -> a\[DirectedEdge] b];  
r = Map[#[[3]] &, inp]; v = Map[#[[4]] &, inp];  
K = Drop[Normal[IncidenceMatrix[gr]], 1];  
fc = FindFundamentalCycles[UndirectedGraph[gr]];  
fc = fc /. a_ \[UndirectedEdge] b_ -> {a, b};  
C = Outer[Count[#1, #2] &, fc, lk, 1] 

-Outer[Count[#1, #2] &, fc, Map[Reverse, lk], 1]; 
Linear Solve[Join[K, Map[r # &, C]], Join[Table[0, Length[K]], C.v]]]  
The program takes the input denoted “in” and extends its items with fewer 

than four symbols/numbers by padding it with one or two zeros, calling the new 
list “inp”. Based on “inp”, the next line then creates the corresponding list of m 
links “lk”, making it into a directed graph “gr”; the remaining part of “inp” is 
then converted into a vector “r” of the corresponding resistances, and a similar 
vector “v” of the links” voltages. The code continues by building the n by m in-
cidence matrix and deleting its last (redundant) row (matrix  ), and a list of 

1m n− +  fundamental cycles “fc” of graph “gr”; the next two lines convert this 
list into matrix  . Each row of   is then multiplied (element-wise!) by vector 
“r”, and the resulting matrix is appended to  ; similarly,   is multiplied 
(this time, it is the regular matrix by vector multiplication) by vector “v” and the 
result is appended to a vector of n − 1 zeros. This is done in the last row of the 
program, which then also solves the corresponding set of linear equations for the 
resulting m currents. 

3.2. Examples 

Consider the following circuit (Figure 1), where the boxed numbers specify the 
links’ resistances and the values in double-square brackets are the applied vol-
tages (note that the C G→  and B F→  links have no resistance). 
 

 

Figure 1. Circuit with 8 nodes, 16 links, 14 resistors and 2 batteries. 
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Typing: 
circuit [{{A, B, 2}, {A, E, 6}, {A, F, 3}, {B, C, 1}, {B, F}, {B, H, 2}, {C, D, 3}, {C, 

F, 4}, {C, G, 0, −12.}, {D, E, 2}, {D, G, 3}, {E, G, 3}, {E, H, 6, 9}, {F, G, 7}, {F, H, 2}, 
{G, H, 4}}] 
then yields the desired solution, namely 

{−0.515, 0.858, −0.343, −2.777, 1.614, 0.648, 2.422, 0.694, -5.893, 0.844, 1.578, 
1.015, 0.686, 1.318, 0.648, −1.982} 

Note that the corresponding graph is not planar, meaning that its two-di- 
mensional rendering always leads to some links crossing each other without 
physical contact; being planar or not is of great importance in Graph Theory, 
but rather inconsequential for our treatment of electrical circuits. 

When there are multiple links between the same two nodes, each but one of 
these links must be subdivided into two links (following the same orientation) 
by inserting an extra node anywhere along the link; in the solution, both links 
will of course carry the same current and the extra node can be ignored. 

As an example, consider the following circuit (Figure 2) (the nodes are now 
labeled by integers) 
 

 

Figure 2. Circuit with double link, removed by inserting an extra node e. 

 

which can be solved by typing 
circuit [{{1, 2, 3}, {3, 5, 5}, {1, 3, 2}, {1, 5, 5, 14.}, {2, 3, 4}, {2, 4, 2}, {3, 4, 3}, {3, 

e}, {e, 4,2,- 9.}}]  
resulting in the following currents 

{0.103, −1.149, −1.253, 1.149, −0.704, 0.807, 1.477, −2.284, −2.284}  
where the last two values are identical (as they must be) and can be merged into 
a single answer; note that we have placed an extra node “e” inside what would 
have been (if the program allowed it) a {3, 4, 2, −9} link. 

3.3. Extension to Capacitors 

The same program can also solve, in a practically identical manner, circuits con-
taining only batteries and capacitors (instead of resistors). The main difference is 
that, instead of specifying the resistance of each link, we have to replace it by the 
reciprocal of the link’s capacitance, since now the electrical charge stored on 
each capacitor equals v c⋅ , where c is the capacitance. The output then yields 
the charge on each link’s capacitor; when there are two or more capacitors (in 
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series) in the same link, their reciprocal capacitances need to be added, and the 
resulting charge then applies to each of them. When a link has no capacitor at all, 
we must enter 0 for the corresponding reciprocal (think of it as having infinite 
capacitance), and the resulting charge is the one which has gone through the link 
to charge the rest of the circuit. 

As an example, consider the following circuit (Figure 3) 
 

 

Figure 3. Circuit with 7 capacitors and 2 batteries. 
 

where a pair of brackets stands for a capacitor whose capacitance is specified in 
the corresponding denominator. The solution is procured by typing 

circuit [{{1, 2, 1/6.3}, {3, 5, 1/4.8}, {1, 3, 1/3.9}, {1, 5, 0, 14.}, {2, 3, 1/4.}, {2, 4, 
1/2.8}, {3, 4, 1/5.5}, {3, 6, 1/3.7}, {6, 4}}] 
which returns the following charges 

{−17.701, −39.890, -22.189, 39.890, −11.519, -6.18198, 3.69575, 2.4862, 2.4862} 
The graph makes it obvious why the last two values must be identical. 

4. Conclusion 

In this article we have presented a valuable tool for analyzing electrical circuits 
consisting either of resistors and batteries, or of capacitors and batteries. The 
corresponding mathematical theory has been developed in full detail, including 
the proof (missing in existing literature) of sufficient and necessary conditions 
for the corresponding system of linear equations to have a unique solution. A 
simple Mathematica program has also been provided to enable the reader to 
readily find such a solution for any given configuration of nodes, links, resistors 
(capacitors) and batteries. This makes it a useful tool to facilitate proper under-
standing of such circuits from both practical and theoretical point of view. 
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