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Abstract 
A cycle C of a graph G is a m-distance-dominating cycle if for all vertices of 
( )V G , ( ),Gd x C m≤ . Defining ( )k Gσ  denotes the minimum value of the 

degree sum of any k independent vertices of G. In this paper, we prove that if 
G is a 3-connected graph on n vertices, and if ( )4 4 3 4 3G nσ > − , then 
every longest cycle is m-distance-dominating cycles. 
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1. Introduction 

Let ( ),G V E=  be a graph and H be a subgraph of G, for a ( )S V G⊆ , let 
( ) ( ) ( )HN S N S V H=  . For any ( ),x y V G∈ , ( )Y V G⊆ , xy  denotes the 

edge with ends x and y, an ( ),x Y -path denotes a path starting at x and ending 
at Y. We denote by ( )Gα  and ( )Gκ  the independence number and the 
connectivity of G, respectively. 

Let C be a cycle of G, and denote by C


 the cycle C with a given orientation. 
For ( )v V C∈ , define v+  and v−  to be the successor and predecessor of v on 
C, define iv+  and iv−  to be the i-th successor and predecessor of v on C, re-
spectively. In particular, we write { } | i iA a a A+ += ∈  and { } | i iA a a A− −= ∈ . If 

( ),u v V G∈ , we denote by uCv


 the consecutive vertices of C from u to v in the 
direction specified by C



. The same path, in reverse order, is denoted by vCu


. 
We will consider uCv



 and vCu


 both as paths and as vertex sets. 
We use ( ) ( ) ( ){ }1 2 1 1 2 2min ,  : , Gd v v v V H v V H∈ ∈  to denote the distance 
( )1 2,Gd H H  between 1H  and 2H , 1H  and 2H  are all the subgraphs of G, 

where ( )1 2,Gd v v  denotes the length of a shortest path between 1v  and 2v  in 
G. A subgraph H of G is m-dominating if for all ( )x V G∈ , ( ),Gd x H m≤ . For 
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an integer 2k ≥ , define  

( ) { }1
1

min  | , ,  is an independent set of  
k

k i k
i

d x x x Gσ
=

 =  
 
∑   

In 1987, Bondy [1] considered the existence of k-connected graphs of order n. 
Theorem 1 [1] Let G be a k-connected graph on n vertices, where 2k ≥ . If 

any 1k +  independent vertices ( )0ix i k≤ ≤  with ( ) ( )i jN x N x = ∅   
( )0 i j k≤ ≠ ≤  have degree-sum ( )0 2k

ii d x n k
=

≥ −∑ , then G has a 1-distance- 
dominating cycle.  

In 1988, Broersma [2] and Fraisse [3] proved some results about m-distance- 
dominating cycles. 

Theorem 2 [2] [3] Let G be a k-connected graph with no set of cardinality 
1k + , whose vertices are pairwise at distance at least 2 2m + . Then G has an 

m-distance-dominating cycle.  
The circumference ( )c G  of a graph G is the length of the longest cycle on 

the graph. In 2021, Xiong [4] considered the relation between the graph circum-
ference and m-distance-dominating cycle, and proved a sufficient condition that 
every longest cycle in k-connected graph is m-distance-dominating cycle. 

Theorem 3 [4] Let G be a graph with ( ) 2G kκ = ≥ . If ( ) ( )2 2 1c G m k≥ + − , 
then every longest cycle of G is a m-distance-dominating cycle.  

A cycle C is m-edge-dominating if for all ( )e E G∈ , ( ),Gd e C m≤ . Clearly, a 
cycle is 0-edge-dominating (or simply dominating) if every edge of G is incident 
with a vertex of C, ( )G V C−  is edgeless. It is very popular to decide whether a 
longest cycle is (0-edge) dominating. Bondy [5] gave a sufficient condition such 
that every longest cycle of 2-connected graph is (0-edge) dominating. 

Theorem 4 [5] Let G be a 2-connected graph on n vertices. If ( )3 2G nσ ≥ + , 
then every longest cycle is dominating.  

Wu [6] considered the same problem for k-connected graphs and established 
the following. 

Theorem 5 [6] Let G be k-connected graph on n vertices with 2k ≥ . If 
( ) ( )( )1 > 1 1 3k G n kσ + + + , then every longest cycle is dominating.  

In this paper, we consider the general version for degree sums condition that 
guarantees that every longest cycle is a 2-distance-dominating cycle in 3-connected 
graphs. Our main result is the following. 

Theorem 6 Let G be a 3-connected graph on n vertices. If  
( )4 4 3 4 3G nσ > − , then every longest cycle is a 2-distance-dominating cycle.  

1. Key Lemmas 
Lemma 1 [6] Let 1 2 lP u u u=   and 1, , mQ Q  be 1m +  pairwise vertex dis-

joint paths of a graph G. If for any ( )iv V Q∈ , there are ( )1, k ku u N v+ ∈  such 
that { } ( )1,k ku u N v+ ′  for any ( )jv V Q′∈  with j i≠ , then G has a ( )1, lu u
-path with ( ) ( )( )1

m
ii

V P V Q
=





 as its vertex set.  
A k-fan from x to Y is a family of k internal disjoints ( ),x Y -paths whose 

terminal vertices are distinct. The following lemma known as Fan Lemma estab-
lishes an useful property of k-connected graphs. 

https://doi.org/10.4236/eng.2022.143010


X. M. Wang, L. Y. Li 
 

 

DOI: 10.4236/eng.2022.143010 115 Engineering 
 

Lemma 2 [7] Let G be a k-connected graph, let x be a vertex of G, and let 
( ) \Y V G x⊆  be a set of at least k vertices of G. Then there exists a k-fan in G 

from x to Y.  
Next, we assume G be a k-connected non-hamiltonian graph of order n, 2k ≥ . 

Let C be a longest cycle of G with a given orientation. Let ( ) ( )R V G V C= − , 
assume H is a component of ( )G V C−  and ( ) { }1 2, , ,C tN H h h h=  , where 
the subscripts increase with the orientation of C. 

A vertex 1i iu h Ch+ −
+∈



 is insertible if there exist vertices 1, i iv v h Ch+
+∈


 such 
that ( ),uv uv E G+ ∈  and the edge ( )vv E G+ ∈  is called an insertion edge of u, 
and noninsertible otherwise. 

For any i with 1 i t≤ ≤ , if each vertex of 1i ih Ch+ −
+



 is insertible, then by Lem-
ma 1, G has an ( )1,i ih h + -path P such that ( ) ( )V P V C= . Thus, there is a 
( )1,i ih h + -path L with internal vertices in H and 3L ≥ . We find 1i i ih Ph Lh+=  
is a cycle longer than C, contradiction. Thus, 1i ih Ch+ −

+



 contains at least one non-
insertible vertex. Write ia  as the first noninsertible vertex occurring on  

1i ih Ch+ −
+



, i i iA h Ca+=


. For any ( )v V H∈ , we let ( ){ } | v i iA a h N v= ∈ . 
Lemma 3 [6] 1) There is no ( ),x y -path without internal vertices in  
( ) ( )V C V H  for any ix A∈  and jy A∈  with i j≠ ; 
2) ( ) ( ) ( ) ( )P i P j Q i Q jN A N A N A N A− −= = ∅  , where i jP a Ch+=



 and  

j iQ a Ch+=


.  
Lemma 4 [6] Suppose ( )1 2,v v V H∈  with 1 2v v≠ , 

1i va A∈  and 
2j va A∈  

with i j≠ . Then 1) ( )i ja N A+ ∉  and ( )j ia N A+ ∉ ; 
2) ( ) ( ) ( ) ( )2 2

P i P j Q i Q jN A N A N A N A− −= = ∅  , where i jP a Ch+=


 and 

j iQ a Ch+=


.  

2. Proof of Theorem 6 

Let G be a graph of order n with connectivity ( ) 3Gκ ≥ , satisfying 
( ) ( )4 4 4 3G nσ > − . Let C be a longest cycle with a given orientation and 

3C ≥  since G is 3-connected. Assuming there is a vertex ( ) \u V G C∈  such 
that ( ), 3d u C ≥ . By Lemma 2, there is a 3-fan { }1 2 3, ,P P P=B  in G from u to 
( )V C  and the length of iP  is at least 3, 1,2,3i = . Let ( ) ( )R V G V C= − , and 

H is a component of ( )G V C−  containing u. By the definition of k-fan, we get 
7H ≥ . Let ( ) ( )i ix V P V C=  , 1,2,3i = , ia  is the noninsertible vertex as 

the same definition on the previous section, i i iA x Ca+=


, 1,2,3i = . And iv  is 

ix ’s first neighbor on the path iP , 1,2,3i = . 
Claim 1 ( )i CA N H = ∅ , 1,2,3i = .  
proof Without loss of generality, suppose there is a vertex 1x A∈  such that 

( )Cx N H∈ . Let 1Q x Cx+=


, 1P x Cx+=


, then all the vertex on Q are insertible. 
Thus we can get a ( )1,x x -path P′  such that ( ) ( )V P V C′ =  by Lemma 1. Let 
L denote a ( )1,x x -path with internal vertices in H, and 3L ≥ . We can get a 
new cycle 1 1x P xLx′=  longer than C. (Contradiction)   

Claim 2 ( ) ( ) ( )1 1 2d v d a d a n+ + ≤ .  
proof We first find that { } ( )1 2, Ca a N H = ∅  by Claim 1, 1a  and 2a  
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have no common neighbors on R H−  since Lemma 3(1). Thus, ( )1RN v , 
( )1RN a , ( )2RN a  are pairwise disjoint. And since ( ), 3d u C ≥ , ( )1uv E G∉ . 

Therefore, we have the inequality as follows.  

( ) ( ) ( )1 1 2 2.R R Rd v d a d a R+ + ≤ −  

Similarly, by Claim 1 and Lemma 3(1), we have  

( ) ( ) ( )
1 2 1 2 1 21 1 2 1 21 1.A A A A A Ad v d a d a A A+ + ≤ − + −
  

 

Next let 1 2P a Cx+=


, 2 1Q a Cx+=


, ( )
11 vU A V P=  , ( )

12 vU A V Q=  . Since 
( )1C iN v A = ∅ , 1,2,3i = , then { }

1 1 2 1 2\ ,vA a a U U⊆  . Note that  
( )

11C vd v A= , thus ( )1 2 1 2CU U d v+ ≥ − . Let { }11 12 11 , , ,
tv v vU a a a=  , t n≤ . 

We will analyse ( ) ( )1 2P Pd a d a+  by considering the following cases. 
Case 1. For any 

1 1jva U+ +∈ , ( )
1 1jv Pa N a+ ∉ , which implies ( )

1 1jv Pa N a−∉ , 
  1, 2, ,j t=  . 
By Lemma 3(1), we have ( )

1 2jv Pa N a∉ , and thus for any 
1 1jva U∈ , 

  1, 2, ,j t=  , we have ( ) ( )
1 1 2jv P Pa N a N a−∉  . And by Lemma 3(2),  

( ) ( )1 2P PN a N a− = ∅ . Hence ( ) ( ) ( ) { }1 2 1 1\P PN a N a V P a U− ⊆  . Therefore,  
( ) ( ) ( ) ( )1 2 1 2 11 .P P P Pd a d a N a N a P U−+ = + ≤ + −  

Case 2. There exist some 
1 1jva U+ +∈ , ( )

1 1jv Pa N a+ ∈ , say { }1 2
, , ,

i i irv v va a a+ + +
 , 

r t≤ . 
Then we can note that ( )1ijva N a++ ∉ . Since 1a  is noninsertible, which implies 

( )1ijv Pa N a+ −∉ ,   1, 2, ,j r=  , r t≤ . And by Lemma 4(1), we know  
( )2ijv Pa N a+ ∉ . Thus ( ) ( )1 2ijv P Pa N a N a+ −∉  . On the other hand, for the re-

maining vertices, { }1 1 21 \ , , ,
j i i irv v v va U a a a∈  , similar to case 1, we have  

( ) ( )
1 1 2jv P Pa N a N a−∉  . In addition, 

1 1 1j jv va a
+

+ ≠ , since there are some  
( )Cx N H∈  on 

1 1 1j jv va Ca
+



. And by Lemma 3(2), ( ) ( )1 2P PN a N a− = ∅ . There-
fore, we have the inequality as follows.  

( ) ( ) ( ) ( )1 2 1 2 11 .P P P Pd a d a N a N a P U−+ = + ≤ + −  

By Lemma 3(1) and Lemma 4(1), for any 1 2ja U∈ , we have  
( ) ( )1 1 2j Q Qa N a N a−∉  . So we have the inequality as follows.  

( ) ( ) ( ) ( )1 2 1 2 21 .Q Q Q Qd a d a N a N a Q U−+ = + ≤ + −  

Therefore,  

( ) ( ) ( )
( )( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )

1 1 2

1 1 1 2 1 2

1 1 2 1 2

1 1

1 1 2 2

2

2 2

.

P Q

C

C C

d v d a d a

d v P U d v Q U A A R

d v P Q A A R U U

n d v d v

n

+ +

≤ + + − + + + − + + − + −

= + + + + + − + −

≤ + − − −

=

 

  
By a similar argument as Claim 2, Claim 3 holds. 
Claim 3 ( ) ( ) ( )1 1 3d v d a d a n+ + ≤ .  
Claim 4 ( ) ( ) ( )1 2 3d v d a d a n+ + ≤ .  
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proof Similarly, by Claim 1 and Lemma 3(1), we have  

( ) ( ) ( )1 2 3 2.R R Rd v d a d a R+ + ≤ −  

( ) ( ) ( )
2 3 2 3 2 31 2 3 2 31 1.A A A A A Ad v d a d a A A+ + ≤ − + −
  

 

Let 2 3P a Cx+=


, 3 2Q a Cx+=


. ( )
11 vU A V P=  , ( )

12 vU A V Q=  . Then we 
have ( )1 2 1 2CU U d v+ ≥ − . And by Lemma 3(2), ( ) ( )2 2P PN a N a− = ∅ . 

Let { }11 12 11 , , ,
tv v vU a a a=  , for any 

1 1jva U∈ , we have ( )
1 2jv Pa N a+ ∉  by 

Lemma 4(1), that is ( )
1 2jv Pa N a−∉ , 1,2, ,j t=  . And for any 

1 1jva U∈ , we 
have ( )

1 3jv Pa N a∉  by Lemma 3(1). Therefore, ( ) ( )
1 2 3jv P Pa N a N a−∉  ,  

1,2, ,j t=  . 
By Lemma 3(2), ( ) ( )2 3P PN a N a− = ∅ . Hence,  

( ) ( ) ( ) { }2 3 2 1\P PN a N a V P a U− ⊆  . 

Thus we have the inequality as follows,  

( ) ( ) ( ) ( )2 3 2 3 11 .P P P Pd a d a N a N a P U−+ = + ≤ + −  

Furthermore, according to the symmetry of P and Q,  

( ) ( )2 3 21 .Q Qd a d a Q U+ ≤ + −  

Therefore,  

( ) ( ) ( )
( )( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )

1 2 3

2 1 1 2 2 3

1 2 3 1 2

1 1

1 1 2 2

2

2 2

.

P Q

C

C C

d v d a d a

d v P U d v Q U A A R

d v P Q A A R U U

n d v d v

n

+ +

≤ + + − + + + − + + − + −

= + + + + + − + −

≤ + − − −

=

 

  
Claim 5 ( ) ( ) ( )1 2 3 4d a d a d a n+ + ≤ − .  
proof Let 1 2P a Cx+=



, 2 3Q a Cx+=


, 3 1M a Cx+=


. By Lemma 3(2) and Lemma 
4(2), note that ( )2

1PN a− , ( )2PN a , ( )3PN a−  are pairwise disjoint. So  
( ) ( ) ( )2

1 2 3 1 2P P PN a N a N a a Cx− − −⊆


  , which implies  

( ) ( ) ( )1 2 3 2.P P Pd a d a d a P+ + ≤ +  

According to the symmetry of P, Q and R, we have  

( ) ( ) ( )1 2 3 2.Q Q Qd a d a d a Q+ + ≤ +  

( ) ( ) ( )1 2 3 2.M M Md a d a d a M+ + ≤ +  

By Lemma 3(1), we have  

( ) ( ) ( )
1 2 3 1 2 3 1 2 31 2 3 1 2 31 1 1.A A A A A A A A Ad a d a d a A A A+ + ≤ − + − + −
     

 

At last, by Claim 1 and Lemma 3(1), we have  

( ) ( ) ( )1 2 3 .R R Rd a d a d a R H+ + ≤ −  

Note that 7H ≥ , thus  
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )

1 2 3

1 2 3

1 2 3

2 2 2 3

3

3
4.

d a d a d a

P Q M A A A R H

P Q M A A A R H

n H
n

+ +

≤ + + + + + + + + − + −

= + + + + + + + −

= + −

≤ −

 

  
By Lemma 3(1) and Claim 1, { }1 1 2 3, , ,v a a a  is an independent set in G. By 

Claim 2-5, we have  

( ) ( ) ( ) ( )1 1 2 3
4 4 ,
3 3

d v d a d a d a n+ + + ≤ −  

a contradiction. 
This completes the proof of Theorem 6. 
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