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Abstract 
Geohazards are a recurrent issue in the Kerio River catchment of Kenya, 
which usually results in life and property loss. This research focuses on map-
ping geo-hazard risk zones of the region. The risk zones were developed from 
a combination of land use land cover maps, agroecological zones maps and 
soil erosion maps using the Analytical Hierarchy Process method of mul-
ti-criteria analysis. The final results depict the geohazard risk maps which 
show the susceptibility of different areas in the catchment (classified as risk 
zones) to hazards. The zones range from no risk zones to very high-risk 
zones. The results showed that the lowlands are most susceptible to hazards 
as they were classified as high-risk zones. These risk zone areas have impacts 
on the socio-economic development hence negatively impacting livelihoods 
in the area. 
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1. Introduction 

This research was done to determine the geohazard risk zones in the Kerio Val-
ley of Kenya. Geohazard is derived from two words: geo meaning earth and ha-
zard which refers to a situation that poses risk to the environment, property or 
life [1]. Risk involves determining how susceptible an area is to geohazards and 
their effects. Geohazards include but are not limited to earthquakes, floods, 
landslides, soil erosion, rock falls and volcanic eruptions. This study was done to 
establish geohazard risk zones as a product of multi criteria analysis of soil ero-
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sion maps, agroecological zones maps and land use land cover maps. 
Soil erosion is a form of land degradation that involves the removal the soil 

top layer by erosive agents such as wind, animals and rainfall. In the present 
study soil erosion was estimated using Revised Universal Soil Loss Equation 
(RUSLE) model, remote sensing data and GIS techniques in Kerio Valley. RUSLE 
model was developed as USLE to estimate soil erosion in croplands by Wisch-
meier and Smith in 1965. RUSLE is a computerized version of USLE with im-
provements in many of the factor estimates, which was initially released for pub-
lic use in 1992 [2]. RUSLE model estimates soil loss as a product of five factors; 
rainfall and runoff erosivity, soil erodibility, slope length and steepness, cover 
management and conservation practice. 

Agroecological zones (AEZ) are geographical areas exhibiting similar climatic 
conditions that determine their ability to support rainfed agriculture [3]. The 
zones range from the highly suitable for agriculture to those most unsuitable for 
rainfed agriculture. The zones are specific combinations of moisture availability 
zones and temperature zones [4]. 

Land use refers to the purpose land serves such as recreation areas while land 
cover refers to the surface cover on the ground whether vegetation, urban built- 
up or water [5]. Land use land cover maps were obtained from classification and 
analysis of satellite images for the years 1990 to 2020 at an epoch of ten years. 
This was done to show land use land cover changes in the basin over the given 
period of time. 

Observed climate change is affecting agriculture through increased tempera-
tures, changing precipitation patterns and greater frequency of extreme events 
occurring which directly affects food security [6]. Therefore, mapping of Kerio 
Valley agroecological zones is imperative to act as supportive mechanism of 
guiding the agricultural dynamics in the area of interest. The maps are necessary 
to support the local governments and residents in making data driven decisions 
as they need to address the increasingly sensitive food security issues. 

Kerio valley is prone to increased occurrence of hazards especially flooding in 
the lowlands and landslides in highlands and escarpment due to immature geol-
ogy, increased rainfall, rapid population growth and urban development [7]. 
This research was conducted to establish and map out the different risk zones 
and their susceptibility to occurrence of geohazards which is crucial for planning 
and development of warning systems by emergency evacuation organizations 
such as the Kenya Red Cross Society. The results from this study are vital in pre-
dicting where hazards are most likely to occur thus helping to warn residents 
and the local administrations of such incidences. 

In this research multiple datasets were required to generate the geohazard risk 
maps. Multicriteria analysis techniques were required to evaluate the three dif-
ferent datasets, where Analytical Hierarchy Process (AHP) was chosen. 

The objectives of this study were established as follows:  
 To assess the land use land cover changes in the basin in 1990, 2000, 2010 

and 2020,  
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 To determine the agroecological zones and assess the rate of potential soil 
loss in the basin in 1990 and 2020 respectively,  

 To conduct a geohazard risk assessment to livelihoods of the basin. 

2. Materials and Methods 
2.1. Data 

Table 1 below shows the different datasets and their sources that were collected 
and used to generate land use land cover maps, soil erosion maps and agroeco-
logical maps.  

2.2. Software 

Table 2 below shows all the tools and software that were used to process the da-
tasets to produce the end results where each was used for specific purposes as 
outlined in the table. 

2.3. Study Area 

Kerio Valley Basin is located in the Rift Valley region of Kenya between the 
counties of Baringo, Elgeyo Marakwet and West Pokot as shown in Figure 1. 
River Kerio passes inside the basin and serves as the boundary between Baringo 
and Elgeyo-Marakwet counties. 

2.4. Methodology 

As shown in Figure 2 above temperature data was used to generate temperature  
 
Table 1. Data. 

Data Source Availability 

Basin Boundary World Resources Institute Available 

Satellite imagery USGS Earth Explorer Available 

Temperature data Terra Climate Available 

Rainfall data CHIRPS Available 

Potential evaporation data Terra Climate Available 

SRTM 30 m resolution DEM RCMRD Geoportal Available 

Soil data ISRIC DataHub Available 

 
Table 2. Software. 

Software Purpose 

ENVI Land use land cover mapping 

ArcMap 
AEZ mapping 

Geohazard risk assessment 

QGIS Soil erosion assessment using RUSLE 
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Figure 1. Study area map. 
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Figure 2. Methodology flowchart. 

 
maps while potential evaporation data was used to generate moisture zones. 
Both outputs were combined to form agroclimatic zones over which soil data 
was overlayed to generate agroecological zones. Rainfall data, soil data, DEM 
and Landsat images were used to generate the RUSLE factors which were cross- 
multiplied to generate soil erosion maps. Landsat images were also used to create 
land use land cover maps using maximum likelihood classification algorithm. 
The detailed description is given in the sections and subsections below. 

2.4.1. Land Use Land Cover 
Land use land cover maps were developed using Landsat images for the years 
1990, 2000, 2010 and 2020 as described.  

Landsat images were downloaded from the USGS website and preprocessed 
through reprojection, haze reduction, layer stacking bands, mosaicking of the 
respective layer stacked tiles and subset using the area of interest polygon as the 
masking layer. 

Subset images were then processed and classified using maximum likelihood 
algorithm in ENVI software. Each image was classified into six classes namely: 
forest, cropland, grassland, waterbody, bare land and built-up areas. Training 
sets were obtained using ArcMap and Google Earth Engine. The classified im-
ages depicted the changes in land use land cover over the given period of time. 

2.4.2. Agroecological Zones Mapping 
1) Temperature Maps 
According to Balungi [4], temperature is closely related to altitude. Therefore, 
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temperature maps were developed by relating temperature to the respective alti-
tude through generating a linear regression equation. The developed regression 
equations for the years 1990 and 2020 (Table 3 and Table 4). 

36.51468161409601 0.006114314933751732y x= −  1990       (1) 

38.06396442796763 0.0067394482670173434y x= −  2020      (2) 

The equations were used in raster calculator to generate the temperature maps 
where the temperature data was the dependent value (y) and altitude served as 
the independent value (x). The maps obtained were reclassified to produce tem-
perature zones maps. 

2) Evaporation Maps 
According to Rijks et al. [8], potential evaporation is related to elevation in a 

given area. The evaporation maps were developed similarly to the temperature 
maps using the regression equations shown below (Table 5 and Table 6). 
 
Table 3. 1990 temperature data. 

y (temp) x (Alt) 

27.65671921 1271 

29.66995239 1112 

29.93018532 1073 

28.70175171 1269 

22.05179405 2496 

28.75625801 1130 

29.96805573 1023 

30.0301857 1051 

28.47665024 1288 

 
Table 4. 2020 temperature data. 

y (temp) x (Alt) 

28.0425415 1271 

30.05774117 1112 

30.31994247 1073 

29.09347534 1269 

22.43669128 2496 

29.14335251 1130 

30.3573494 1023 

30.42167854 1051 

28.87034225 1288 
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Table 5. 1990 Potential evaporation data. 

y (pet) x (alt) 

1279 1271 

1324 1112 

1372 1073 

1321 1269 

1139 2496 

1319 1130 

1335 1023 

1367 1051 

1311 1288 

 
Table 6. 2020 Potential evaporation data. 

y (pet) x (alt) 

1343 1271 

1396 1112 

1440 1073 

1386 1269 

1189 2496 

1381 1130 

1401 1023 

1430 1051 

1370 1288 

 

1494.928470409007 0.14421369431866246xy = −  1990      (3) 

1573.4707574061877 0.15556508961625917y x= −  2020     (4) 

where evaporation was the dependent value and altitude was the independent 
value. 

3) Moisture Availability Maps 
Moisture availability maps were generated by calculating the ratio of rainfall 

data to the evaporation maps [4]. The maps obtained were then reclassified to 
generate moisture zones.  

4) Agroclimatic Zones 
A multiple overlay tool was used to obtain these maps by overlaying the tem-

perature zones and moisture zones maps.  
5) Agroecological Zones 
Agroecological zones were created using an overlay cross-multiplication tool 

and multivariate geo-clustering analysis where agroclimatic zones maps were 
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overlayed with soil data to generate then geo-clustering analysis done to achieve 
the AEZ maps. These maps were then reclassified into different zones ranging 
from highly suitable for agriculture to unsuitable zones. 

2.4.3. Soil Erosion Prediction 
The RUSLE model which is based on the USLE model structure developed by 
Wischmeier and Smith [9] was used in this research to predict soil loss Kerio 
Valley. RUSLE model incorporates five parameters to calculate annual soil loss: 
rainfall and runoff erosivity, soil erodibility, slope length and steepness, cover 
management and support practice [10]. The equation below illustrates the mod-
el. 

A R K LS C P= ∗ ∗ ∗ ∗                        (5) 

where A is the annual soil loss, R is the rainfall erosivity factor, K is the soil ero-
dibility factor, LS is the slope length and steepness factor, C is the cover man-
agement factor and P is the support practice factor. 

1) R-Factor 
According to Jiang et al. [11], this factor indicates the erosive power of rainfall 

and the runoff from the rainfall. Rainfall erosivity can be calculated using the 
equation developed by Kassam et al. [12] for use in Kenya. The greater the dura-
tion and intensity of a rainstorm the higher the rate of erosion [13]. 

( )117.6 1.00105MARR =                       (6) 

where MAR is the mean annual rainfall. 
This equation was used to obtain R-factor maps for both years and resampled 

from near neighborhood to bilinear interpolation. 
2) K-Factor 
This factor serves as an index to assess the susceptibility of soil to erosion 

based on its properties [2]. In this research the factor was assessed suing the fol-
lowing soil properties; soil organic carbon content, soil clay content, soil sand 
content, soil silt content. The following equation developed by Kouli et al. [14] 
was used to calculate this factor. 

( )
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        (7) 

3) LS-Factor 
It is a combination of slope length and slope steepness [11]. Slope length was 

obtained from DEM as the flow accumulation raster while slope steepness was 
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obtained as slope in percentage using the Terrain Processing Toolset in ArcMap. 
The steeper and longer the slope the higher the rate of erosion [13]. LS factor 
was obtained using the equation given below as provided by Stone and Hilborn 
[13]. 

( )230 0.0065 0.045 0.0065
22.1

facLS s s∗
= ∗ + +              (8) 

where fac is flow accumulation and s the slope in percentage. 
4) C-Factor 
It is a ratio comparing the loss of soil from land under a specific crop to that 

in untilled and fallow land and is used to determine the effectiveness of soil and 
crop management systems in preventing soil loss [13]. In this study the method 
used to obtain C factor was proposed by Durigon et al. [15] and adopted by 
Colman [16] as shown below. 

10.1 where
2

NDVI NIR REDC NDVI
NIR RED

− + − = =  + 
            (9) 

Landsat images were used to calculate the NDVI maps using the Semi-Automatic 
Classification Plugin tool called band calculator on QGIS developed by Congedo 
[17]. 

5) P-Factor 
It reflects the effects of practices that reduce the rate and amount of water ru-

noff and thus reduce the amount of erosion [13]. In this research the p-factor 
value was assigned according to the land use land cover classes [18]. Cropland 
was assigned the value 0.5 and the other classes were assigned 1 as guided in the 
USDA Handbook No. 282 [9] (Figure 3). 

2.4.4. Geohazard Risk Mapping 
Geohazard risk assessment was done using the AHP tool for multi-criterion 
analysis. AHP is a method of organizing and analyzing complex decision prob-
lems using math and psychology [19] that was developed by Thomas Saaty [20]  
 

 

Figure 3. P-factor formula. 
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in the 1970s. The AHP is the most frequently used weighting method [21] and 
its main advantage is that it allows the breakdown of complex criteria into par-
tial elements which are hierarchically related to each other [22]. The AHP uses 
pairwise comparison and linear algebra to calculate the weights of the different 
criteria. The higher the weight of a criterion, the more important it is in the final 
decision [23]. In this research AHP plugin tool in ArcMap developed by Oswald 
Marinoni [24] was used. It supports up to 15 criterion and can be used for risk 
mapping, spatial planning as well as suitability analysis [24]. 

Multi-criteria analysis techniques were used to generate geohazard maps from 
land use land cover maps, agroecological maps and soil erosion maps. AHP plu-
gin in ArcMap was used to calculate the weights of the land use, soil loss and 
AEZ criterions using pairwise comparison and linear algebra algorithms. The 
assigned weights were used in multiple overlay tools to perform weighted over-
lay of the three datasets to generate the geohazard risk maps.  

The risk maps were reclassified into five zones: very high risk, high risk, mod-
erate risk, low risk and no risk. Generalization tools were then used to simplify 
and refine the risk zones as follows: Using the majority filter tool to remove mis-
classified cells, using the boundary clean tool to smooth the zones, and the re-
gion group tool to group clusters. 

3. Results and Discussion 
3.1. Land Use Land Cover Maps 

Land use land cover maps of Kerio Basin were obtained for the years 1990, 2000, 
2010, 2020 were obtained using maximum likelihood classification algorithm. 
The maps consisted of the following classes; forest, cropland, grassland, bare 
land, built-up area and waterbody. The area land use land cover changes are 
shown in the following table and figures (Figure 4). 

Forested area decreased from approximately 18.91% in 1990 of the total area 
to 10.66% in 2020, whereas cropland decreased from approximately 30.96% in 
1990 to 10.26% in 2020. Grassland coverage increased nearly double from 
22.84% of the total area in 1990 to 43.36% in 2020, while bare land decreased 
slightly from 23.58% of the total area in 1990 to 21.17% in 2020. Built-up area 
increased tremendously from 2.84% of the total area in 1990 to 13.31% in 2020 
(Table 7). 

Decrease in forested area was caused by increased population which caused 
encroachment of forests in area thus reducing the forest coverage as more was 
converted in agricultural land and built-up. Agricultural expansion continues to 
be the main driver of deforestation and forest fragmentation and the associated 
loss of forest biodiversity [25]. 

Decreased cropland was caused by increased urbanization and population. 
More than 60% of the world’s irrigated croplands are located near urban areas 
[26], which highlights the competition between urban areas and croplands for 
land [27]. According to Margaret Cunningham, around three million hectares of  
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(d) 

Figure 4. (a) 1990 lulc map, (b) 2000 lulc map, (c) 2010 lulc map, (d) 2020 lulc map. 

https://doi.org/10.4236/ijg.2022.133011


M. Boitt, J. Gathoni 
 

 

DOI: 10.4236/ijg.2022.133011 213 International Journal of Geosciences 
 

Table 7. LULC class area in Ha and % of total. 

CLASS 1990 90 area % 2000 00 area % 2010 10 area % 2020 2020 area % 

Forest 46,330.29 18.91358253 29,590.58 12.07986105 26,964.99 11.00801714 26,120.7 10.66337216 

Cropland 75,848.22 30.96379429 44,299.62 18.08458146 29,014.58 11.84472881 25,140.6 10.26326148 

Grassland 55,944 22.83822228 93,133.08 38.02002752 72,474.03 29.58634008 106,214.49 43.36042432 

Bareland 57,772.08 23.58450602 47,967.77 19.58204255 84,996.06 34.69825448 51,859.62 21.17088853 

Built-up area 6958.26 2.840595748 27,203.13 11.10522439 29,295.43 11.95938124 32,613.11 13.31379822 

Waterbody 2104.92 0.859299136 2763.77 1.128263035 2212.65 0.903278255 3008.7 1.228255285 

 
244,957.77 

 
244,957.95 

 
244,957.74 

 
244,957.22 

 
 
agricultural land are lost each year because the soil degrades and becomes unus-
able due to erosion. An additional four million hectares are lost each year when 
agricultural land is converted and used for highways, housing, factories, and 
other urban needs [28].  

The increase in grassland has been caused by deforestation where previously 
forested areas are left open thus resulting in grasslands as well as increased rain-
fall which resulted in previously bare areas to change to open grasslands.  

Bare lands area has decreased due to increased conversion of barren land to 
built-up areas and croplands. Increased population growth has resulted in de-
mand for more land in the area thus utilizing more barren land. 

Built-up area has increased over the years as a result of increased population 
which has resulted in more settlements. Demand for social amenities, roads and 
other developments has increased exponentially with increase in population thus 
causing a high increase in built-up area. 

Waterbodies area has increased as a result of changes in precipitation patterns 
where high rainfall was experienced throughout 2020 thus resulting in increased 
volumes of water. For instance, the area of Lake Kamnarok increased from 1.153 
km2 in 1990 to 1.84 km2 in 2021. 

3.2. Agroecological Zone Mapping 
3.2.1. Temperature Maps 
The temperature regression equations were used to create temperature maps for 
both years respectively, after which the maps were reclassified to generate tem-
perature zones maps. The characteristics of the temperature zones are shown in 
Table 8. 

From the maps, it was observed that colder conditions were experienced in 
2020 than in 1990 as the lowest temperature decreased from 19.25˚C in 1990 to 
19.04˚C in 2020.  

Similarly, hotter conditions were experienced in 2020 than in 1990 as the 
highest recorded temperature increased from 30.27˚C in 1990 to 31.18˚C in 
2020. 
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Table 8. Temperature zones properties. 

Temperature Zones 1990 (˚C) 2020 (˚C) 

High 28.23 - 30.27 28.93 - 31.18 

Medium 25.67 - 28.23 26.11 - 28.93 

Low 22.72 - 25.67 22.86 - 26.11 

Very low 19.25 - 22.72 19.04 - 22.86 

 
Higher temperatures were recorded in the lowland areas of the valley in both 

years while low temperatures were experienced in the highlands surrounding the 
valley. From the maps it was also observed that temperatures increased in the 
area at a rate of approximately 1˚C from 1990 to 2020. 

It was also observed that areas near River Kerio and Lake Kamnarok have the 
highest temperatures and are classified a high temperature zone while areas on 
the edges of the basin where altitude is higher experience low temperatures and 
are classified as very low temperature zones. 

3.2.2. Evaporation Maps 
Evaporation regression data relating potential evaporation to altitude were used 
to generate evaporation maps for the years 1990 and 2020. High evaporation 
rates occur in the lowlands where the temperatures are higher while low evapo-
ration rates occur on the high-altitude areas.  

Higher evaporation rates were experienced in 2020 than in 1990 as shown in 
Figure 5 due to the increased amounts of rainfall received in 2020 than 1990 as 
well as increased temperatures in the region where temperature increased from a 
high of 30.27 in 1990 to a high of 31.18 in 2020 (Table 8). 

The areas near River Kerio and Lake Kamnarok experience the highest tem-
peratures in the basin thus have a higher evaporation rate as compared to areas 
on the slopes which experience lower temperatures thus have lower rates of 
evaporation (Figure 6). 

3.2.3. Moisture Availability Maps 
Rainfall maps and evaporation maps were used to generate the moisture availa-
bility maps which were then reclassified into three moisture zones (high, me-
dium and low) as depicted in Table 9. 

The moisture zones maps depicted that the lowland areas have a low moisture 
content while areas on the higher altitudes have a higher moisture content. This 
is attributed to high rainfall received on the slopes and low evaporation rates 
while the lower areas receive low amounts of rainfall while the evaporation rates 
are higher. The moisture content increased from 1990 to 2020 due to the change 
in precipitation patterns in 2020 when higher amounts of rainfall were expe-
rienced thus increasing the moisture content levels. 

The centrally placed areas that border River Kerio and Lake Kamnarok have 
low moisture content while areas towards the edges of the basin where altitude is  
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(b) 

Figure 5. (a) 1990 Temperature zones, (b) 2020 Temperature zones. 
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(b) 

Figure 6. (a) 1990 evaporation map, (b) 2020 evaporation map. 

https://doi.org/10.4236/ijg.2022.133011


M. Boitt, J. Gathoni 
 

 

DOI: 10.4236/ijg.2022.133011 219 International Journal of Geosciences 
 

Table 9. Moisture zone content. 

Moisture Zones 
Moisture Content 

1990 2020 

High 0.97 - 1.17 1.41 - 1.83 

Medium 0.81 - 0.97 1.10 - 1.41 

Low 0.65 - 0.81 0.83 - 1.10 

 
higher have a higher moisture content. These moisture content zones can be 
used to determine the types of crops suitable for different areas in the basin. 
(Figure 7) 

3.2.4. Agroclimatic Zones Maps 
A weighted overlay analysis of moisture zone maps and temperature maps was 
used to obtain the agroclimatic maps which were reclassified into four agrocli-
matic zones; A1, A2, A3 and A4. The rainfall, temperature and moisture content 
characteristics are depicted in Table 10 and Table 11. (Figure 8) 

3.2.5. Agroecological Zones Maps 
Multivariate geo-clustering analysis of agroclimatic maps and soil maps was 
used to generate agroecological maps which were reclassified into five zones; Z1, 
Z2, Z3, Z4, Z5. Each zone had different characteristics that determine its suita-
bility to agriculture. In this research, Principal Component Analysis tool in 
ArcMap was used generate agroecological maps. According to Boitt et al. [29], 
agroecological zones can be described as lowlands, upper lowlands, lower mid-
lands, upper midlands and highlands as shown in Table 12. (Figure 9) 

Lowlands decreased slightly (20% to 19%) in size from 1990 to 2020 as more 
land is put into agricultural use to cater for the increased demand for food which 
is an economic livelihood in the area. Higher amount of rainfall was received in 
2020 thus allowing the transition of more land into arable land. Upper lowlands 
decreased from 25% to 20% between 1990 and 2020 while lower midlands in-
creased from 19% to 23% between 1990 and 2020. Upper midlands also in-
creased from 21% in 1990 to 24% in 2020 while highlands decreased slightly 
from 15% in 1990 to 14% in 2020. All figures are expressed as a percentage of the 
total area of the basin as shown in Table 13.  

3.3. Soil Erosion Prediction 
3.3.1. R-Factor 
Equation (6) was used to generate R-factor maps in 1990 and 2020 using mean 
annual rainfall received in the area in both years. In 1990, the R-factor values 
ranged between 518.115 and 293.734, as the highest and lowest values respec-
tively. In 2020, the values ranged from 1061.16 to 366.335 where the former was 
the highest value and the latter was the lowest value. Figure 10 below show the 
R-factor maps. 
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(b) 

Figure 7. (a) 1990 Moisture zones, (b) 2020 Moisture zones. 
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(b) 

Figure 8. (a) 1990 agroclimatic zones, (b) 2020 agroclimatic zones. 
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(b) 

Figure 9. (a) 1990 agroecological zones, (b) 2020 agroecological zones. 
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(b) 

Figure 10. (a) 1990 R-factor, (b) 2020 R-factor. 
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Table 10. 1990 Agroclimatic zones characteristics. 

Zone Temperature (˚C) Rainfall (mm) Moisture Content 

A1 28.23 - 30.27 872 - 982 0.64 - 0.82 

A2 25.67 - 28.23 982 - 1078 0.82 - 0.97 

A3 22.72 - 25.67 1078 - 1188 0.97 - 1.11 

A4 19.25 - 22.72 1188 - 1410 1.11 - 1.30 
 
Table 11. 2020 Agroclimatic zones characteristics. 

Zone Temperature (˚C) Rainfall (mm) Moisture Content 

A1 28.93 - 31.18 1133 - 1397 0.79 - 1.09 

A2 26.11 - 28.93 1397 - 1571 1.09 - 1.30 

A3 22.86 - 26.11 1571 - 1737 1.30 - 1.48 

A4 19.03 - 22.86 1737 - 2096 1.48 - 1.85 
 
Table 12. Agroecological zones characteristics. 

Zones Description 
Characteristics 

Conditions Crops 

Z1 Lowlands 
Higher temperatures 

Low rainfall 
Typically, Sisal 

Z2 Upper Lowlands 
High temperatures 

Low rainfall 
Sorghum, millet, early 

maturing maize and beans 

Z3 Lower Midlands 
Mid temperatures 
Average rainfall 

Maize, cassavas, sweet 
potatoes 

Z4 Upper Midlands 
Low temperatures 

Above average rainfall 
Maize, sugarcane, potatoes, 

tomatoes, agroforestry 

Z5 Highlands 
Lower temperatures 

Higher rainfall 
Agroforestry, 
natural forests 

 
Table 13. AEZ changes in percentage. 

Zone % Area in 1990 % area in 2020 

Lowlands 20 19 

Upper Lowlands 25 20 

Lower Midlands 19 23 

Upper Midlands 21 24 

Highlands 15 14 

3.3.2. K-Factor 
K-factor is used to show the susceptibility of different soil types to erosion from 
rainfall and other erosive factors. Equation (7) was used to create the soil erodi-
bility factor map by entering the it in a raster calculator on QGIS software. Fig-
ure 11 shows the K-factor generated and used in this research. Soil properties 
remain unchanged over a long period of time which means that only one map 
was required for this study. Lowland areas of the map had the highest K factor 
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values which the highlands had the lowest K-factor values which means that the 
lowland soils are highly erodible while soils in the highlands have the lowest 
erodibility. 

3.3.3. LS-Factor 
LS-factor is used to calculate the susceptibility of land to erosion based on the 
steepness and length of a slope. In this research, Equation (8) was used to gener-
ate LS factor map and since elevation remains unchanged over the years only 
one map was required for the study. High elevation areas had a high LS factor 
value while low elevation areas had a low value. The map that was generated 
from the equation through a raster calculator is as shown in Figure 11. 

3.3.4. C-Factor 
C-factor maps were generated using Equation (9) for both years. The maps are 
as shown in Figure 12. In 1990, the values ranged from 0.076 to 0.012 while in 
2020 the values ranged from 0.056 to 0.024.  

3.3.5. P-Factor 
P-factor maps were generated from land use land cover maps as shared in Fig-
ure 13. 

3.3.6. Soil Loss Prediction 
After obtaining all the required parameter maps, soil loss prediction maps were 
generated using Equation (5) where all factor maps were multiplied in a raster 
calculator separately for each year. (Table 14 and Figure 14 and Figure 15) 

It was observed that the area near the slopes and highlands experienced the 
highest erosion rates due to steep slopes, longer slope length and high rainfall. 
The annual soil loss also increased from 1990 to 2020. 

In 1990 the total predicted annual soil loss calculated in this research was 
28.84 t−1∙ha−1∙yr−1 while it was 78.81 t−1∙ha−1∙yr−1 in 2020. The amount of eroded 
soil increased in 2020 due to increased loss of forest as shown in land use land 
cover analysis (Table 7). Increased rainfall due to changing precipitation pat-
terns also resulted in increased R-factor values (Figure 10) thus increasing the 
amount of eroded soil. 
 
Table 14. Soil loss. 

1990 2020 

Erosion (t−1∙ha−1∙yr−1) Classification Erosion (t−1∙ha−1∙yr−1) Classification 

9.65 - 28.84 Very high 24.22 - 71.81 Severe 

2.72 - 9.65 Moderate 5.63 - 24.22 High 

1.47 - 2.72 Low 3.10 - 5.63 Moderate 

0.56 - 1.47 Low 1.13 - 3.10 Low 

0.01 - 0.56 Very low 0.04 - 1.13 Very low 
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(b) 

Figure 11. (a) K-factor, (b) LS-factor. 
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(b) 

Figure 12. (a) 1990 C-factor, (b) 2020 C-factor. 
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(b) 

Figure 13. (a) 1990 P-factor, (b) 2020 P-factor. 
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(b) 

Figure 14. (a) 1990 Soil erosion prediction, (b) 2020 Soil erosion prediction. 
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3.4. Geohazard Risk Mapping 

In this research, pairwise comparison was done through Analytical Hierarchy 
Process in ArcMap and expert opinion to generate weights of AEZ maps, soil 
erosion maps and land use land cover maps. The calculated weights were used in 
multiple overlay analysis to generate geohazard risk maps. The risk maps were 
divided into five zones namely; Very high-risk zones, high risk zones, moderate 
risk zones, low risk zones and no risk zones. 

In 1990, these zones occupied 49.49%, 8.72%, 9.17%, 22.04% and 10.58% of 
the total area respectively. In 2020, these zones occupied 61.53%, 8.92%, 5.20%, 
10.20% and 14.15% respectively as shown in Figure 16. 

Very high-risk zone increased from 49.49% coverage in 1990 to 61.53% in 
2020 while the high-risk remained relatively the same. Moderate risk zone re-
duced from a coverage of approximately 8.72% to 5.2% while the no risk zone 
increased from 10.57% coverage to 14.15% coverage. The low-risk zone de-
creased in size from 22.04% coverage in 1990 to 10.2% coverage in 2020. The 
geohazard risk zone maps are shown in Figure 17. 
 

 

Figure 15. 1990 and 2020 soil loss bar graph. 
 

 

Figure 16. A bar graph showing Geohazard risk zones. 
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(b) 

Figure 17. (a) 1990 geohazard risk zones, (b) 2020 geohazard risk zones. 
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4. Conclusions and Recommendations 

From the land use, land cover maps, it was concluded that over the years defore-
station has been a major occurrence in the basin where the area coverage of fo-
rests reduced by approximately 8.25% which equates to 22,209.59 ha loss of for-
est area. Therefore, setting up forest conservation programs such as afforestation 
should be encouraged by the local communities and governments to curb this 
menace. Forest conservation practices such as afforestation and reafforestation 
should be started and tree seedlings provided to all people living within the ba-
sin.  

From the soil erosion maps it was concluded that annual soil loss increased in 
the basin massively from 1990 to 2020. Therefore, soil erosion control mechan-
isms should be encouraged to the local communities in the basin. These methods 
among others include: planting of trees, contour and across slope farming and 
strip cropping. 

By 2020 approximately 75.65% of the total area of the basin had been classi-
fied as a moderate to very high-risk zone which meant that majority of the basin 
was susceptible to hazards such as soil erosion and mudslides. Therefore, it is 
recommended that preventive measures, early warning systems and evacuation 
procedures should be established by the local administrative governments. Such 
hazards pose risk to the communities living around the basin area hence im-
pacting negatively on their livelihoods. 

Acknowledgements 

We acknowledge support from Dedan Kimathi University of Technology and 
Mapinfotek Geomatiks Ltd for the provision of time and support to work on re-
search and development. 

Authors’ Contributions 

Conceptualization, M. B.; methodology, J. G.; software, J. G.; validation, M. B.; 
formal analysis, J. G.; investigation, J. G.; resources, J. G; data curation, J. G.; 
writing—original draft preparation, J. G.; writing—review and editing, J. G; vi-
sualization, J. G.; supervision, M. B.; project administration, M. B.; funding ac-
quisition, M. B. All authors have read and agreed to the published version of the 
manuscript. 

Funding 

This research received no external funding. 

Data Availability Statement 

All data and resources are available in the text or sources cited in the text. 

Conflicts of Interest 

The authors declare no conflict of interest. 

https://doi.org/10.4236/ijg.2022.133011


M. Boitt, J. Gathoni 
 

 

DOI: 10.4236/ijg.2022.133011 242 International Journal of Geosciences 
 

References 
[1] LEARNZ (2021) What Are Geohazards?  

https://www.learnz.org.nz/geohazards152/bg-standard-f/what-are-geohazards  

[2] United States Department of Agriculture (2016) USLE History.  
https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-rese
arch/docs/usle-database/usle-history/#  

[3] Sebastian, K. (2010) Agro-Ecological Zones of Africa. International Food Policy Re-
search Institute, Washington DC.  
https://www.ifpri.org/publication/agro-ecological-zones-africa  

[4] Balungi, F. (2010) Using GIS to Create an Agro-Climatic Zone Map for Soroti Dis-
trict. Geospatial World.  
https://www.geospatialworld.net/article/using-gis-to-create-an-agro-climatic-zone-
map-for-soroti-district/  

[5] Government of Canada (2015) Land Cover & Land Use.  
https://www.nrcan.gc.ca/maps-tools-and-publications/satellite-imagery-and-air-ph
otos/tutorial-fundamentals-remote-sensing/educational-resources-applications/lan
d-cover-biomass-mapping/land-cover-land-use/9373  

[6] IPCC (2019) Climate Change and Land: an IPCC Special Report on Climate Change, 
Desertification, Land Degradation, Sustainable Land Management, Food Security, 
and Greenhouse Gas Fluxes in Terrestrial Ecosystems. In Press. 

[7] Saina, C., Arusei, E., Kiptui, M. and Jemutai, J. (2016) The Causes and Socio Eco-
nomic Impacts of Landslides in Kerio Valley, Kenya. Merit Research Journals, 4, 
58-66. 

[8] Rijks, D.A., Woodhead, T. and Dagg, M. (1970) Evaporation in East Africa. Bulletin 
of the International Association of Scientific Hydrology, 15, 61-67. 
https://doi.org/10.1080/02626667009493932  

[9] Wischmeier, W.H. and Smith, D.D. (1978) Predicting Rainfall Erosion Losses—A 
Guide to Conservation Planning. Agriculture Handbook No. 537. US Department 
of Agriculture Science and Education Administration, Washington DC, 168 p. 

[10] Boitt, M., Albright, O. and Kipkulei, H. (2020) Assessment of Soil Erosion and Cli-
mate Variability on Kerio Valley Basin, Kenya. Journal of Geoscience and Envi-
ronment Protection, 8, 97-114. https://doi.org/10.4236/gep.2020.86008  

[11] Jiang, B.Y., Bamutaze, Y. and Pilesjö, P. (2014) Climate Change and Land Degrada-
tion in Africa: A Case Study in the Mount Elgon Region, Uganda. Geo-Spatial In-
formation Science, 17, 39-53. https://doi.org/10.1080/10095020.2014.889271  

[12] Kassam, A.H., Velthuizen, H.T., Mitchell, A.J.B., Fischer, G.W. and Shah, M.M. 
(1992) Agro-Ecological Land Resources Assessment for Agricultural Development 
Planning: A Case Study of Kenya: Resources Data Base and Land Productivity. 
FAO, Rome. http://www.fao.org  

[13] Stone, R.P. and Hilborn, D. (2012) Universal Soil Loss Equation (USLE) Factsheet. 
Ministry of Agriculture, Food and Rural Affairs, Ontario. 

[14] Kouli, M., Soupios, P. and Vallianatos, F. (2009) Soil Erosion Prediction Using the 
Revised Universal Soil Loss Equation (RUSLE) in a GIS Framework, Chania, North-
western Crete, Greece. Environmental Geology, 57, 483-497. 
https://doi.org/10.1007/s00254-008-1318-9 

[15] Durigon, V.L., Carvalho, D.F., Antunes, M.A.H., Oliveira, P.T.S. and Fernandes, 
M.M. (2014) NDVI Time Series for Monitoring RUSLE Cover Management Factor 
in a Tropical Watershed. International Journal of Remote Sensing, 35, 441-453.  
https://doi.org/10.1080/01431161.2013.871081  

https://doi.org/10.4236/ijg.2022.133011
https://www.learnz.org.nz/geohazards152/bg-standard-f/what-are-geohazards
https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/usle-database/usle-history/
https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/usle-database/usle-history/
https://www.ifpri.org/publication/agro-ecological-zones-africa
https://www.geospatialworld.net/article/using-gis-to-create-an-agro-climatic-zone-map-for-soroti-district/
https://www.geospatialworld.net/article/using-gis-to-create-an-agro-climatic-zone-map-for-soroti-district/
https://www.nrcan.gc.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-sensing/educational-resources-applications/land-cover-biomass-mapping/land-cover-land-use/9373
https://www.nrcan.gc.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-sensing/educational-resources-applications/land-cover-biomass-mapping/land-cover-land-use/9373
https://www.nrcan.gc.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-sensing/educational-resources-applications/land-cover-biomass-mapping/land-cover-land-use/9373
https://doi.org/10.1080/02626667009493932
https://doi.org/10.4236/gep.2020.86008
https://doi.org/10.1080/10095020.2014.889271
http://www.fao.org/
https://doi.org/10.1007/s00254-008-1318-9
https://doi.org/10.1080/01431161.2013.871081


M. Boitt, J. Gathoni 
 

 

DOI: 10.4236/ijg.2022.133011 243 International Journal of Geosciences 
 

[16] Colman, C.B. (2018) Impacts of Climate and Land Use Changes on Soil Erosion in 
the Upper Paraguay Basin. Federal University of Mato Grosso do Sul, Campo 
Grande. 

[17] Congedo, L. (2021) Semi-Automatic Classification Plugin: A Python Tool for the 
Download and Processing of Remote Sensing Images in QGIS. Journal of Open 
Source Software, 6, Article No. 3172.  

[18] Liu, D.J., Run-Jie, L.I., Wang, W.Q. and Wei, G.J. (2006) Completion of Xining City 
Soil Erosion Monitoring Based on GIS. Research of Soil and Water Conservation, 
13, 111-114. 

[19] Passage Technology (n.d.) What Is the Analytic Hierarchy Process (AHP)?  
https://www.passagetechnology.com/what-is-the-analytic-hierarchy-process  

[20] Saaty, T.L. (1980) The Analytic Hierarchy Process. McGraw-Hill Book, Co., New 
York.  

[21] Angelo, A.C.M. and Marujo, L.G. (2020) Life Cycle Sustainability Assessment and 
Decision-Making under Uncertainties. In: Ren, J.Z. and Toniolo, S., Eds., Life Cycle 
Sustainability Assessment for Decision-Making, Elsevier, Amsterdam, 253-268.  
https://doi.org/10.1016/B978-0-12-818355-7.00012-9  

[22] Gompf, K., Traverso, M. and Hetterich, J. (2021) Using Analytical Hierarchy Process 
(AHP) to Introduce Weights to Social Life Cycle Assessment of Mobility Services. 
Sustainability, 13, Article No. 1258. https://doi.org/10.3390/su13031258 

[23] Jagoda, J., Schuldt, S. and Hoisington, A. (2020) What to Do? Let’s Think It through! 
Using the Analytic Hierarchy Process to Make Decisions. Frontiers for Young Minds, 
8, Article No. 78. https://doi.org/10.3389/frym.2020.00078  

[24] ArcGIS (2015) Analytic Hierarchy Process for ArcGIS.  
https://www.arcgis.com/home/item.html?id=bb3521d775c94b28b69a10cd184b7c1f  

[25] FAO and UNEP (2020) The State of the World’s Forests 2020: Forests, Biodiversity 
and People. FAO and UNEP, Rome. https://doi.org/10.4060/ca8642en 

[26] Thebo, A.L., Drechsel, P. and Lambin, E.F. (2014) Global Assessment of Urban and 
Peri-Urban Agriculture: Irrigated and Rainfed Croplands. Environmental Research 
Letters, 9, Article ID: 114002. https://doi.org/10.1088/1748-9326/9/11/114002  

[27] d’Amour, C.B., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K.H., Ha-
berl, H., Creutzig, F. and Seto, K.C. (2017) Future Urban Expansion and Global Crop-
lands. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 114, 8939-8944. https://doi.org/10.1073/pnas.1606036114  

[28] Study.com (2013) Problems in Agriculture: Loss of Land and Decreased Varieties.  
https://study.com/academy/lesson/problems-in-agriculture-loss-of-land-decreased-
varieties-smaller-crop-yields.html 

[29] Boitt, M., Mundia, C. and Pellikka, P. (2014) Modelling the Impacts of Climate 
Change on Agro-Ecological Zones—A Case Study of Taita Hills, Kenya. Geosciences 
Journal, 2, 172-179.  

 
 

https://doi.org/10.4236/ijg.2022.133011
https://www.passagetechnology.com/what-is-the-analytic-hierarchy-process
https://doi.org/10.1016/B978-0-12-818355-7.00012-9
https://doi.org/10.3390/su13031258
https://doi.org/10.3389/frym.2020.00078
https://www.arcgis.com/home/item.html?id=bb3521d775c94b28b69a10cd184b7c1f
https://doi.org/10.4060/ca8642en
https://doi.org/10.1088/1748-9326/9/11/114002
https://doi.org/10.1073/pnas.1606036114
https://study.com/academy/lesson/problems-in-agriculture-loss-of-land-decreased-varieties-smaller-crop-yields.html
https://study.com/academy/lesson/problems-in-agriculture-loss-of-land-decreased-varieties-smaller-crop-yields.html

	Geo-Hazard Susceptibility Assessment and Its Impacts on Livelihoods in Kerio Valley, Kenya
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Data
	2.2. Software
	2.3. Study Area
	2.4. Methodology
	2.4.1. Land Use Land Cover
	2.4.2. Agroecological Zones Mapping
	2.4.3. Soil Erosion Prediction
	2.4.4. Geohazard Risk Mapping


	3. Results and Discussion
	3.1. Land Use Land Cover Maps
	3.2. Agroecological Zone Mapping
	3.2.1. Temperature Maps
	3.2.2. Evaporation Maps
	3.2.3. Moisture Availability Maps
	3.2.4. Agroclimatic Zones Maps
	3.2.5. Agroecological Zones Maps

	3.3. Soil Erosion Prediction
	3.3.1. R-Factor
	3.3.2. K-Factor
	3.3.3. LS-Factor
	3.3.4. C-Factor
	3.3.5. P-Factor
	3.3.6. Soil Loss Prediction

	3.4. Geohazard Risk Mapping

	4. Conclusions and Recommendations
	Acknowledgements
	Authors’ Contributions
	Funding
	Data Availability Statement
	Conflicts of Interest
	References

