

Engineering, 2022, 14, 113-118 https://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931

A Sufficient Condition for 2-Distance-Dominating Cycles

Xinman Wang, Linyu Li

School of Mathematics and Statistics, Shandong Normal University, Jinan, China Email: 578580136@qq.com

How to cite this paper: Wang, X.M. and Li, L.Y. (2022) A Sufficient Condition for 2-Distance-Dominating Cycles. *Engineering*, **14**, 113-118. https://doi.org/10.4236/eng.2022.143010

Received: February 25, 2022 **Accepted:** March 19, 2022 **Published:** March 22, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A cycle *C* of a graph *G* is a *m*-distance-dominating cycle if for all vertices of V(G), $d_G(x,C) \le m$. Defining $\sigma_k(G)$ denotes the minimum value of the degree sum of any *k* independent vertices of *G*. In this paper, we prove that if *G* is a 3-connected graph on *n* vertices, and if $\sigma_4(G) > 4n/3 - 4/3$, then every longest cycle is *m*-distance-dominating cycles.

Keywords

Degree Sums, Distance Dominating Cycles, Insertible Vertex

1. Introduction

Let G = (V, E) be a graph and H be a subgraph of G, for a $S \subseteq V(G)$, let $N_H(S) = N(S) \cap V(H)$. For any $x, y \in V(G)$, $Y \subseteq V(G)$, xy denotes the edge with ends x and y, an (x, Y)-path denotes a path starting at x and ending at Y. We denote by $\alpha(G)$ and $\kappa(G)$ the independence number and the connectivity of G, respectively.

Let *C* be a cycle of *G*, and denote by \vec{C} the cycle *C* with a given orientation. For $v \in V(C)$, define v^+ and v^- to be the successor and predecessor of *v* on *C*, define v^{+i} and v^{-i} to be the *i*-th successor and predecessor of *v* on *C*, respectively. In particular, we write $A^{+i} = \{a^{+i} | a \in A\}$ and $A^{-i} = \{a^{-i} | a \in A\}$. If $u, v \in V(G)$, we denote by $u\vec{C}v$ the consecutive vertices of *C* from *u* to *v* in the direction specified by \vec{C} . The same path, in reverse order, is denoted by $v\vec{C}u$. We will consider $u\vec{C}v$ and $v\vec{C}u$ both as paths and as vertex sets.

We use $\min \{ d_G(v_1, v_2) : v_1 \in V(H_1), v_2 \in V(H_2) \}$ to denote the distance $d_G(H_1, H_2)$ between H_1 and H_2 , H_1 and H_2 are all the subgraphs of G, where $d_G(v_1, v_2)$ denotes the length of a shortest path between v_1 and v_2 in G. A subgraph H of G is m-dominating if for all $x \in V(G)$, $d_G(x, H) \le m$. For

an integer $k \ge 2$, define

$$\sigma_{k} = \min\left\{\sum_{i=1}^{k} d\left(x_{i}\right) | \left\{x_{1}, \cdots, x_{k}\right\} \text{ is an independent set of } G\right\}$$

In 1987, Bondy [1] considered the existence of *k*-connected graphs of order *n*. **Theorem 1** [1] Let *G* be a *k*-connected graph on *n* vertices, where $k \ge 2$. If

any k+1 independent vertices $x_i (0 \le i \le k)$ with $N(x_i) \cap N(x_j) = \emptyset$ $(0 \le i \ne j \le k)$ have degree-sum $\sum_{i=0}^k d(x_i) \ge n-2k$, then G has a 1-distance-

dominating cycle.

In 1988, Broersma [2] and Fraisse [3] proved some results about *m*-distance-dominating cycles.

Theorem 2 [2] [3] Let G be a k-connected graph with no set of cardinality k+1, whose vertices are pairwise at distance at least 2m+2. Then G has an m-distance-dominating cycle.

The circumference c(G) of a graph *G* is the length of the longest cycle on the graph. In 2021, Xiong [4] considered the relation between the graph circumference and *m*-distance-dominating cycle, and proved a sufficient condition that every longest cycle in *k*-connected graph is *m*-distance-dominating cycle.

Theorem 3 [4] Let G be a graph with $\kappa(G) = k \ge 2$. If $c(G) \ge (2m+2)k-1$, then every longest cycle of G is a m-distance-dominating cycle.

A cycle *C* is *m*-edge-dominating if for all $e \in E(G)$, $d_G(e,C) \leq m$. Clearly, a cycle is 0-edge-dominating (or simply dominating) if every edge of *G* is incident with a vertex of *C*, G - V(C) is edgeless. It is very popular to decide whether a longest cycle is (0-edge) dominating. Bondy [5] gave a sufficient condition such that every longest cycle of 2-connected graph is (0-edge) dominating.

Theorem 4 [5] Let G be a 2-connected graph on n vertices. If $\sigma_3(G) \ge n+2$, then every longest cycle is dominating.

Wu [6] considered the same problem for *k*-connected graphs and established the following.

Theorem 5 [6] Let G be k-connected graph on n vertices with $k \ge 2$. If $\sigma_{k+1}(G) > (n+1)(k+1)/3$, then every longest cycle is dominating.

In this paper, we consider the general version for degree sums condition that guarantees that every longest cycle is a 2-distance-dominating cycle in 3-connected graphs. Our main result is the following.

Theorem 6 Let G be a 3-connected graph on n vertices. If

 $\sigma_4(G)>4n/3-4/3$, then every longest cycle is a 2-distance-dominating cycle.

1. Key Lemmas

Lemma 1 [6] Let $P = u_1 u_2 \cdots u_l$ and Q_1, \cdots, Q_m be m+1 pairwise vertex disjoint paths of a graph G. If for any $v \in V(Q_i)$, there are $u_k, u_{k+1} \in N(v)$ such that $\{u_k, u_{k+1}\} \nsubseteq N(v')$ for any $v' \in V(Q_j)$ with $j \neq i$, then G has a (u_1, u_l) -path with $V(P) \cup (\bigcup_{i=1}^m V(Q_i))$ as its vertex set.

A *k*-fan from *x* to *Y* is a family of *k* internal disjoints (x, Y)-paths whose terminal vertices are distinct. The following lemma known as Fan Lemma establishes an useful property of *k*-connected graphs.

Lemma 2 [7] Let G be a k-connected graph, let x be a vertex of G, and let $Y \subseteq V(G) \setminus x$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y.

Next, we assume G be a k-connected non-hamiltonian graph of order n, $k \ge 2$. Let C be a longest cycle of G with a given orientation. Let R = V(G) - V(C), assume H is a component of G - V(C) and $N_C(H) = \{h_1, h_2, \dots, h_t\}$, where the subscripts increase with the orientation of C.

A vertex $u \in h_i^+ \overline{C} h_{i+1}^-$ is insertible if there exist vertices $v, v^+ \in h_{i+1} \overline{C} h_i$ such that $uv, uv^+ \in E(G)$ and the edge $vv^+ \in E(G)$ is called an insertion edge of u, and noninsertible otherwise.

For any *i* with $1 \le i \le t$, if each vertex of $h_i^+ \vec{C} h_{i+1}^-$ is insertible, then by Lemma 1, G has an (h_i, h_{i+1}) -path *P* such that V(P) = V(C). Thus, there is a (h_i, h_{i+1}) -path *L* with internal vertices in *H* and $|L| \ge 3$. We find $\mathbb{C} = h_i P h_{i+1} L h_i$ is a cycle longer than *C*, contradiction. Thus, $h_i^+ \vec{C} h_{i+1}^-$ contains at least one non-insertible vertex. Write a_i as the first noninsertible vertex occurring on

 $h_i^+ \vec{C} h_{i+1}^-$, $A_i = h_i^+ \vec{C} a_i$. For any $v \in V(H)$, we let $A_v = \{a_i \mid h_i \in N(v)\}$.

Lemma 3 [6] 1) There is no (x, y) -path without internal vertices in $V(C) \cup V(H)$ for any $x \in A_i$ and $y \in A_i$ with $i \neq j$;

2) $N_P^-(A_i) \cap N_P(A_j) = N_Q(A_i) \cap N_Q^-(A_j) = \emptyset$, where $P = a_i^+ \vec{C}h_j$ and $Q = a_i^+ \vec{C}h_i$.

Lemma 4 [6] Suppose $v_1, v_2 \in V(H)$ with $v_1 \neq v_2$, $a_i \in A_{v_1}$ and $a_j \in A_{v_2}$ with $i \neq j$. Then 1) $a_i^+ \notin N(A_j)$ and $a_j^+ \notin N(A_i)$;

2) $N_P^{-2}(A_i) \cap N_P(A_j) = N_Q(A_i) \cap N_Q^{-2}(A_j) = \emptyset$, where $P = a_i^+ \vec{C} h_j$ and $Q = a_j^+ \vec{C} h_i$.

2. Proof of Theorem 6

Let G be a graph of order n with connectivity $\kappa(G) \ge 3$, satisfying $\sigma_4(G) > (4n-4)/3$. Let C be a longest cycle with a given orientation and $|C| \ge 3$ since G is 3-connected. Assuming there is a vertex $u \in V(G) \setminus C$ such that $d(u,C) \ge 3$. By Lemma 2, there is a 3-fan $\mathfrak{B} = \{P_1, P_2, P_3\}$ in G from u to V(C) and the length of P_i is at least 3, i = 1, 2, 3. Let R = V(G) - V(C), and H is a component of G - V(C) containing u. By the definition of k-fan, we get $|H| \ge 7$. Let $x_i = V(P_i) \cap V(C)$, i = 1, 2, 3, a_i is the noninsertible vertex as the same definition on the previous section, $A_i = x_i^+ \overline{C}a_i$, i = 1, 2, 3. And v_i is x_i 's first neighbor on the path P_i , i = 1, 2, 3.

Claim 1 $A_i \cap N_C(H) = \emptyset$, i = 1, 2, 3.

proof Without loss of generality, suppose there is a vertex $x \in A_1$ such that $x \in N_C(H)$. Let $Q = x_1^+ \vec{C}x$, $P = x^+ \vec{C}x_1$, then all the vertex on Q are insertible. Thus we can get a (x_1, x) -path P' such that V(P') = V(C) by Lemma 1. Let L denote a (x_1, x) -path with internal vertices in H, and $|L| \ge 3$. We can get a new cycle $\mathbb{C} = x_1 P' x L x_1$ longer than C. (Contradiction) \Box

Claim 2 $d(v_1) + d(a_1) + d(a_2) \le n$.

proof We first find that $\{a_1, a_2\} \cap N_C(H) = \emptyset$ by Claim 1, a_1 and a_2

have no common neighbors on R-H since Lemma 3(1). Thus, $N_R(v_1)$, $N_R(a_1)$, $N_R(a_2)$ are pairwise disjoint. And since $d(u,C) \ge 3$, $uv_1 \notin E(G)$. Therefore, we have the inequality as follows.

$$d_{R}(v_{1}) + d_{R}(a_{1}) + d_{R}(a_{2}) \leq |R| - 2.$$

Similarly, by Claim 1 and Lemma 3(1), we have

$$d_{A_{1}\cup A_{2}}(v_{1})+d_{A_{1}\cup A_{2}}(a_{1})+d_{A_{1}\cup A_{2}}(a_{2}) \leq |A_{1}|-1+|A_{2}|-1.$$

Next let $P = a_1^+ \vec{C}x_2$, $Q = a_2^+ \vec{C}x_1$, $U_1 = A_{v_1} \cap V(P)$, $U_2 = A_{v_1} \cap V(Q)$. Since $N_C(v_1) \cap A_i = \emptyset$, i = 1, 2, 3, then $A_{v_1} \setminus \{a_1, a_2\} \subseteq U_1 \cup U_2$. Note that $d_C(v_1) = |A_{v_1}|$, thus $|U_1| + |U_2| \ge d_C(v_1) - 2$. Let $U_1 = \{a_{v_{11}}, a_{v_{12}}, \cdots, a_{v_{lr}}\}$, $t \le n$.

We will analyse $d_p(a_1) + d_p(a_2)$ by considering the following cases.

Case 1. For any $a_{\nu_{1j}}^+ \in U_1^+$, $a_{\nu_{1j}}^+ \notin N_P(a_1)$, which implies $a_{\nu_{1j}} \notin N_P^-(a_1)$, $j = 1, 2, \dots, t$.

By Lemma 3(1), we have $a_{v_{1j}} \notin N_P(a_2)$, and thus for any $a_{v_{1j}} \in U_1$, $j=1,2,\cdots,t$, we have $a_{v_{1j}} \notin N_P^-(a_1) \cup N_P(a_2)$. And by Lemma 3(2),

 $N_{P}^{-}(a_{1}) \cap N_{P}(a_{2}) = \emptyset \text{ . Hence } N_{P}^{-}(a_{1}) \cup N_{P}(a_{2}) \subseteq V(P) \cup \{a_{1}\} \setminus U_{1} \text{ . Therefore,}$ $d_{P}(a_{1}) + d_{P}(a_{2}) = \left|N_{P}^{-}(a_{1})\right| + \left|N_{P}(a_{2})\right| \leq |P| + 1 - |U_{1}|.$

Case 2. There exist some $a_{v_{1j}}^+ \in U_1^+$, $a_{v_{1j}}^+ \in N_P(a_1)$, say $\{a_{v_{i1}}^+, a_{v_{i2}}^+, \dots, a_{v_{ir}}^+\}$, $r \leq t$.

Then we can note that $a_{v_{ij}}^{++} \notin N(a_1)$. Since a_1 is noninsertible, which implies $a_{v_{ij}}^+ \notin N_P^-(a_1)$, $j = 1, 2, \dots, r$, $r \le t$. And by Lemma 4(1), we know

 $a_{v_{ij}}^{+} \notin N_P(a_2)$. Thus $a_{v_{ij}}^+ \notin N_P^-(a_1) \bigcup N_P(a_2)$. On the other hand, for the remaining vertices, $a_{v_{1j}} \in U_1 \setminus \{a_{v_{i1}}, a_{v_{i2}}, \dots, a_{v_{ir}}\}$, similar to case 1, we have $a_{v_{1j}} \notin N_P^-(a_1) \bigcup N_P(a_2)$. In addition, $a_{v_{1j}}^+ \neq a_{v_{1j+1}}$, since there are some

 $x \in N_C(H)$ on $a_{v_1j}\vec{C}a_{v_{1j+1}}$. And by Lemma 3(2), $N_P^-(a_1) \cap N_P(a_2) = \emptyset$. Therefore, we have the inequality as follows.

$$d_{P}(a_{1}) + d_{P}(a_{2}) = |N_{P}^{-}(a_{1})| + |N_{P}(a_{2})| \le |P| + 1 - |U_{1}|.$$

By Lemma 3(1) and Lemma 4(1), for any $a_{1j} \in U_2$, we have $a_{1j} \notin N_Q(a_1) \bigcup N_Q^-(a_2)$. So we have the inequality as follows.

$$d_{Q}(a_{1}) + d_{Q}(a_{2}) = |N_{Q}(a_{1})| + |N_{Q}^{-}(a_{2})| \le |Q| + 1 - |U_{2}|.$$

Therefore,

$$d(v_{1})+d(a_{1})+d(a_{2})$$

$$\leq (d_{P}(v_{1})+|P|+1-|U_{1}|)+(d_{Q}(v_{1})+|Q|+1-|U_{2}|)+(|A_{1}|+|A_{2}|-2)+(|R|-2)$$

$$= d_{C}(v_{1})+(|P|+|Q|+|A_{1}|+|A_{2}|+|R|)-(|U_{1}|+|U_{2}|)-2$$

$$\leq n+d_{C}(v_{1})-(d_{C}(v_{1})-2)-2$$

$$= n.$$

By a similar argument as Claim 2, Claim 3 holds. **Claim 3** $d(v_1)+d(a_1)+d(a_3) \le n$. **Claim 4** $d(v_1)+d(a_2)+d(a_3) \le n$. proof Similarly, by Claim 1 and Lemma 3(1), we have

$$d_{R}(v_{1}) + d_{R}(a_{2}) + d_{R}(a_{3}) \leq |R| - 2.$$

$$d_{A_{2} \cup A_{3}}(v_{1}) + d_{A_{2} \cup A_{3}}(a_{2}) + d_{A_{2} \cup A_{3}}(a_{3}) \leq |A_{2}| - 1 + |A_{3}| - 1.$$

Let $P = a_2^+ \vec{C} x_3$, $Q = a_3^+ \vec{C} x_2$. $U_1 = A_{v_1} \cap V(P)$, $U_2 = A_{v_1} \cap V(Q)$. Then we have $|U_1| + |U_2| \ge d_C(v_1) - 2$. And by Lemma 3(2), $N_P^-(a_2) \cap N_P(a_2) = \emptyset$.

Let $U_1 = \{a_{v_{11}}, a_{v_{12}}, \dots, a_{v_{l_i}}\}$, for any $a_{v_{1j}} \in U_1$, we have $a_{v_{1j}}^+ \notin N_P(a_2)$ by Lemma 4(1), that is $a_{v_{1j}} \notin N_P(a_2)$, $j = 1, 2, \dots, t$. And for any $a_{v_{1j}} \in U_1$, we have $a_{v_{1j}} \notin N_P(a_3)$ by Lemma 3(1). Therefore, $a_{v_{1j}} \notin N_P^-(a_2) \bigcup N_P(a_3)$, $j = 1, 2, \dots, t$.

By Lemma 3(2), $N_P^-(a_2) \cap N_P(a_3) = \emptyset$. Hence,

$$N_P^-(a_2) \cup N_P(a_3) \subseteq V(P) \cup \{a_2\} \setminus U_1.$$

Thus we have the inequality as follows,

$$d_{P}(a_{2}) + d_{P}(a_{3}) = |N_{P}^{-}(a_{2})| + |N_{P}(a_{3})| \le |P| + 1 - |U_{1}|.$$

Furthermore, according to the symmetry of P and Q,

$$d_o(a_2) + d_o(a_3) \le |Q| + 1 - |U_2|.$$

Therefore,

$$d(v_{1})+d(a_{2})+d(a_{3})$$

$$\leq (d_{P}(v_{2})+|P|+1-|U_{1}|)+(d_{Q}(v_{1})+|Q|+1-|U_{2}|)+(|A_{2}|+|A_{3}|-2)+(|R|-2)$$

$$= d_{C}(v_{1})+(|P|+|Q|+|A_{2}|+|A_{3}|+|R|)-(|U_{1}|+|U_{2}|)-2$$

$$\leq n+d_{C}(v_{1})-(d_{C}(v_{1})-2)-2$$

$$= n.$$

,

Claim 5 $d(a_1) + d(a_2) + d(a_3) \le n - 4$.

proof Let $P = a_1^+ \vec{C}x_2$, $Q = a_2^+ \vec{C}x_3$, $M = a_3^+ \vec{C}x_1$. By Lemma 3(2) and Lemma 4(2), note that $N_P^{-2}(a_1)$, $N_P(a_2)$, $N_P^-(a_3)$ are pairwise disjoint. So $N_P^{-2}(a_1) \cup N_P(a_2) \cup N_P^-(a_3) \subseteq a_1^- \vec{C}x_2$, which implies

$$d_{P}(a_{1}) + d_{P}(a_{2}) + d_{P}(a_{3}) \leq |P| + 2.$$

According to the symmetry of P, Q and R, we have

$$d_{Q}(a_{1}) + d_{Q}(a_{2}) + d_{Q}(a_{3}) \leq |Q| + 2.$$

$$d_{M}(a_{1}) + d_{M}(a_{2}) + d_{M}(a_{3}) \leq |M| + 2.$$

By Lemma 3(1), we have

$$d_{A_{1}\cup A_{2}\cup A_{3}}(a_{1})+d_{A_{1}\cup A_{2}\cup A_{3}}(a_{2})+d_{A_{1}\cup A_{2}\cup A_{3}}(a_{3}) \leq |A_{1}|-1+|A_{2}|-1+|A_{3}|-1.$$

At last, by Claim 1 and Lemma 3(1), we have

$$d_{R}(a_{1}) + d_{R}(a_{2}) + d_{R}(a_{3}) \leq |R| - |H|.$$

Note that $|H| \ge 7$, thus

 $\begin{aligned} &d(a_1) + d(a_2) + d(a_3) \\ &\leq (|P|+2) + (|Q|+2) + (|M|+2) + (|A_1|+|A_2|+|A_3|-3) + (|R|-|H|) \\ &= (|P|+|Q|+|M|+|A_1|+|A_2|+|A_3|+|R|) + 3 - |H| \\ &= n+3 - |H| \\ &\leq n-4. \end{aligned}$

By Lemma 3(1) and Claim 1, $\{v_1, a_1, a_2, a_3\}$ is an independent set in *G*. By Claim 2-5, we have

$$d(v_1)+d(a_1)+d(a_2)+d(a_3) \le \frac{4}{3}n-\frac{4}{3},$$

a contradiction.

This completes the proof of Theorem 6.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Bondy, J.A. and Fan, G. (1987) A Sufficient Condition for Dominating Cycles. *Discrete Mathematics*, 67, 205-208. <u>https://doi.org/10.1016/0012-365X(87)90029-X</u>
- [2] Broersma, H.J. (1988) Existence of Δ_{λ} -Cycles and Δ_{λ} -Paths. Journal of Graph Theory, **12**, 499-507. <u>https://doi.org/10.1002/jgt.3190120405</u>
- [3] Fraisse, P. (1988) A Note on Distance-Dominating Cycles. *Discrete Math*, 71, 89-92. <u>https://doi.org/10.1016/0012-365X(88)90033-7</u>
- [4] Fang, Y. and Xiong, L. (2021) Circumference of a Graph and Its Distance Dominating Longest Cycles. *Discrete Mathematics*, **344**, Article ID: 112196. <u>https://doi.org/10.1016/j.disc.2020.112196</u>
- [5] Bondy, J.A. (1980) Longest Paths and Cycles in Graphs of High Degree. Research Report CORR 80-16, University of Waterloo, Ontario.
- [6] Wu, Y., Chen, Y. and Edein Cheng, T.C. (2021) Degree Sums and Dominating Cycles. *Discrete Mathematics*, 344, Article ID: 112224. https://doi.org/10.1016/j.disc.2020.112224
- [7] Bondy, J.A. and Murty, U.S.R. (2008) Graph Theory. Springer, Berlin. <u>https://doi.org/10.1007/978-1-84628-970-5</u>