

Engineering, 2022, 14, 147-154 https://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931

On the Chromatic Number of (*P*₅, *C*₅, Cricket)-Free Graphs

Weilun Xu

School of Mathematics and Statistics, Shandong Normal University, Jinan, China Email: xu1042086191@163.com

How to cite this paper: Xu, W.L. (2022) On the Chromatic Number of (*P*₅, *C*₅, Cricket)-Free Graphs. *Engineering*, **14**, 147-154. https://doi.org/10.4236/eng.2022.143014

Received: March 1, 2022 **Accepted:** March 22, 2022 **Published:** March 25, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

For a graph *G*, let $\chi(G)$ be the chromatic number of *G*. It is well-known that $\chi(G) \ge \omega$ holds for any graph *G* with clique number ω . For a hereditary graph class \mathscr{G} , whether there exists a function *f* such that $\chi(G) \le f(\omega(G))$ holds for every $G \in \mathscr{G}$ has been widely studied. Moreover, the form of minimum such an *f* is also concerned. A result of Schiermeyer shows that every $(P_5, \text{cricket})$ -free graph *G* with clique number ω has $\chi(G) \le \omega^2$. Chudnovsky and Sivaraman proved that every (P_5, C_5) -free with clique number ω graph is $2^{\omega-1}$ -colorable. In this paper, for any $(P_5, C_5, \text{cricket})$ -free graph *G* with clique number $\chi(G) \le \left\lceil \frac{\omega^2}{2} \right\rceil + \omega$. The main methods in the proof are set partition and induction.

Keywords

 P_5 -Free Graphs, Chromatic Number, χ -Boundedness

1. Introduction

In this paper, we consider undirected, simple graphs. For a given graph H, a graph G is called H-free if G contains no induced subgraphs isomorphic to H. Let H_1, H_2, \dots, H_k $(k \ge 2)$ be different graphs. If for any $1 \le i \le k$, G is H_i -free, then we say that G is (H_1, H_2, \dots, H_k) -free. A graph G = (V, E) is k-colorable if there exists a function $\varphi: V(G) \mapsto \{1, 2, \dots, k\}$ such that for any $uv \in E(G)$, there is $\varphi(u) \ne \varphi(v)$. The *chromatic number* of G is the minimum integer k such that G is k-colorable, denoted by $\chi(G)$. For a graph G = (V, E), a subset S of V(G) is called a clique if S induces a complete subgraph. We use $\omega(G)$ to denote the maximum size of cliques of G. It is well-known that $\omega(G) \le \chi(G)$ for every graph *G*. A graph is *perfect* if for any induced subgraph *G'* of *G*, $\omega(G') = \chi(G')$. Chudnovsky *et al.* [1] gave an equivalent characterization of perfect graphs, which is also called as the Strong Perfect Graph Theorem.

Theorem 1.1. [1] A graph is perfect if and only if it contains neither odd cycles of length at least five nor the complements of these odd cycles.

We say a hereditary graph class \mathcal{G} is χ -bounded, if there exists a function f such that for any $G \in \mathcal{G}$, $\chi(G) \leq f(\omega(G))$. Moreover, f is called a χ -binding function of \mathcal{G} . Erdös [2] showed that for arbitrary integers $k, l \geq 3$, there exists a graph G with girth at least l and $\chi(G) \geq k$, which implies that the class of H-free graphs is not χ -bounded when H contains a cycle. Gyárfás conjectured that the graph class obtained by forbidding a tree (or forest) is χ -bounded.

Conjecture 1.2. [3] Let *T* be a tree (or forest), then there exists a function f_T such that, for any *T*-free graph *G*, $\chi(G) \leq f_T(\omega(G))$.

Moreover, Gyárfás [3] verified this conjecture when $T = P_k$, and showed that $f_T \leq (k-1)^{\omega(G)-1}$. When $T = P_5$, Esperet *et al.* [4] gave a χ -binding function of P_5 -free graphs as following.

Theorem 1.3. [4] Suppose G is a P_5 -free graph with clique number $\omega \ge 3$. Then $\chi(G) \le 5 \cdot 3^{\omega-3}$.

As far as we know, for $\omega \ge 3$, $f(\omega) = 5 \cdot 3^{\omega-3}$ is the optimal χ -binding function of P_5 -free graphs at present. Furthermore, determining a polynomial χ -binding function of the class of P_5 -free graphs is an open problem. A result in [5] shows that the class of *H*-free graphs has a linear χ -binding function *f*, if and only if $f(\omega) = \omega$ and *H* is an induced subgraph of P_4 , which means that the class of P_5 -free graphs has no linear χ -binding function.

In this paper, we focus on subclasses of P_5 -free graphs. While the class of P_5 -free graphs has no linear χ -binding function, some subclasses of P_5 -free have linear χ -binding functions.

Theorem 1.4. [6] [7] [8] [9] Suppose

 $H \in \{ diamond, gem, paraglider, paw \}$, then the class of (P_5, H) -free graphs has a χ -binding function.

More formally, Chudnovsky *et al.* [6] proved that the class of (P_5, gem) -free graphs has a χ -binding function $f(\omega) \leq \left\lceil \frac{5}{4} \omega \right\rceil$. Huang and Karthick [7]

showed that $(P_5, \text{paraglider})$ graphs have a χ -binding function $f(\omega) \leq \left| \frac{3}{2} \omega \right|$.

Karthick and Maffray [8] gave a χ -binding function $f(\omega) = \omega + 1$ for $(P_5, \text{diamond})$ -free graphs. And Randerath [9] showed that (P_5, paw) -free graphs have a χ -binding function $f(\omega) = \omega + 1$ (diamond, gem, paraglider and paw are given in Figure 1).

It is worth noting that a result in [10] shows that when H contains an independent set with size at least 3, the class of (P_5, H) -free graphs has no linear χ -binding function.

Figure 1. Examples of diamond, gem, paraglider and paw.

Theorem 1.5. [10] The class of $(2K_2, 3K_1)$ -free graphs has no linear χ -binding function.

Obviously, when *H* is a graph with independent number at least 3, (P_5, H) -free graphs is a superclass of $(2K_2, 3K_1)$ -free graphs. Thus the class of (P_5, H) -free graphs has no χ -binding function.

The following theorem shows that some subclasses of P_5 -free graphs have a χ -binding function $f(\omega) = \begin{pmatrix} \omega+1\\ 2 \end{pmatrix}$ (The addition forbidden subgraphs are given in Figure 2).

Theorem 1.6. [10] [11] [12] The class of (P_5, H) -free graphs has a χ -binding function $f(\omega) = \begin{pmatrix} \omega+1\\ 2 \end{pmatrix}$ when $H \in \{bull, house, hammer\}$.

In [13], Schiermeyer proved that the class of (P_5, H) -free graphs has a χ -binding function $f(\omega) = \omega^2$ for $H \in \{\text{claw}, \text{cricket}, \text{dart}, \text{gem}+\}$ (see Figure 3).

In addition to the subclasses of P_5 -free graphs we mentioned above, there are many subclasses had been proved that admit a polynomial χ -binding function, which is given in [14] and [15]. More results on χ -binding function, see [16].

The class of (P_5, C_5) -free graphs, which is a superclass of $(P_5, C_5, \text{cricket})$ -free graphs, has been studied by Chudnovsky and Sivaraman [11]. They showed that every (P_5, C_5) -free graph with clique number ω is $2^{\omega-1}$ -colorable. In this paper, we obtain the following result. In the next section, we will give the proof.

Theorem 1.7. Every $(P_5, C_5, \text{cricket})$ -free graph G with clique number ω has $\chi(G) \leq \left\lceil \frac{\omega^2}{2} \right\rceil + \omega$.

2. The Proof of Main Result

For two vertex sets A and B, let $E(A,B) = \{uv \in E(G) : u \in A \text{ and } v \in B\}$. We say that A is complete to B, if for any $x \in A$ and $y \in B$, $xy \in E(G)$. For a given graph G = (V, E), let N(v) denote the neighborhood of $v \in V(G)$, and for a subset S of V(G), set $N(S) = \bigcup_{v \in S} N(v)$. An induced subgraph D of G is called a *dominating D*, if there is $V(G) \setminus V(D) \subseteq N(V(D))$. In this paper, for an induced P_4 : $P = v_1 v_2 v_3 v_4$, we simply write V(P) as P. First, we give a lemma based on the structure of a (P_5, C_5) -free graph.

Figure 3. Examples of claw, cricket, dart and gem+.

Lemma 2.1. If $P = v_1v_2v_3v_4$ is a dominating P_4 of a (P_5, C_5) -free graph G, then v_3v_3 is a dominating edge of G.

Suppose, to the contrary, that there exists a vertex $u \notin N(v_2) \bigcup N(v_3)$. Since P is a dominating P_4 , $u \in N(v_1) \bigcup N(v_4)$. By symmetry, we may assume that $uv_1 \in E(G)$. If $uv_4 \in E(G)$, then $uv_1v_2v_3v_4u$ would be an induced C_5 . If $uv_4 \notin E(G)$, then $uv_1v_2v_3v_4$ would be an induced P_5 . Either deduces a contradiction.

Next, we show that a subclass of $(P_5, C_5, \text{cricket})$ -free graphs has a χ -binding function $f(\omega) = \left\lceil \frac{\omega^2}{2} \right\rceil$. Let $iK_1 + K_2$ be the graph consisted of one edge and *i* isolated vertices.

Lemma 2.2. Every $(P_5, C_5, 2K_1 + K_2)$ -free graph G with clique number ω

has
$$\chi(G) \leq \left| \frac{\omega^2}{2} \right|.$$

Apply induction on ω . If $\omega = 1$, it is obviously true. When $\omega = 2$, it is also true because every (P_5, C_5, K_3) -free graph is a bipartite graph. Moreover, when $\omega = 3$, by Theorem 1.3, $\chi(G) \le 5 = \left\lceil \frac{9}{2} \right\rceil$. Next, consider the cases $\omega \ge 4$. If G is P_4 -free, then G is perfect by Theorem 1.1. So we may suppose that $P = v_1 v_2 v_3 v_4$ is an induced P_4 . We claim that P is a dominating P_4 of G. Otherwise, there would exist a vertex $u \in V(G) \setminus N(P)$. Noting that $P \subseteq N(P)$, $\{u, v_1, v_3, v_4\}$ induces a $2K_1 + K_2$, a contradiction. By Lemma 2.1, $v_2 v_3$ is a dominating edge of G. Next, denote

$$V_{2} = \left\{ v : vv_{2} \in E(G) \text{ and } vv_{3} \notin E(G) \right\} \setminus \left\{ v_{3} \right\},$$
$$V_{3} = \left\{ v : vv_{2} \notin E(G) \text{ and } vv_{3} \in E(G) \right\} \setminus \left\{ v_{2} \right\},$$
$$V_{2,3} = N(v_{2}) \cap N(v_{3}).$$

For clarity, we give this partition in **Figure 4**. Let G[S] denote the subgraph of G induced by S. Clearly, $G[V_2]$ is $(P_5, C_5, K_1 + K_2)$ -free. (Otherwise, let $\{u_1, u_2, u_3\}$ be an induced $K_1 + K_2$ of $G[V_2]$. Then $\{u_1, u_2, u_3, v_3\}$ would induce a $2K_1 + K_2$.) By Theorem 1.1, $G[V_2]$ is perfect. Noting that

 $\omega(G[V_2]) \le \omega - 1$, we have $\chi(G[V_2]) \le \omega - 1$. Similarly, $\chi(G[V_3]) \le \omega - 1$. Moreover, there is $\omega(G[V_{2,3}]) \le \omega - 2$. By induction,

$$\chi\left(G\left[V_{2,3}\right]\right) \leq \left\lceil \frac{\left(\omega-2\right)^2}{2} \right\rceil$$

Now we color G. Let $K = \left\{1, 2, \dots, \left\lceil \frac{\omega^2}{2} \right\rceil\right\}$ be a color set. First, we color v_2

and v_3 by colors 1 and 2, respectively. Noting that $E(V_2, \{v_3\}) = \emptyset$, V_2 can be colored by $\{2, 3, \dots, \omega\}$. Similarly, V_3 can be colored by

 $\{1, \omega+1, \dots, 2\omega-2\}$. Thus, $\chi(G[V_2 \cup V_3 \cup \{v_2, v_3\}]) \le 2\omega-2$. Since v_2v_3 is a dominating edge of *G*, $V(G) = \{v_2, v_3\} \cup V_2 \cup V_3 \cup V_{2,3}$. So we have

$$\chi(G) \leq \chi\left(G\left[V_2 \cup V_3 \cup \{v_2, v_3\}\right]\right) + \chi\left(G\left[V_{2,3}\right]\right) \leq 2\omega - 2 + \left|\frac{(\omega - 2)^2}{2}\right| = \left[\frac{\omega^2}{2}\right].$$

Note that the bound given by Lemma 2.2 is tight for $\omega = 2$, and C_4 is a $(P_5, C_5, \text{cricket})$ -free graph with clique number 2 and chromatic number 2.

Proof of Theorem 1.7

When $\omega \leq 3$, it is obviously true. Next, assume that $\omega \geq 4$. If G is P_4 -free, then $\chi(G) = \omega$ by Theorem 1.1. So we may suppose that $P = v_1 v_2 v_3 v_4$ is an induced P_4 of G. Let $N_2(P) = N(N(P)) \setminus N(P)$ and $N_1(P) = N(N_1(P)) \setminus N(P)$. Moreover, for exhibiting different

 $N_3(P) = N(N_2(P)) \setminus N(P)$. Moreover, for arbitrary different $i, j, k \in \{1, 2, 3, 4\}$, denote

$$U_{i} = \left\{ v \in N(P) \setminus P : N(v) \cap P = \left\{ v_{i} \right\} \right\},$$
$$U_{i,j} = \left\{ v \in N(P) \setminus P : N(v) \cap P = \left\{ v_{i}, v_{j} \right\} \right\},$$
$$U_{i,j,k} = \left\{ v \in N(P) \setminus P : N(v) \cap P = \left\{ v_{i}, v_{j}, v_{k} \right\} \right\},$$
$$A = \left\{ v \in N(P) \setminus P : N(v) \cap P = P \right\}.$$

Figure 4. A partition of V(G).

Clearly, $U_{i,j} = U_{j,i}$ and $U_{i,k,j} = U_{i,j,k} = U_{j,i,k}$. Since *G* is (P_5, C_5) -free, $U_1 = U_4 = U_{1,4} = \emptyset$. So

 $A \bigcup U_2 \bigcup U_3 \bigcup U_{1,2} \bigcup U_{1,3} \bigcup U_{2,3} \bigcup U_{2,4} \bigcup U_{3,4} \bigcup U_{1,2,3} \bigcup U_{1,2,4} \bigcup U_{1,3,4} \bigcup U_{2,3,4} = N(P) \setminus P.$

The partition is shown in **Figure 5**. Since *G* is P_5 -free, there is no vertex with a distance of 4 to *P*. So we can partition V(G) into N(P), $N_2(P)$, $N_3(P)$, and color these sets respectively. Next, we give two claims based on $N_3(P)$ and $N_2(P)$.

Claim 1 $N_3(P) = \emptyset$.

Otherwise, suppose there are vertices $x_3 \in N_3(P)$ and $x_2 \in N_2(P)$ such that $x_2x_3 \in E(G)$. Let $u \in N(P) \setminus P$ be a neighbor of x_2 . If $u \in A$, then $\{x_2, u, v_1, v_2, v_4\}$ would induce a cricket, a contradiction. So there exists v_i and v_j $(i, j \in \{1, 2, 3, 4\})$ such that $v_iv_j \in E(G)$, $uv_i \in E(G)$ and $uv_j \notin E(G)$. Now $x_3x_2uv_iv_i$ is an induced P_5 , a contradiction.

Claim 2 Let T be a connected component of $G[N_2(P)]$ with $|V(T)| \ge 2$, then then at least one vertex of $U_{2,3}$ is complete to V(T).

First, we show that every edge xy in T has $N(x) \cap N(P) = N(y) \cap N(P)$. Suppose, to the contrary, that there exists a vertex

 $u \in (N(x) \cap N(P)) \setminus (N(y) \cap N(P))$. Similar to the proof of Claim 1, there is an induced cricket or induced P_5 , a contradiction. So, for each $xy \in E(T)$, x and y have same neighborhood in N(P). By connectivity and transitivity, all vertices in T have same neighborhood in N(P). Then there is at least one vertex, say u, in $N(P) \setminus P$ such that V(T) is complete to $\{u\}$.

Next, we pick an arbitrary edge xy in T. Then xuy is a triangle. If $u \in U_2 \bigcup U_{1,2}$, then $xuv_2v_3v_4$ would be an induced P_5 . And if

 $u \in A \bigcup U_{1,3} \bigcup U_{1,2,3} \bigcup U_{1,3,4}$, then $\{x, y, u, v_1, v_3\}$ would induce a cricket. Up to symmetry, there must be $u \in U_{2,3}$.

By Claim 2, for an arbitrary connected component T of $G[N_2(P)]$, there exists a vertex $u \in U_{2,3}$ such that $\{u\}$ is complete to V(T). If there exists $x, y \in V(T)$ such that $xy \notin E(G)$, then $\{x, y, u, v_2, v_3\}$ would induce a cricket. Thus V(T) is a clique with size at most $\omega - 1$, which implies that

$$\chi(G[N_2(P)]) \le \omega - 1. \tag{1}$$

Let G' = G[N(P)]. Note that *P* is a dominating P_4 of *G'*. By Lemma 2.1, v_2v_3 is a dominating edge of *G'*. Thus $V(G') \setminus \{v_2, v_3\}$ can be partitioned into $\{V_2, V_3, V_{2,3}\}$, which is defined as in Lemma 2.2. Since *G'* is

 $(P_5, C_5, \text{cricket})$ -free, both $G[V_2]$ and $G[V_3]$ are $(P_5, C_5, K_1 + K_2)$ -free. Thus, by the coloring described in Lemma 2.2, there is

 $\chi \Big(G \Big[V_2 \cup V_3 \cup \{v_2, v_3\} \Big] \Big) \le 2\omega - 2. \text{ Moreover, noting that } G \Big[V_{2,3} \Big] \text{ is complete}$ to $\{v_2, v_3\}$, we have that $G \Big[V_{2,3} \Big]$ is $(P_5, C_5, 2K_1 + K_2)$ -free and $\omega \Big(G \Big[V_{2,3} \Big] \Big) \le \omega - 2.$ By Lemma 2.2, $\chi \Big(G \Big[V_{2,3} \Big] \Big) \le \left[\frac{(\omega - 2)^2}{2} \right].$ Thus,

Figure 5. A partition of $N(P) \setminus P$.

$$\chi(G') \leq \chi\left(G\left[V_2 \cup V_3 \cup \{v_2, v_3\}\right]\right) + \chi\left(G\left[V_{2,3}\right]\right) \leq 2\omega - 2 + \left[\frac{(\omega - 2)^2}{2}\right] \leq \left[\frac{\omega^2}{2}\right]. (2)$$

By Claim 1, $V(G) = N(P) \cup N_2(P)$. Hence, by Inequality (1) and (2), there is

$$\chi(G) \leq \chi(G') + \chi(G[N_2(P)]) \leq \left\lceil \frac{\omega^2}{2} \right\rceil + \omega.$$

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- Chudnovsky, M., Robertson, N., Seymour, P. and Thomas, R. (2006) The Strong Perfect Graph Theorem. *Annals of Mathematic*, **164**, 51-229. <u>https://doi.org/10.4007/annals.2006.164.51</u>
- [2] Erdös, P. (1959) Graph Theory and Probability. *Classic Papers in Combinatorics*, 11, 34-38. <u>https://doi.org/10.4153/CJM-1959-003-9</u>
- [3] Gyárfás, A. (1987) Problems from the World Surrounding Perfect Graphs. *Applicationes Mathematicae*, **19**, 413-441. <u>https://doi.org/10.4064/am-19-3-4-413-441</u>
- [4] Esperet, L., Lemoine, L., Maffray, F. and Morel, G. (2013) The Chromatic Number of (*P*₅, *K*₄)-Free Graphs. *Discrete Mathematics*, **313**, 743-754. https://doi.org/10.1016/j.disc.2012.12.019
- [5] Randerath, B. and Schiermeyer, I. (2004) Vertex Colouring and Forbidden Subgraphs—A Survey. *Graphs and Combinatorics*, 20, 1-40. <u>https://doi.org/10.1007/s00373-003-0540-1</u>
- [6] Chudnovsky, M., Karthick, T., Maceli, P. and Maffray, F. (2020) Coloring Graphs with No Induced Five-Vertex Path or Gem. *Journal of Graph Theory*, 95, 527-542. <u>https://doi.org/10.1002/jgt.22572</u>
- [7] Huang, S. and Karthick, T. (2021) On Graphs with No Induced Five-Vertex Path or

Paraglider. Journal of Graph Theory, 97, 305-323. https://doi.org/10.1002/jgt.22656

- [8] Karthick, T. and Maffray, F. (2016) Vizing Bound for the Chromatic Number on Some Graph Classes. *Graphs and Combinatorics*, 32, 1447-1460. <u>https://doi.org/10.1007/s00373-015-1651-1</u>
- [9] Randerath, B. (1998) The Vizing Bound for the Chromatic Number Based on Forbidden Pairs. Ph.D. Thesis, RWTH Aachen, Shaker Verlag.
- [10] Brause, C., Randerath, B., Schiermeyer, I. and Vumar, E. (2019) On the Chromatic Number of 2*K*₂-Free Graphs. *Discrete Applied Mathematics*, **253**, 14-24. <u>https://doi.org/10.1016/j.dam.2018.09.030</u>
- [11] Chudnovsky, M. and Sivaraman, V. (2019) Perfect Divisibility and 2-Divisibility. Journal of Graph Theory, 90, 54-60. <u>https://doi.org/10.1002/jgt.22367</u>
- [12] Fouquet, J., Giakoumakis, V., Maire, F. and Thuillier, H. (1995) On Graphs without P₅ and P₅. Discrete Mathematics, 146, 33-44. https://doi.org/10.1016/0012-365X(94)00155-X
- [13] Schiermeyer, I. (2016) Chromatic Number of P5-Free Graphs: Reed's Conjecture. Discrete Mathematics, 339, 1940-1943. <u>https://doi.org/10.1016/j.disc.2015.11.020</u>
- Brause, C., Doan, T. and Schiermeyer, I. (2016) On the Chromatic Number of (*P*₅, *K*_{2,*t*})-Free Graphs. *Electronic Notes in Discrete Mathematics*, **55**, 127-130. https://doi.org/10.1016/j.endm.2016.10.032
- [15] Schiermeyer, I. (2017) On the Chromatic Number of (*P*₅, Windmill)-Free Graphs. *Opuscula Mathematica*, **37**, 609-615. <u>https://doi.org/10.7494/OpMath.2017.37.4.609</u>
- [16] Schiermeyer, I. and Randerath, B. (2019) Polynomial X-Binding Functions and Forbidden Induced Subgraphs: A Survey. *Graphs and Combinatorics*, 35, 1-31. <u>https://doi.org/10.1007/s00373-018-1999-0</u>