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Abstract

For a graph G, let y(G) be the chromatic number of G. It is well-known that
7(G)=w holds for any graph G with clique number . For a hereditary
graph class 7, whether there exists a function fsuch that y(G)< f (@(G))

holds for every G e has been widely studied. Moreover, the form of
minimum such an fis also concerned. A result of Schiermeyer shows that

every (PR,,cricket)-free graph G with clique number @ has y(G)<a’.
Chudnovsky and Sivaraman proved that every (R,,C)-free with clique

number @ graph is 2°"-colorable. In this paper, for any (Py,Cg,cricket)

2
-free graph G with clique number @, we prove that #(G)< {%—‘ +o. The

main methods in the proof are set partition and induction.
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1. Introduction

In this paper, we consider undirected, simple graphs. For a given graph #, a
graph G'is called H-free if G contains no induced subgraphs isomorphic to A.
Let H, ,H,,---,H, (k 22) be different graphs. If for any 1<i<k, Gis H,;

-free, then we say that G is (H,H,,---,H,)-free. A graph G=(V,E) is
k-colorable if there exists a function ¢:V (G) = {l, 2,0, k} such that for any
uve E(G), thereis ¢(u)# @(Vv). The chromatic number of G is the minimum
integer & such that Gis k-colorable, denoted by x(G). Fora graph G =(V,E),
a subset Sof V (G) is called a clique if S'induces a complete subgraph. We use

@(G) to denote the maximum size of cliques of G It is well-known that
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@(G)< x(G) for every graph G. A graph is perfect if for any induced subgraph
G' of G, w(G')= x(G"). Chudnovsky et al. [1] gave an equivalent characteri-
zation of perfect graphs, which is also called as the Strong Perfect Graph Theo-
rem.

Theorem 1.1. [1] A graph is perfect if and only if it contains neither odd
cycles of length at least five nor the complements of these odd cycles.

We say a hereditary graph class © is y -bounded, if there exists a function
£ such that for any Gev , y(G)<f (a)(G)) Moreover, fis called a y
-binding function of . Erdos [2] showed that for arbitrary integers k,l >3,
there exists a graph G with girth at least /and ;((G) >k, which implies that the
class of H-free graphs is not y -bounded when H contains a cycle. Gyarfas con-
jectured that the graph class obtained by forbidding a tree (or forest) is y
-bounded.

Conjecture 1.2. [3] Let T be a tree (or fores?t), then there exists a function f;
such that, for any T-free graph G, y(G)< f, (o(G)).

Moreover, Gyarfas [3] verified this conjecture when T =B, , and showed that
fr <(k —1)("(6)71. When T =P,, Esperet et al. [4] gavea y -binding function of
P, -free graphs as following.

Theorem 1.3. [4] Suppose G is a P, -free graph with clique number »>3.
Then yx(G)<5-3"7°.

As far as we know, for @>3, f(w)=5-3"" is the optimal y -binding
function of P, -free graphs at present. Furthermore, determining a polynomial
x -binding function of the class of P, -free graphs is an open problem. A result
in [5] shows that the class of H-free graphs has a linear y -binding function £ if
and only if f(@w)=w and His an induced subgraph of P,, which means that
the class of P, -free graphs has no linear y -binding function.

In this paper, we focus on subclasses of P, -free graphs. While the class of P,
-free graphs has no linear y -binding function, some subclasses of P, -free have
linear y -binding functions.

Theorem 1.4. [6] [7] [8] [9] Suppose
H e {diamond, gem, paraglider, paw} , then the class of (Ps,H) -free graphs
hasa y -binding function.

More formally, Chudnovsky et al [6] proved that the class of (P,,gem)-free

graphs has a y -binding function f(a))S[%a)—‘ Huang and Karthick [7]

showed that (P, paraglider) graphshavea y -binding function f ()< {g a)—l :

Karthick and Maffray [8] gave a y -binding function f(@)=w+1 for
(Ps,diamond) -free graphs. And Randerath [9] showed that (PS, paw) -free
graphs have a y -binding function f(®)=w+1 (diamond, gem, paraglider
and paw are given in Figure 1).

It is worth noting that a result in [10] shows that when A contains an inde-
pendent set with size at least 3, the class of (P;,H ) -free graphs has no linear y

-binding function.
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Figure 1. Examples of diamond, gem, paraglider and paw.

Theorem 1.5. [10] The class of (2K,,3K,) -free graphs has no linear y
-binding function.

Obviously, when H is a graph with independent number at least 3, (P;,H)
-free graphs is a superclass of (2K,,3K, ) -free graphs. Thus the class of (P;,H)

-free graphs has no y -binding function.
The following theorem shows that some subclasses of P, -free graphs have a

+1
z -binding function f(a))z[a)2 j (The addition forbidden subgraphs are

given in Figure 2).
Theorem 1.6. [10] [11] [12] The class of (PS,H) -free graphs has a y

o . o+l
-binding function f (a)):( ) j when H e{bull, house, hammer}.

In [13], Schiermeyer proved that the class of (P,,H)-free graphs has a y
-binding function f(w)=w" for H e{claw,cricket, dart,gem+} (see Figure
3).

In addition to the subclasses of P, -free graphs we mentioned above, there are
many subclasses had been proved that admit a polynomial y -binding function,
which is given in [14] and [15]. More results on y -binding function, see [16].

The class of (P,,C;)-free graphs, which is a superclass of (P;,C;,cricket)
-free graphs, has been studied by Chudnovsky and Sivaraman [11]. They showed
that every (P,,C,)-free graph with clique number @ is 2°-colorable. In
this paper, we obtain the following result. In the next section, we will give the

proof.
Theorem 1.7. Every (P,,Cg,cricket) -free graph G with clique number @

has X(G)S{%z—%a).

2. The Proof of Main Result

For two vertex sets 4 and B, let E(A B)= {uv cE(G):ueAandve B}. We
say that A is complete to B, if for any xe A and yeB, xyeE(G). For a
given graph G=(V,E), let N(v) denote the neighborhood of veV(G),
and for a subset Sof V(G),set N(S)=[]J,_N(v).An induced subgraph D of
Gis called a dominating D, if there is V (G)\V (D)< N(V (D)). In this paper,
for an induced P,: P =vV,v,v,, we simply write V (P) as P. First, we give a

lemma based on the structure of a (P;,C; ) -free graph.
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Figure 2. Examples of bull, hammer and house.

Figure 3. Examples of claw, cricket, dart and gem+.

Lemma 2.1. If P =V\,V,v, is a dominating P, ofa (P;,C,)-free graph G,
then V,v, Is a dominating edge of G.

Suppose, to the contrary, that there exists a vertex U N(v,)UN(v;). Since
Pis a dominating P,, ueN (Vl)U N (V4). By symmetry, we may assume that
uv, e E(G). If uv, e E(G), then uv,v,v;v,u would be an induced C;. If
uv, ¢ E(G), then uv,v,v;v, would be an induced P,. Either deduces a contra-
diction.

Next, we show that a subclass of (P,,C;,cricket)-free graphs has a y

2
-binding function f () :[%—‘ Let iK, +K, be the graph consisted of one

edge and 7isolated vertices.

Lemma 2.2. Every (P,,C;,2K, +K,) -free graph G with clique number o

has Z(G)s{%ﬂ.

Apply induction on @ . If @w=1, it is obviously true. When w =2, it is also
true because every (P5,C5, K3) -free graph is a bipartite graph. Moreover, when

@ =3, by Theorem 1.3, x(G)<5= {%-‘ . Next, consider the cases w>4.If G

is P, -free, then G is perfect by Theorem 1.1. So we may suppose that
P =v,v,v,v, isaninduced P,.We claim that Pis a dominating P, of G. Oth-
erwise, there would exist a vertex UeV (G)\N(P). Noting that P < N(P),
{u,vl,v3,v4} induces a 2K, +K,, a contradiction. By Lemma 2.1, v,v, is a
dominating edge of G. Next, denote

V, ={viw, eE(G)and w, ¢ E(G)}\{v,},
V, ={v:w, ¢ E(G)and w, € E(G)}\{v,},

Vs =N (Vz)ﬂ N (V3).
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For clarity, we give this partition in Figure 4. Let G[S] denote the subgraph
of G induced by S. Clearly, G[V,] is (R,Cs, K, +K,)-free. (Otherwise, let
{u,,U,,u;} be an induced K, +K, of G[V,]. Then {u;,u,,us,v;} would in-
ducea 2K, +K,.) By Theorem 1.1, G[V,] is perfect. Noting that
a)(G[VZ]) <w-1, we have ;((G [Vz]) <w-1. Similarly, ;((G [V3]) <w-1.
Moreover, there is a)(G [VZ,3 ]) < w-2.Byinduction,

2

(0-2)
2(6[via]) <[22
Now we color G. Let K = {1, 2,---,[%—‘} be a color set. First, we color Vv,

and v, by colors 1 and 2, respectively. Noting that E(V,,{v;})=@, V, can
be colored by {2,3, e, a)} . Similarly, V, can be colored by

{1,w+1,---,2a)—2} . Thus, ;((G [Vz uv, U{VZ,Vg}]) <2w-2. Since V,V, is a
dominating edge of G, V (G)={v,,v;} UV, UV, UV, ;. So we have

2 2
2(G) < x(G[V, UV U{v, w3} ])+ 2 (G Vas ]) < 2w—2+{@l = {%W
Note that the bound given by Lemma 2.2 is tight for =2, and C, is a
(Ps,Cs, cricket) -free graph with clique number 2 and chromatic number 2.
Proof of Theorem 1.7
When o <3, it is obviously true. Next, assume that w>4.If Gis P, -free,
then 7(G)=w by Theorem 1.1. So we may suppose that P =v,v,v,v, is an
induced P, of G.Let N,(P)=N(N(P))\N(P) and
N;(P)=N (N2 (P))\ N (P) . Moreover, for arbitrary different
i,j.k€{1,2,3,4}, denote

U ={ve N(P\P:N(V)NP={v}},
U, ={veN(P)\P:N(W)NP={v,v}}.
U ={VeN(PNPINWINP={v. v, v},

A={veN(P)\P:N(v)NP=P}.

V2 V3

Figure 4. A partition of V(G).
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Clearly, U,.=U

ij N

U,=U,=U,,=@.5

and U, =U;;, =U,;, . Since G is (R,C,) -free,

AUuZ UUB UULZ UU1,3 UU2,3 UU2‘4 UU3,4 UU1,2,3 UU1,2,4 UU1,3,4 UU2,3,4 =N (P)\ P °

The partition is shown in Figure 5. Since Gis P, -free, there is no vertex with
a distance of 4 to P. So we can partition V(G) into N(P), N,(P), N,(P),
and color these sets respectively. Next, we give two claims based on N, (P) and
N, (P).

Claim1 N,(P)=¢&.

Otherwise, suppose there are vertices X; € N;(P) and x, € N,(P) such
that X,x; € E(G). Let ue N(P)\P be a neighbor of X,. If ueA, then
{X,,U,V;,V,,v,} would induce a cricket, a contradiction. So there exists V; and
v (i, 6{1,2,3,4} ) such that Vv, € E(G) , uv; e E(G) and uv; ¢ E(G).
Now x;X,uv,v; isaninduced B, a contradiction.

Claim 2 Let T be a connected component of G [NZ (P)} with |V (T )| >2,
then then at least one vertex of U, , is completeto V (T).

First, we show that every edge xy in ZT'has N(Xx)(AN(P)=N(y)NN(P).
Suppose, to the contrary, that there exists a vertex
ue ( N (X)ﬂ N (P)) \(N (y)ﬂ N (P)) Similar to the proof of Claim 1, there is an
induced cricket or induced P, a contradiction. So, for each xy e E(T) , xand
y have same neighborhood in N (P). By connectivity and transitivity, all ver-
tices in 7"have same neighborhood in N (P). Then there is at least one vertex,
say ,in N(P)\P suchthat V(T) iscompleteto {u}.

Next, we pick an arbitrary edge xy in 7. Then Xuy is a triangle. If
ueU,UU,,, then xuv,v,v, would beaninduced F;.And if
ueAUU,;UU,,,UU,,,, then {X,y,u,v;,v;} would induce a cricket. Up to
symmetry, there mustbe ueU,,.

By Claim 2, for an arbitrary connected component 7" of G[N2 (P)] , there
exists a vertex ueU,, such that {u} is complete to V(T). If there exists
X,y eV (T) suchthat xyeE(G),then {X,y,u,v,,V;} would induce a cricket.
Thus V(T) isa clique with size at most @—1, which implies that

2(G[N,(P)]) < o-1. (1)

Let G'=G[N(P)]. Note that Pis a dominating P, of G'.By Lemma 2.1,
V,V; is a dominating edge of G'.Thus V(G')\{v,,v;} can be partitioned into
{V2 ,V3,sz3} , which is defined as in Lemma 2.2. Since G’ is
(P, Cs,cricket)-free, both G[V,] and G[V,] are (PR, C;,K,+K,)-free. Thus,
by the coloring described in Lemma 2.2, there is
;((G [Vz uv, U {vz,vs}]) <2w-2. Moreover, noting that G [st] is complete

to {Vv,,V,}, we have that G[V2 } is (P,Cs,2K, +K,) -free and

,3

w(G [st]) <w-2.ByLemma2.2, ;((G [Vz,zJ) < [(Q—ZZ)Z —‘ . Thus,
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Figure 5. A partition of N(P)\P.

2(G") < 2(G[Vo UVy U{v, v} )+ 7(G[ Vs |) < 20— 2+ @ s[“ﬂ.(z)

By Claim 1, V (G) =N (P)U N, (P) Hence, by Inequality (1) and (2), there
is

Z(G)s;g(G’)+;(<G[N2(P)])S[%2—I+w.
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