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Abstract 
Total variation (TV) regularization method is a typical method to preserve the 
discontinuities structure in EIT. Isotropic TV and anisotropic TV are two 
well-known variants of TV. The main differences between them are that the latter 
tends to distort the reconstructed internal inhomogeneities along the coordinate 
axis. In this article, we adopt the alternating direction method of multipliers 
(ADMM) to overcome the non-differentiability of the anisotropic TV and verify 
the characteristics of anisotropic TV regularization by the tank experiments. 
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1. Introduction 

Electrical Impedance Tomography (EIT) is a method of reconstructing interior 
conductivity distribution of the imaging target. In EIT, a series of low frequency 
current is injected through the electrodes attached around the boundary and we 
measure the induced voltages. Compared with the widely used imaging methods, 
such as computed tomography (CT), magnetic resonance imaging (MRI) and ul-
trasound imaging, EIT has a promising clinical application due to its advantages 
of non-invasive, no radicalization, high time resolution, etc. EIT also has very 
important applications in other fields, for example, to locate high flow drilling [1], 
to apply in Electrical Cell-substrate Impedance Spectroscopy (ECIS) [2]. 

However, EIT is a typical ill-posed problem. To be precise, the voltage response 
due to the conductivity changes decreases rapidly with the distance between the 
sources of conductivity changes increases [3]. Moreover, EIT measurements often 
suffer from noises and artifacts especially in clinical environments. Regularization 
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is a widely used technique to deal with the ill-posedness. The main idea of regula-
rization is to approximate the ill-posed problem by a well-posed one. 

Depending on the prior information of the target conductivity distribution, 
the researchers proposed Tikhonov regularization [4], sparsity based regulariza-
tion [5], total variation (TV) based regularization [6] and so on. Among all these 
regularizers, except TV based method, the remaining will blur the edges of the 
internal structure. TV regularizer is widely used in EIT, because it has the ability 
of preserving the discontinuities structure of the imaging target. 

There exists difficulty in using the TV regularization due to its non-differen- 
tiability structure [6]. Many methods have been proposed to overcome this diffi-
culty, such as Newton’s method [7] and the Primal Dual-Interior Point Methods 
(PDIPM) [8]. Both methods, however, are either unstable or too time consuming 
[9]. Split Bregman method is also used to deal with the non-differentiability, how-
ever, the ability of preserving the edges is decreased [10]. 

There are two common variants of TV, namely the isotropic TV and the ani-
sotropic TV [11]. However, the anisotropic TV may distort the internal inho-
mogeneities along coordinate axis. Two possible reasons may cause this distor-
tion, one is the characteristics of the model itself, and another is the algorithm to 
solve the inverse problem. Gonzalez [11] overcame the non-differentiability by in-
troducing an auxiliary smoothing parameter 0β >  and using the Guass-Newton 
method to solve the TV regularization problem, and verified the distortion cha-
racteristics by numerical simulation and tank experiments. However, in EIT, there 
is still a lack of real tank experiments to solve anisotropic TV regularization 
problems with ADMM [12] and verify its possible distortion.  

In this article, we use an iteration scheme based on the alternating direction 
method of multipliers (ADMM) to overcome the non-differentiability of aniso-
tropic TV regularization method and do the tank experiment to verify its prop-
erty of distortion.  

2. Forward and Inverse Problems in EIT 

To simplify EIT imaging process, we assume that we use 16-channel EIT system 
and adopt adjacent current injection and measurement pattern. To be specific, 
low-frequency current with magnitude I is injected through j-th neighboring 
electrodes pair ( )1,j j+   for 1, ,16j =   around the boundary of imaging 
target Ω , where we denote 16 1 1+ =  . Then the potential distribution of j-th 
injection ju  is governed by the following equations [13]:  
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Here, n  is the outward unit vector to ∂Ω , ds is the surface element. The 
voltage between ( )1,i i+   subject to the j-th injection can be measured:  

[ ] 1 .i i
i
j j jV u uσ += −

 
 

Using EIT scanner we can measure the following datum:  

( )T 16 16 33 15 4 16 2 14
1 1 2 2 16 16, , , , , , , , , .V V V V V V − = ∈ V R     

where we neglect the measurement near the driving electrode to minimize the 
measurement error. 

The relation between σ  and i
jV  can be expressed approximately by the re-

ciprocity principle  

[ ] [ ] ( ) ( ) ( )1 d ,i j
j i i jV V u u

I
σ σ σ

Ω
= = ∇ ⋅∇∫ r r r r             (1) 

where ( ), ,x y z=r  is a position inside Ω . The EIT problem is to reconstruct 
the conductivity distribution σ  using the measured voltage datum V  and the 
relation (1). However, the above equation is nonlinear. We consider to linearize 
the above equation. To be specific, assuming ( ) ( )0σ σ δσ= +r r , we can ap-
proximate δσ  by replacing ju  by 0

ju :  

[ ] [ ] [ ] ( ) ( ) ( )0 0
0

1: d ,i i i
j j j i jV V V u u

I
δ σ σ σ δσ

Ω
= − ≈ ∇ ⋅∇∫ r r r r      (2) 

where 0
ju  the potential computed under the reference conductivity 0σ . For the 

purpose of computerized reconstruction, we discretize the imaging target into 
finite element elements ( , 1, 2, ,k k N∆ =  ). Assume that on each element k∆  
the conductivity is a constant. Let kσ  denote the value of σ  on the kth ele-
ment. Then σ  can be approximated by ( )T

1 2: , , , N
Nσ σ σ= ∈Rσ . Thus, (2) 

can be written as  

,δ δ=S Vσ  

where S  is the sensitivity matrix (or jacobian matrix) given by  
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i js u u= ∇ ⋅r r . 

In practice, the number of measured data ( )16 16 13× −  is fewer than N (the 
total number of elements for δσ ). We can find an estimate of δσ  by mini-
mizing the following least square problem:  

( )2
2* arg min .
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Since the above problem is ill-posed, the regularization technique is widely 
used to deal with this difficulty. The most common used regularization method 
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is Tikhonov regularization (TR), which is to solve  

( ) 22*
0

1arg min ,
2N

λ
δ

δ δ δ λ δ δ
∈

 = − + − 
 R

S V K
σ

σ σ σ σ  

where K  is the regularization matrix, λ  is the regularization parameter. 
However, it has an excessively smooth effect on the solution, which will blur the 
edge of reconstructed image. 

One technique to preserve the discontinuous boundary is the Total Variation 
(TV) regularization. It was first introduced in [6] for image denoising and ap-
plied in EIT inverse problem in [8]. The two basic variants of TV are isotropic 
TV  

1
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and anisotropic TV  

( )1 1
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where , N N
x y

×∈D D R  are the first order discrete partial derivative operators in 
the horizontal direction and the vertical direction respectively. 

To solve the non-differentiability problem (3) and (4), an auxillary smoothing 
parameter 0β >  was introduced in the time marching method for the corres-
ponding Euler-Lagrange equation [6] and the primal-dual algorithms [8]. How-
ever, both of the methods are too time consuming to be used in the online mode. 
We intend to solve non-differentiability problem (4) using ADMM algorithm. It 
bypasses the difficulty by using splitting scheme and soft thresholding. To be 
precise, we first denote ( ) 2; N N

x y
×= ∈D D D R . By introducing the a new varia-

ble 2N∈u R , (4) can be written into a constrained minimization problem:  
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The augmented Lagrangian functional for (5) is defined as:  

( ) ( )
1 2

2 2 T1, ; : ,
2 2l lα
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where the variable 2N∈v R  is the Lagrangian multiplier, 0α >  is a penalty 
parameter. 

By updating δσ  and u  in an alternate order, we can get its ADMM itera-
tion scheme:  
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The detail of solving the above equations can refer to [9]. 
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3. Experimental Studies 

In this section, we compare the performance of isotropic TV using PDIPM and 
anisotropic TV using ADMM by tank experiments. The results in this article are 
carried out by EIDORS [14]. 

In order to quantitatively evaluate the regularization method, two indicators 
are introduced, respectively ( )RE n  and ( )PSNR n . Since we don’t know the 
true conductivity in the tank experiments, we use the conductivity reconstructed 
by TV regularization as a reference value. We also compare the time spent in the 
reconstruction process. 

We did two groups of tank experiments using the Sciospec 16-channel EIT sys-
tem [15] shown in Figure 1(a). The cylindrical tank with a radius of 10 cm is filled 
with the tap water. Sixteen electrodes are attached to the perimeter of the tank. We 
use the adjacent current injection and measurement pattern. The current with the 
maximum amplitude 1 mA and the frequency 10 kHz is injected using EIT device. 
The speed of the data acquisition is about 20 frames/s. The sensitivity matrix S  
is computed under the calculated conductivity of the water using the measured 
voltage data ( 0 0.003 S mσ = ). We set the imaging plane to be the electrode plane. 
The finite element model of the imaging plane is shown in Figure 1(b). 

In the first group of experiments, carrot, cucumber and bean curd are placed 
inside the tank, separately. In the second group of tests, carrot, cucumber and 
bean curd are placed inside the tank in pairs. The parameters for the anisotropic 
TV method are set to 81 10λ −= × , 71 10α −= × . The parameters of TR and iso-
tropic TV are set to be optimal empirically. The reconstructed images of single 
inclusion using Tikhonov regularization (TR), isotropic TV and anisotropic TV 
are shown in Figure 2. Figure 3 shows the reconstructed images of two inclu-
sions cases. Table 1 and Table 2 illustrate the behavior of RE, PSNR of the single 
and two inclusions tank experiments, respectively. Table 3 compares the com-
putational time of the tank experiments. 

There are several observations from the results. All the three regularization me-
thods can well capture the main feature of the inner object, including position and 
shape. Numerical indicators show that using ADMM to solve the anisotropic 
 

 
(a)                                   (b) 

Figure 1. (a) Tank measurement setup. (b) Finite element model of imaging plane. 
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Figure 2. Reconstructed images of single inclusion using different regularization me-
thods. The three rows show respectively the reconstructed images of carrot, bean curd 
and cucumber. The first column is the images of the tank. The last three columns are the 
reconstructed images using Tikhonov regularization (TR), isotropic TV with PDIPM and 
anisotropic TV with ADMM. 

 

 
Figure 3. Reconstructed images of two different inclusions using different regularization 
methods. From top to bottom: 1) carrot and bean curd, 2) carrot and cucumber, 3) bean 
curd and cucumber. The first column is the images of the tank. The last three columns 
are the reconstructed images using Tikhonov regularization (TR), isotropic TV with 
PDIPM and anisotropic TV with ADMM. 
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Table 1. The behaviors of RE and PSNR for single inclusion tank model. 

 
TR anisotropic TV 

RE 

bean curd 0.1216 0.0359 

carrot 0.0779 0.0395 

cucumber 0.0273 0.0363 

 PSNR 

bean curd 31.02 40.76 

carrot 32.96 39.08 

cucumber 37.82 35.49 

 
Table 2. The behaviors of RE and PSNR for two inclusions tank model. 

 
TR anisotropic TV 

RE 

bean curd and carrot 0.0950 0.0495 

bean curd and cucumber 0.0870 0.0475 

cucumber and carrot 0.0497 0.0404 

 PSNR 

bean curd and carrot 30.67 36.85 

bean curd and cucumber 31.49 37.12 

cucumber and carrot 33.81 35.65 

 
Table 3. Comparison of computational time for tank experiments. 

 TR isotropic TV anisotropic TV 

bean curd 3.38 3.122 1.021 

carrot 3.49 3.141 1.064 

cucumber 3.32 3.148 1.122 

bean curd and carrot 2.61 3.173 1.034 

bean curd and cucumber 3.45 3.213 1.022 

cucumber and carrot 3.42 3.165 1.036 

 
TV regularization problem can obtain an accurate image and take less time than 
using PDIPM. However, the images reconstructed by isotropic TV have obvious 
ladder effect. As a result, there exists pseudo edge. As expected, the edges of the 
reconstructed images using the anisotropic TV distort along the coordinate axes, 
whether it has one or two inclusions. 

4. Conclusion and Future Work 

In this article, we use experimental data to verify the difference between isotrop-
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ic TV and anisotropic TV. Experimental results demonstrate that the recon-
structed image with anisotropic TV regularization will cause geometric distor-
tions along the coordinate axis. This proves that it is the model itself that causes 
the distortion. In the future work, we will focus on a method that can avoid the 
distortions along the coordinate axis and do not depend on the selection of re-
gularization parameters. 
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