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Abstract 
For a graph G, let ( )Gχ  be the chromatic number of G. It is well-known that 

( )Gχ ω≥  holds for any graph G with clique number ω . For a hereditary 

graph class G , whether there exists a function f such that ( ) ( )( )G f Gχ ω≤  

holds for every G∈G  has been widely studied. Moreover, the form of 
minimum such an f is also concerned. A result of Schiermeyer shows that 
every ( )5 , cricketP -free graph G with clique number ω  has ( ) 2Gχ ω≤ . 

Chudnovsky and Sivaraman proved that every ( )5 5,P C -free with clique 

number ω  graph is 12ω− -colorable. In this paper, for any ( )5 5, , cricketP C

-free graph G with clique number ω , we prove that ( )
2

2
G ωχ ω

 
≤ + 
 

. The 

main methods in the proof are set partition and induction. 
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1. Introduction 

In this paper, we consider undirected, simple graphs. For a given graph H, a 
graph G is called H-free if G contains no induced subgraphs isomorphic to H. 
Let 1 2, , , kH H H  ( )2k ≥  be different graphs. If for any 1 i k≤ ≤ , G is iH
-free, then we say that G is ( )1 2, , , kH H H -free. A graph ( ),G V E=  is 
k-colorable if there exists a function ( ) { }: 1, 2, ,V G kϕ    such that for any 

( )uv E G∈ , there is ( ) ( )u vϕ ϕ≠ . The chromatic number of G is the minimum 
integer k such that G is k-colorable, denoted by ( )Gχ . For a graph ( ),G V E= , 
a subset S of ( )V G  is called a clique if S induces a complete subgraph. We use 
( )Gω  to denote the maximum size of cliques of G. It is well-known that 
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( ) ( )G Gω χ≤  for every graph G. A graph is perfect if for any induced subgraph 
G′  of G, ( ) ( )G Gω χ′ ′= . Chudnovsky et al. [1] gave an equivalent characteri-
zation of perfect graphs, which is also called as the Strong Perfect Graph Theo-
rem.  

Theorem 1.1. [1] A graph is perfect if and only if it contains neither odd 
cycles of length at least five nor the complements of these odd cycles.  

We say a hereditary graph class G  is χ -bounded, if there exists a function 
f such that for any G∈G , ( ) ( )( )G f Gχ ω≤ . Moreover, f is called a χ
-binding function of G . Erdös [2] showed that for arbitrary integers , 3k l ≥ , 
there exists a graph G with girth at least l and ( )G kχ ≥ , which implies that the 
class of H-free graphs is not χ -bounded when H contains a cycle. Gyárfás con-
jectured that the graph class obtained by forbidding a tree (or forest) is χ
-bounded.  

Conjecture 1.2. [3] Let T be a tree (or forest), then there exists a function Tf  
such that, for any T-free graph G, ( ) ( )( )TG f Gχ ω≤ .  

Moreover, Gyárfás [3] verified this conjecture when kT P= , and showed that 
( ) ( ) 11 G

Tf k ω −≤ − . When 5T P= , Esperet et al. [4] gave a χ -binding function of 

5P -free graphs as following.  
Theorem 1.3. [4] Suppose G is a 5P -free graph with clique number 3ω ≥ . 

Then ( ) 35 3G ωχ −≤ ⋅ .  
As far as we know, for 3ω ≥ , ( ) 35 3f ωω −= ⋅  is the optimal χ -binding 

function of 5P -free graphs at present. Furthermore, determining a polynomial 
χ -binding function of the class of 5P -free graphs is an open problem. A result 
in [5] shows that the class of H-free graphs has a linear χ -binding function f, if 
and only if ( )f ω ω=  and H is an induced subgraph of 4P , which means that 
the class of 5P -free graphs has no linear χ -binding function. 

In this paper, we focus on subclasses of 5P -free graphs. While the class of 5P
-free graphs has no linear χ -binding function, some subclasses of 5P -free have 
linear χ -binding functions. 

Theorem 1.4. [6] [7] [8] [9] Suppose  
{ }, , , H diamond gem paraglider paw∈ , then the class of ( )5 ,P H -free graphs 

has a χ -binding function.  
More formally, Chudnovsky et al. [6] proved that the class of ( )5 ,gemP -free  

graphs has a χ -binding function ( ) 5
4

f ω ω ≤   
. Huang and Karthick [7] 

showed that ( )5 , paragliderP  graphs have a χ -binding function ( ) 3
2

f ω ω ≤   
.  

Karthick and Maffray [8] gave a χ -binding function ( ) 1f ω ω= +  for 
( )5 ,diamondP -free graphs. And Randerath [9] showed that ( )5 , pawP -free 
graphs have a χ -binding function ( ) 1f ω ω= +  (diamond, gem, paraglider 
and paw are given in Figure 1). 

It is worth noting that a result in [10] shows that when H contains an inde-
pendent set with size at least 3, the class of ( )5 ,P H -free graphs has no linear χ
-binding function.  
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Figure 1. Examples of diamond, gem, paraglider and paw. 

 
Theorem 1.5. [10] The class of ( )2 12 ,3K K -free graphs has no linear χ

-binding function.  
Obviously, when H is a graph with independent number at least 3, ( )5 ,P H

-free graphs is a superclass of ( )2 12 ,3K K -free graphs. Thus the class of ( )5 ,P H
-free graphs has no χ -binding function. 

The following theorem shows that some subclasses of 5P -free graphs have a 

χ -binding function ( )
1

2
f

ω
ω

+ 
=  
 

 (The addition forbidden subgraphs are 

given in Figure 2).  
Theorem 1.6. [10] [11] [12] The class of ( )5 ,P H -free graphs has a χ

-binding function ( )
1

2
f

ω
ω

+ 
=  
 

 when { }, , H bull house hammer∈ .  

In [13], Schiermeyer proved that the class of ( )5 ,P H -free graphs has a χ
-binding function ( ) 2f ω ω=  for { }claw, cricket, dart, gemH ∈ +  (see Figure 
3). 

In addition to the subclasses of 5P -free graphs we mentioned above, there are 
many subclasses had been proved that admit a polynomial χ -binding function, 
which is given in [14] and [15]. More results on χ -binding function, see [16]. 

The class of ( )5 5,P C -free graphs, which is a superclass of ( )5 5, , cricketP C
-free graphs, has been studied by Chudnovsky and Sivaraman [11]. They showed 
that every ( )5 5,P C -free graph with clique number ω  is 12ω− -colorable. In 
this paper, we obtain the following result. In the next section, we will give the 
proof. 

Theorem 1.7. Every ( )5 5, , cricketP C -free graph G with clique number ω  

has ( )
2

2
G ωχ ω

 
≤ + 
 

.  

2. The Proof of Main Result 

For two vertex sets A and B, let ( ) ( ){ }, : andE A B uv E G u A v B= ∈ ∈ ∈ . We 

say that A is complete to B, if for any x A∈  and y B∈ , ( )xy E G∈ . For a 

given graph ( ),G V E= , let ( )N v  denote the neighborhood of ( )v V G∈ , 

and for a subset S of ( )V G , set ( ) ( )v S
N S N v

∈
=


. An induced subgraph D of 

G is called a dominating D, if there is ( ) ( ) ( )( )\V G V D N V D⊆ . In this paper, 

for an induced 4P : 1 2 3 4P v v v v= , we simply write ( )V P  as P. First, we give a 

lemma based on the structure of a ( )5 5,P C -free graph. 
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Figure 2. Examples of bull, hammer and house. 

 

 
Figure 3. Examples of claw, cricket, dart and gem+. 

 
Lemma 2.1. If 1 2 3 4P v v v v=  is a dominating 4P  of a ( )5 5,P C -free graph G, 

then 2 3v v  is a dominating edge of G.  
Suppose, to the contrary, that there exists a vertex ( ) ( )2 3u N v N v∉  . Since 

P is a dominating 4P , ( ) ( )1 4u N v N v∈  . By symmetry, we may assume that 
( )1uv E G∈ . If ( )4uv E G∈ , then 1 2 3 4uv v v v u  would be an induced 5C . If 
( )4uv E G∉ , then 1 2 3 4uv v v v  would be an induced 5P . Either deduces a contra-

diction.  
Next, we show that a subclass of ( )5 5, , cricketP C -free graphs has a χ

-binding function ( )
2

2
f ωω

 
=  
 

. Let 1 2iK K+  be the graph consisted of one 

edge and i isolated vertices. 
Lemma 2.2. Every ( )5 5 1 2, , 2P C K K+ -free graph G with clique number ω  

has ( )
2

2
G ωχ

 
≤  
 

.  

Apply induction on ω . If 1ω = , it is obviously true. When 2ω = , it is also 
true because every ( )5 5 3, ,P C K -free graph is a bipartite graph. Moreover, when 

3ω = , by Theorem 1.3, ( ) 95
2

Gχ  ≤ =   
. Next, consider the cases 4ω ≥ . If G  

is 4P -free, then G is perfect by Theorem 1.1. So we may suppose that 

1 2 3 4P v v v v=  is an induced 4P . We claim that P is a dominating 4P  of G. Oth-
erwise, there would exist a vertex ( ) ( )\u V G N P∈ . Noting that ( )P N P⊆ , 
{ }1 3 4, , ,u v v v  induces a 1 22K K+ , a contradiction. By Lemma 2.1, 2 3v v  is a 
dominating edge of G. Next, denote  

( ) ( ){ } { }2 2 3 3: and \ ,V v vv E G vv E G v= ∈ ∉  

( ) ( ){ } { }3 2 3 2: and \ ,V v vv E G vv E G v= ∉ ∈  

( ) ( )2,3 2 3 .V N v N v=   
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For clarity, we give this partition in Figure 4. Let [ ]G S  denote the subgraph 
of G induced by S. Clearly, [ ]2G V  is ( )5 5 1 2, ,P C K K+ -free. (Otherwise, let 
{ }1 2 3, ,u u u  be an induced 1 2K K+  of [ ]2G V . Then { }1 2 3 3, , ,u u u v  would in-
duce a 1 22K K+ .) By Theorem 1.1, [ ]2G V  is perfect. Noting that  

[ ]( )2 1G Vω ω≤ − , we have [ ]( )2 1G Vχ ω≤ − . Similarly, [ ]( )3 1G Vχ ω≤ − . 
Moreover, there is ( )2,3 2G Vω ω  ≤ −  . By induction,  

( ) ( )2

2,3

2
2

G V
ω

χ
 −

  ≤      
. 

Now we color G. Let 
2

1, 2, ,
2

K ω   =   
   

  be a color set. First, we color 2v   

and 3v  by colors 1 and 2, respectively. Noting that { }( )2 3,E V v = ∅ , 2V  can 
be colored by { }2,3, ,ω . Similarly, 3V  can be colored by  
{ }1, 1, , 2 2ω ω+ − . Thus, { }( )2 3 2 3, 2 2G V V v vχ ω  ≤ −   . Since 2 3v v  is a 
dominating edge of G, ( ) { }2 3 2 3 2,3,V G v v V V V=    . So we have 

( ) { }( ) ( ) ( )2 2

2 3 2 3 2,3

2
, 2 2 .

2 2
G G V V v v G V

ω ωχ χ χ ω
 −  

  ≤ + ≤ − + =           
   

Note that the bound given by Lemma 2.2 is tight for 2ω = , and 4C  is a 
( )5 5, , cricketP C -free graph with clique number 2 and chromatic number 2. 

Proof of Theorem 1.7 
When 3ω ≤ , it is obviously true. Next, assume that 4ω ≥ . If G is 4P -free, 

then ( )Gχ ω=  by Theorem 1.1. So we may suppose that 1 2 3 4P v v v v=  is an 
induced 4P  of G. Let ( ) ( )( ) ( )2 \N P N N P N P=  and  

( ) ( )( ) ( )3 2 \N P N N P N P= . Moreover, for arbitrary different  
{ }, , 1, 2,3, 4i j k ∈ , denote  

( ) ( ) { }{ }\ : ,i iU v N P P N v P v= ∈ =  

( ) ( ) { }{ }, \ : , ,i j i jU v N P P N v P v v= ∈ =  

( ) ( ) { }{ }, , \ : , , ,i j k i j kU v N P P N v P v v v= ∈ =  

( ) ( ){ }\ : .A v N P P N v P P= ∈ =  
 

 
Figure 4. A partition of ( )V G . 
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Clearly, , ,i j j iU U=  and , , , , , ,i k j i j k j i kU U U= = . Since G is ( )5 5,P C -free, 

1 4 1,4U U U= = = ∅ . So  

( )2 3 1,2 1,3 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4 \A U U U U U U U U U U U N P P=           . 

The partition is shown in Figure 5. Since G is 5P -free, there is no vertex with 
a distance of 4 to P. So we can partition ( )V G  into ( )N P , ( )2N P , ( )3N P , 
and color these sets respectively. Next, we give two claims based on ( )3N P  and 

( )2N P .  
Claim 1 ( )3N P = ∅ .  
Otherwise, suppose there are vertices ( )3 3x N P∈  and ( )2 2x N P∈  such 

that ( )2 3x x E G∈ . Let ( ) \u N P P∈  be a neighbor of 2x . If u A∈ , then 
{ }2 1 2 4, , , ,x u v v v  would induce a cricket, a contradiction. So there exists iv  and 

jv  ( { }, 1, 2,3, 4i j∈ ) such that ( )i jv v E G∈ , ( )iuv E G∈  and ( )juv E G∉ . 
Now 3 2 i jx x uv v  is an induced 5P , a contradiction.  

Claim 2 Let T be a connected component of ( )2G N P    with ( ) 2V T ≥ , 
then then at least one vertex of 2,3U  is complete to ( )V T .  

First, we show that every edge xy  in T has ( ) ( ) ( ) ( )N x N P N y N P=  . 
Suppose, to the contrary, that there exists a vertex  

( ) ( )( ) ( ) ( )( )\u N x N P N y N P∈   . Similar to the proof of Claim 1, there is an 
induced cricket or induced 5P , a contradiction. So, for each ( )xy E T∈ , x and 
y have same neighborhood in ( )N P . By connectivity and transitivity, all ver-
tices in T have same neighborhood in ( )N P . Then there is at least one vertex, 
say u, in ( ) \N P P  such that ( )V T  is complete to { }u . 

Next, we pick an arbitrary edge xy  in T. Then xuy  is a triangle. If 

2 1,2u U U∈  , then 2 3 4xuv v v  would be an induced 5P . And if  

1,3 1,2,3 1,3,4u A U U U∈    , then { }1 3, , , ,x y u v v  would induce a cricket. Up to 
symmetry, there must be 2,3u U∈ .  

By Claim 2, for an arbitrary connected component T of ( )2G N P   , there 
exists a vertex 2,3u U∈  such that { }u  is complete to ( )V T . If there exists 

( ),x y V T∈  such that ( )xy E G∉ , then { }2 3, , , ,x y u v v  would induce a cricket. 
Thus ( )V T  is a clique with size at most 1ω − , which implies that  

( )( )2 1.G N Pχ ω≤ −                        (1) 

Let ( )G G N P′ =    . Note that P is a dominating 4P  of G′ . By Lemma 2.1, 

2 3v v  is a dominating edge of G′ . Thus ( ) { }2 3\ ,V G v v′  can be partitioned into 

{ }2 3 2,3, ,V V V , which is defined as in Lemma 2.2. Since G′  is  
( )5 5, , cricketP C -free, both [ ]2G V  and [ ]3G V  are ( )5 5 1 2, ,P C K K+ -free. Thus, 
by the coloring described in Lemma 2.2, there is  

{ }( )2 3 2 3, 2 2G V V v vχ ω  ≤ −   . Moreover, noting that 2,3G V    is complete 

to { }2 3,v v , we have that 2,3G V    is ( )5 5 1 2, , 2P C K K+ -free and  

( )2,3 2G Vω ω  ≤ −  . By Lemma 2.2, ( ) ( )2

2,3

2
2

G V
ω

χ
 −

  ≤      
. Thus,  
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Figure 5. A partition of ( ) \N P P . 

 

( ) { }( ) ( ) ( )2 2

2 3 2 3 2,3

2
, 2 2 .

2 2
G G V V v v G V

ω ωχ χ χ ω
 −  

′   ≤ + ≤ − + ≤           
  (2) 

By Claim 1, ( ) ( ) ( )2V G N P N P=  . Hence, by Inequality (1) and (2), there 
is  

( ) ( ) ( )( )
2

2 .
2

G G G N P ωχ χ χ ω
 

′≤ + ≤ +    
 
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