On the Chromatic Number of (P_{5}, C_{5}, Cricket)-Free Graphs

Weilun Xu
School of Mathematics and Statistics, Shandong Normal University, Jinan, China
Email: xu1042086191@163.com

How to cite this paper: Xu, W.L. (2022) On the Chromatic Number of (P_{5}, C_{5}, Crick-et)-Free Graphs. Engineering, 14, 147-154. https://doi.org/10.4236/eng.2022.143014

Received: March 1, 2022
Accepted: March 22, 2022
Published: March 25, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

For a graph G, let $\chi(G)$ be the chromatic number of G. It is well-known that $\chi(G) \geq \omega$ holds for any graph G with clique number ω. For a hereditary graph class \mathscr{G}, whether there exists a function f such that $\chi(G) \leq f(\omega(G))$ holds for every $G \in \mathscr{G}$ has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every (P_{5}, cricket) -free graph G with clique number ω has $\chi(G) \leq \omega^{2}$. Chudnovsky and Sivaraman proved that every $\left(P_{5}, C_{5}\right)$-free with clique number ω graph is $2^{\omega-1}$-colorable. In this paper, for any (P_{5}, C_{5}, cricket) -free graph G with clique number ω, we prove that $\chi(G) \leq\left\lceil\frac{\omega^{2}}{2}\right\rceil+\omega$. The main methods in the proof are set partition and induction.

Keywords

P_{5}-Free Graphs, Chromatic Number, χ-Boundedness

1. Introduction

In this paper, we consider undirected, simple graphs. For a given graph H, a graph G is called H-free if G contains no induced subgraphs isomorphic to H. Let $H_{1}, H_{2}, \cdots, H_{k}(k \geq 2)$ be different graphs. If for any $1 \leq i \leq k, G$ is H_{i} -free, then we say that G is $\left(H_{1}, H_{2}, \cdots, H_{k}\right)$-free. A graph $G=(V, E)$ is k-colorable if there exists a function $\varphi: V(G) \mapsto\{1,2, \cdots, k\}$ such that for any $u v \in E(G)$, there is $\varphi(u) \neq \varphi(v)$. The chromatic number of G is the minimum integer k such that G is k-colorable, denoted by $\chi(G)$. For a graph $G=(V, E)$, a subset S of $V(G)$ is called a clique if S induces a complete subgraph. We use $\omega(G)$ to denote the maximum size of cliques of G. It is well-known that
$\omega(G) \leq \chi(G)$ for every graph G. A graph is perfect if for any induced subgraph G^{\prime} of $G, \omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$. Chudnovsky et al. [1] gave an equivalent characterization of perfect graphs, which is also called as the Strong Perfect Graph Theorem.

Theorem 1.1. [1] A graph is perfect if and only if it contains neither odd cycles of length at least five nor the complements of these odd cycles.

We say a hereditary graph class \mathscr{G} is χ-bounded, if there exists a function f such that for any $G \in \mathscr{G}, \chi(G) \leq f(\omega(G))$. Moreover, f is called a χ -binding function of \mathscr{G}. Erdös [2] showed that for arbitrary integers $k, l \geq 3$, there exists a graph G with girth at least l and $\chi(G) \geq k$, which implies that the class of H-free graphs is not χ-bounded when H contains a cycle. Gyárfás conjectured that the graph class obtained by forbidding a tree (or forest) is χ -bounded.

Conjecture 1.2. [3] Let T be a tree (or forest), then there exists a function f_{T} such that, for any T-free graph $G, \quad \chi(G) \leq f_{T}(\omega(G))$.

Moreover, Gyárfás [3] verified this conjecture when $T=P_{k}$, and showed that $f_{T} \leq(k-1)^{\omega(G)-1}$. When $T=P_{5}$, Esperet et al. [4] gave a χ-binding function of P_{5}-free graphs as following.
Theorem 1.3. [4] Suppose G is a P_{5}-free graph with clique number $\omega \geq 3$. Then $\chi(G) \leq 5 \cdot 3^{\omega-3}$.

As far as we know, for $\omega \geq 3, f(\omega)=5 \cdot 3^{\omega-3}$ is the optimal χ-binding function of P_{5}-free graphs at present. Furthermore, determining a polynomial χ-binding function of the class of P_{5}-free graphs is an open problem. A result in [5] shows that the class of H-free graphs has a linear χ-binding function f, if and only if $f(\omega)=\omega$ and H is an induced subgraph of P_{4}, which means that the class of P_{5}-free graphs has no linear χ-binding function.

In this paper, we focus on subclasses of P_{5}-free graphs. While the class of P_{5} -free graphs has no linear χ-binding function, some subclasses of P_{5}-free have linear χ-binding functions.

Theorem 1.4. [6] [7] [8] [9] Suppose
$H \in\left\{\right.$ diamond, gem, paraglider, paw\}, then the class of $\left(P_{5}, H\right)$-free graphs has a χ-binding function.

More formally, Chudnovsky et al. [6] proved that the class of (P_{5}, gem) -free graphs has a χ-binding function $f(\omega) \leq\left\lceil\frac{5}{4} \omega\right\rceil$. Huang and Karthick [7] showed that $\left(P_{5}\right.$, paraglider) graphs have a χ-binding function $f(\omega) \leq\left\lceil\frac{3}{2} \omega\right\rceil$.
Karthick and Maffray [8] gave a χ-binding function $f(\omega)=\omega+1$ for (P_{5}, diamond) -free graphs. And Randerath [9] showed that (P_{5}, paw) -free graphs have a χ-binding function $f(\omega)=\omega+1$ (diamond, gem, paraglider and paw are given in Figure 1).

It is worth noting that a result in [10] shows that when H contains an independent set with size at least 3 , the class of $\left(P_{5}, H\right)$-free graphs has no linear χ -binding function.

Figure 1. Examples of diamond, gem, paraglider and paw.

Theorem 1.5. [10] The class of $\left(2 K_{2}, 3 K_{1}\right)$-free graphs has no linear χ -binding function.

Obviously, when H is a graph with independent number at least $3,\left(P_{5}, H\right)$ -free graphs is a superclass of $\left(2 K_{2}, 3 K_{1}\right)$-free graphs. Thus the class of $\left(P_{5}, H\right)$ -free graphs has no χ-binding function.

The following theorem shows that some subclasses of P_{5}-free graphs have a χ-binding function $f(\omega)=\binom{\omega+1}{2}$ (The addition forbidden subgraphs are given in Figure 2).

Theorem 1.6. [10] [11] [12] The class of $\left(P_{5}, H\right)$-free graphs has a χ -binding function $f(\omega)=\binom{\omega+1}{2}$ when $H \in\{$ bull, house, hammer $\}$.
In [13], Schiermeyer proved that the class of $\left(P_{5}, H\right)$-free graphs has a χ -binding function $f(\omega)=\omega^{2}$ for $H \in\{$ claw, cricket, dart, gem +$\}$ (see Figure 3).

In addition to the subclasses of P_{5}-free graphs we mentioned above, there are many subclasses had been proved that admit a polynomial χ-binding function, which is given in [14] and [15]. More results on χ-binding function, see [16].

The class of $\left(P_{5}, C_{5}\right)$-free graphs, which is a superclass of $\left(P_{5}, C_{5}\right.$, cricket) -free graphs, has been studied by Chudnovsky and Sivaraman [11]. They showed that every $\left(P_{5}, C_{5}\right)$-free graph with clique number ω is $2^{\omega-1}$-colorable. In this paper, we obtain the following result. In the next section, we will give the proof.

Theorem 1.7. Every $\left(P_{5}, C_{5}\right.$, cricket) -free graph G with clique number ω has $\chi(G) \leq\left\lceil\frac{\omega^{2}}{2}\right\rceil+\omega$.

2. The Proof of Main Result

For two vertex sets A and B, let $E(A, B)=\{u v \in E(G): u \in A$ and $v \in B\}$. We say that A is complete to B, if for any $x \in A$ and $y \in B, x y \in E(G)$. For a given graph $G=(V, E)$, let $N(v)$ denote the neighborhood of $v \in V(G)$, and for a subset S of $V(G)$, set $N(S)=\bigcup_{v \in S} N(v)$. An induced subgraph D of G is called a dominating D, if there is $V(G) \backslash V(D) \subseteq N(V(D))$. In this paper, for an induced P_{4} : $P=v_{1} v_{2} v_{3} v_{4}$, we simply write $V(P)$ as P. First, we give a lemma based on the structure of a $\left(P_{5}, C_{5}\right)$-free graph.

Figure 2. Examples of bull, hammer and house.

Figure 3. Examples of claw, cricket, dart and gem+.
Lemma 2.1. If $P=v_{1} v_{2} v_{3} v_{4}$ is a dominating P_{4} of a $\left(P_{5}, C_{5}\right)$-free graph G, then $v_{2} v_{3}$ is a dominating edge of G.

Suppose, to the contrary, that there exists a vertex $u \notin N\left(v_{2}\right) \cup N\left(v_{3}\right)$. Since P is a dominating $P_{4}, u \in N\left(v_{1}\right) \cup N\left(v_{4}\right)$. By symmetry, we may assume that $u v_{1} \in E(G)$. If $u v_{4} \in E(G)$, then $u v_{1} v_{2} v_{3} v_{4} u$ would be an induced C_{5}. If $u v_{4} \notin E(G)$, then $u v_{1} v_{2} v_{3} v_{4}$ would be an induced P_{5}. Either deduces a contradiction.

Next, we show that a subclass of $\left(P_{5}, C_{5}\right.$, cricket $)$-free graphs has a χ -binding function $f(\omega)=\left\lceil\frac{\omega^{2}}{2}\right\rceil$. Let $i K_{1}+K_{2}$ be the graph consisted of one edge and i isolated vertices.

Lemma 2.2. Every $\left(P_{5}, C_{5}, 2 K_{1}+K_{2}\right)$-free graph G with clique number ω has $\chi(G) \leq\left\lceil\frac{\omega^{2}}{2}\right\rceil$.

Apply induction on ω. If $\omega=1$, it is obviously true. When $\omega=2$, it is also true because every $\left(P_{5}, C_{5}, K_{3}\right)$-free graph is a bipartite graph. Moreover, when $\omega=3$, by Theorem 1.3, $\chi(G) \leq 5=\left\lceil\frac{9}{2}\right\rceil$. Next, consider the cases $\omega \geq 4$. If G is P_{4}-free, then G is perfect by Theorem 1.1. So we may suppose that $P=v_{1} v_{2} v_{3} v_{4}$ is an induced P_{4}. We claim that P is a dominating P_{4} of G. Otherwise, there would exist a vertex $u \in V(G) \backslash N(P)$. Noting that $P \subseteq N(P)$, $\left\{u, v_{1}, v_{3}, v_{4}\right\}$ induces a $2 K_{1}+K_{2}$, a contradiction. By Lemma 2.1, $v_{2} v_{3}$ is a dominating edge of G. Next, denote

$$
\begin{gathered}
V_{2}=\left\{v: v v_{2} \in E(G) \text { and } v v_{3} \notin E(G)\right\} \backslash\left\{v_{3}\right\}, \\
V_{3}=\left\{v: v v_{2} \notin E(G) \text { and } v v_{3} \in E(G)\right\} \backslash\left\{v_{2}\right\}, \\
V_{2,3}=N\left(v_{2}\right) \cap N\left(v_{3}\right) .
\end{gathered}
$$

For clarity, we give this partition in Figure 4. Let $G[S]$ denote the subgraph of G induced by S. Clearly, $G\left[V_{2}\right]$ is $\left(P_{5}, C_{5}, K_{1}+K_{2}\right)$-free. (Otherwise, let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be an induced $K_{1}+K_{2}$ of $G\left[V_{2}\right]$. Then $\left\{u_{1}, u_{2}, u_{3}, v_{3}\right\}$ would induce a $2 K_{1}+K_{2}$.) By Theorem 1.1, $G\left[V_{2}\right]$ is perfect. Noting that $\omega\left(G\left[V_{2}\right]\right) \leq \omega-1$, we have $\chi\left(G\left[V_{2}\right]\right) \leq \omega-1$. Similarly, $\quad \chi\left(G\left[V_{3}\right]\right) \leq \omega-1$. Moreover, there is $\omega\left(G\left[V_{2,3}\right]\right) \leq \omega-2$. By induction, $\chi\left(G\left[V_{2,3}\right]\right) \leq\left\lceil\frac{(\omega-2)^{2}}{2}\right\rceil$.

Now we color G. Let $K=\left\{1,2, \cdots,\left\lceil\frac{\omega^{2}}{2}\right\rceil\right\}$ be a color set. First, we color v_{2} and v_{3} by colors 1 and 2 , respectively. Noting that $E\left(V_{2},\left\{v_{3}\right\}\right)=\varnothing, V_{2}$ can be colored by $\{2,3, \cdots, \omega\}$. Similarly, V_{3} can be colored by
$\{1, \omega+1, \cdots, 2 \omega-2\}$. Thus, $\chi\left(G\left[V_{2} \cup V_{3} \cup\left\{v_{2}, v_{3}\right\}\right]\right) \leq 2 \omega-2$. Since $v_{2} v_{3}$ is a dominating edge of $G, V(G)=\left\{v_{2}, v_{3}\right\} \cup V_{2} \cup V_{3} \cup V_{2,3}$. So we have

$$
\chi(G) \leq \chi\left(G\left[V_{2} \cup V_{3} \cup\left\{v_{2}, v_{3}\right\}\right]\right)+\chi\left(G\left[V_{2,3}\right]\right) \leq 2 \omega-2+\left\lceil\frac{(\omega-2)^{2}}{2}\right\rceil=\left\lceil\frac{\omega^{2}}{2}\right\rceil .
$$

Note that the bound given by Lemma 2.2 is tight for $\omega=2$, and C_{4} is a $\left(P_{5}, C_{5}\right.$, cricket) -free graph with clique number 2 and chromatic number 2.

Proof of Theorem 1.7

When $\omega \leq 3$, it is obviously true. Next, assume that $\omega \geq 4$. If G is P_{4}-free, then $\chi(G)=\omega$ by Theorem 1.1. So we may suppose that $P=v_{1} v_{2} v_{3} v_{4}$ is an induced P_{4} of G. Let $N_{2}(P)=N(N(P)) \backslash N(P)$ and $N_{3}(P)=N\left(N_{2}(P)\right) \backslash N(P)$. Moreover, for arbitrary different $i, j, k \in\{1,2,3,4\}$, denote

$$
\begin{gathered}
U_{i}=\left\{v \in N(P) \backslash P: N(v) \cap P=\left\{v_{i}\right\}\right\}, \\
U_{i, j}=\left\{v \in N(P) \backslash P: N(v) \cap P=\left\{v_{i}, v_{j}\right\}\right\}, \\
U_{i, j, k}=\left\{v \in N(P) \backslash P: N(v) \cap P=\left\{v_{i}, v_{j}, v_{k}\right\}\right\}, \\
A=\{v \in N(P) \backslash P: N(v) \cap P=P\} .
\end{gathered}
$$

Figure 4. A partition of $V(G)$.

Clearly, $U_{i, j}=U_{j, i}$ and $U_{i, k, j}=U_{i, j, k}=U_{j, i, k}$. Since G is $\left(P_{5}, C_{5}\right)$-free, $U_{1}=U_{4}=U_{1,4}=\varnothing$. So

$$
A \cup U_{2} \cup U_{3} \cup U_{1,2} \cup U_{1,3} \cup U_{2,3} \cup U_{2,4} \cup U_{3,4} \cup U_{1,2,3} \cup U_{1,2,4} \cup U_{1,3,4} \cup U_{2,3,4}=N(P) \backslash P .
$$

The partition is shown in Figure 5. Since G is P_{5}-free, there is no vertex with a distance of 4 to P. So we can partition $V(G)$ into $N(P), N_{2}(P), N_{3}(P)$, and color these sets respectively. Next, we give two claims based on $N_{3}(P)$ and $N_{2}(P)$.

Claim $1 \quad N_{3}(P)=\varnothing$.
Otherwise, suppose there are vertices $x_{3} \in N_{3}(P)$ and $x_{2} \in N_{2}(P)$ such that $x_{2} x_{3} \in E(G)$. Let $u \in N(P) \backslash P$ be a neighbor of x_{2}. If $u \in A$, then $\left\{x_{2}, u, v_{1}, v_{2}, v_{4}\right\}$ would induce a cricket, a contradiction. So there exists v_{i} and $v_{j} \quad(i, j \in\{1,2,3,4\})$ such that $v_{i} v_{j} \in E(G), u v_{i} \in E(G)$ and $u v_{j} \notin E(G)$. Now $x_{3} X_{2} u v_{i} v_{j}$ is an induced P_{5}, a contradiction.

Claim 2 Let T be a connected component of $G\left[N_{2}(P)\right]$ with $|V(T)| \geq 2$, then then at least one vertex of $U_{2,3}$ is complete to $V(T)$.

First, we show that every edge $x y$ in T has $N(x) \cap N(P)=N(y) \cap N(P)$. Suppose, to the contrary, that there exists a vertex $u \in(N(x) \cap N(P)) \backslash(N(y) \cap N(P))$. Similar to the proof of Claim 1, there is an induced cricket or induced P_{5}, a contradiction. So, for each $x y \in E(T), x$ and y have same neighborhood in $N(P)$. By connectivity and transitivity, all vertices in T have same neighborhood in $N(P)$. Then there is at least one vertex, say u, in $N(P) \backslash P$ such that $V(T)$ is complete to $\{u\}$.

Next, we pick an arbitrary edge $x y$ in T. Then xuy is a triangle. If $u \in U_{2} \cup U_{1,2}$, then $x u v_{2} v_{3} v_{4}$ would be an induced P_{5}. And if $u \in A \cup U_{1,3} \cup U_{1,2,3} \cup U_{1,3,4}$, then $\left\{x, y, u, v_{1}, v_{3}\right\}$ would induce a cricket. Up to symmetry, there must be $u \in U_{2,3}$.

By Claim 2, for an arbitrary connected component T of $G\left[N_{2}(P)\right]$, there exists a vertex $u \in U_{2,3}$ such that $\{u\}$ is complete to $V(T)$. If there exists $x, y \in V(T)$ such that $x y \notin E(G)$, then $\left\{x, y, u, v_{2}, v_{3}\right\}$ would induce a cricket. Thus $V(T)$ is a clique with size at most $\omega-1$, which implies that

$$
\begin{equation*}
\chi\left(G\left[N_{2}(P)\right]\right) \leq \omega-1 \tag{1}
\end{equation*}
$$

Let $G^{\prime}=G[N(P)]$. Note that P is a dominating P_{4} of G^{\prime}. By Lemma 2.1, $v_{2} v_{3}$ is a dominating edge of G^{\prime}. Thus $V\left(G^{\prime}\right) \backslash\left\{v_{2}, v_{3}\right\} \quad$ can be partitioned into $\left\{V_{2}, V_{3}, V_{2,3}\right\}$, which is defined as in Lemma 2.2. Since G^{\prime} is $\left(P_{5}, C_{5}\right.$, cricket) -free, both $G\left[V_{2}\right]$ and $G\left[V_{3}\right]$ are $\left(P_{5}, C_{5}, K_{1}+K_{2}\right)$-free. Thus, by the coloring described in Lemma 2.2, there is $\chi\left(G\left[V_{2} \cup V_{3} \cup\left\{v_{2}, v_{3}\right\}\right]\right) \leq 2 \omega-2$. Moreover, noting that $G\left[V_{2,3}\right]$ is complete to $\left\{v_{2}, v_{3}\right\}$, we have that $G\left[V_{2,3}\right]$ is $\left(P_{5}, C_{5}, 2 K_{1}+K_{2}\right)$-free and $\omega\left(G\left[V_{2,3}\right]\right) \leq \omega-2$. By Lemma 2.2, $\quad \chi\left(G\left[V_{2,3}\right]\right) \leq\left\lceil\frac{(\omega-2)^{2}}{2}\right\rceil$. Thus,

Figure 5. A partition of $N(P) \backslash P$.

$$
\begin{equation*}
\chi\left(G^{\prime}\right) \leq \chi\left(G\left[V_{2} \cup V_{3} \cup\left\{v_{2}, v_{3}\right\}\right]\right)+\chi\left(G\left[V_{2,3}\right]\right) \leq 2 \omega-2+\left\lceil\frac{(\omega-2)^{2}}{2}\right\rceil \leq\left\lceil\frac{\omega^{2}}{2}\right\rceil .(\tag{2}
\end{equation*}
$$

By Claim 1, $V(G)=N(P) \cup N_{2}(P)$. Hence, by Inequality (1) and (2), there is

$$
\chi(G) \leq \chi\left(G^{\prime}\right)+\chi\left(G\left[N_{2}(P)\right]\right) \leq\left\lceil\frac{\omega^{2}}{2}\right\rceil+\omega .
$$

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Chudnovsky, M., Robertson, N., Seymour, P. and Thomas, R. (2006) The Strong Perfect Graph Theorem. Annals of Mathematic, 164, 51-229.
https://doi.org/10.4007/annals.2006.164.51
[2] Erdös, P. (1959) Graph Theory and Probability. Classic Papers in Combinatorics, 11, 34-38. https://doi.org/10.4153/CJM-1959-003-9
[3] Gyárfás, A. (1987) Problems from the World Surrounding Perfect Graphs. Applicationes Mathematicae, 19, 413-441. https://doi.org/10.4064/am-19-3-4-413-441
[4] Esperet, L., Lemoine, L., Maffray, F. and Morel, G. (2013) The Chromatic Number of (P_{5}, K_{4})-Free Graphs. Discrete Mathematics, 313, 743-754. https://doi.org/10.1016/j.disc.2012.12.019
[5] Randerath, B. and Schiermeyer, I. (2004) Vertex Colouring and Forbidden Sub-graphs-A Survey. Graphs and Combinatorics, 20, 1-40. https://doi.org/10.1007/s00373-003-0540-1
[6] Chudnovsky, M., Karthick, T., Maceli, P. and Maffray, F. (2020) Coloring Graphs with No Induced Five-Vertex Path or Gem. Journal of Graph Theory, 95, 527-542. https://doi.org/10.1002/jgt. 22572
[7] Huang, S. and Karthick, T. (2021) On Graphs with No Induced Five-Vertex Path or

Paraglider. Journal of Graph Theory, 97, 305-323. https://doi.org/10.1002/jgt.22656
[8] Karthick, T. and Maffray, F. (2016) Vizing Bound for the Chromatic Number on Some Graph Classes. Graphs and Combinatorics, 32, 1447-1460. https://doi.org/10.1007/s00373-015-1651-1
[9] Randerath, B. (1998) The Vizing Bound for the Chromatic Number Based on Forbidden Pairs. Ph.D. Thesis, RWTH Aachen, Shaker Verlag.
[10] Brause, C., Randerath, B., Schiermeyer, I. and Vumar, E. (2019) On the Chromatic Number of $2 K_{2}$-Free Graphs. Discrete Applied Mathematics, 253, 14-24. https://doi.org/10.1016/j.dam.2018.09.030
[11] Chudnovsky, M. and Sivaraman, V. (2019) Perfect Divisibility and 2-Divisibility. Journal of Graph Theory, 90, 54-60. https://doi.org/10.1002/jgt.22367
[12] Fouquet, J., Giakoumakis, V., Maire, F. and Thuillier, H. (1995) On Graphs without P_{5} and P5. Discrete Mathematics, 146, 33-44. https://doi.org/10.1016/0012-365X(94)00155-X
[13] Schiermeyer, I. (2016) Chromatic Number of P5-Free Graphs: Reed's Conjecture. Discrete Mathematics, 339, 1940-1943. https://doi.org/10.1016/j.disc.2015.11.020
[14] Brause, C., Doan, T. and Schiermeyer, I. (2016) On the Chromatic Number of (P_{5}, $K_{2, t}$)-Free Graphs. Electronic Notes in Discrete Mathematics, 55, 127-130. https://doi.org/10.1016/j.endm.2016.10.032
[15] Schiermeyer, I. (2017) On the Chromatic Number of (P_{5}, Windmill)-Free Graphs. Opuscula Mathematica, 37, 609-615. https://doi.org/10.7494/OpMath.2017.37.4.609
[16] Schiermeyer, I. and Randerath, B. (2019) Polynomial X-Binding Functions and Forbidden Induced Subgraphs: A Survey. Graphs and Combinatorics, 35, 1-31. https://doi.org/10.1007/s00373-018-1999-0

