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Abstract 
In this paper, fixed-time (FXT) synchronization issue of a type of neural net-
works (NNs) with stochastic perturbations is considered. First, we obtained 
some novel sufficient criteria to guarantee the FXT synchronization of consi-
dered networks via introducing two types of controllers and employing some 
inequality techniques. Lastly, our theoretical results are verified via giving two 
numerical examples with their Matlab simulations. 
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1. Introduction 

In the last decades, the various types of neural networks (NNs) including Hop-
field NNs, cellular NNs, convolution NNs, Cohen-Grossberg NNs, BAM NNs 
and so on [1] [2] [3], have been introduced and broadly investigated due to their 
important applications in great number of fields ranging from speech recogni-
tion [4] to image encryption [5], from secure communication [6] to robotic ma-
nipulators [7], etc. As pointed out in [8], stability of NNs is prerequisite in some 
applications. As a result, the stability analysis of NNs has been investigated ex-
tensively by many scholars [2] [3] [8] [9] [10] [11] [12]. Duo to the security rea-
sons or just to improve system performance in many practical applications, it is 
desirable that the systems solution trajectories converge to equilibrium as fast as 
possible [13]. Compared to the classical Lyapunov stability such as asymptotical 
stability or exponential stability, finite-time (FNT) stability allows the solution of 
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an asymptotic system approaches to the equilibrium state after a some bounded 
time ( )0T x  and stays at equilibrium state any time longer than ( )0T x , where 
( )0T x  is called the settling time. Thus, FNT stability and stabilization of NNs 

have been investigated widely in the past two decades [10] [11] [12] [13] [14]. 
One of the important tasks in FNT stability is to estimate the settling time (ST) 
( )0T x , and it is desirable to obtain smaller upper-bound of ( )0T x . However, in 

some cases, it is inconvenient to accurately estimate it due to its heavily depen-
dence to the initial values of the system. So it is to better obtain FNT stability 
with a ST irreverent to initial conditions of the system. This issue was firstly stu-
died by Polyakov [15] via defining a so-called fixed-time (FXT) stability which 
its ST is independent to systems initial conditions. Presently, FXT stability rece-
ives a hot research attention from many scholars since it has awesome applica-
tions in multi-agent systems [16], power systems [17], complex networks [18] 
and so on. 

In addition, the synchronization of chaotic nonlinear system has received 
great attention in the past thirty years due to the fact that synchronization is 
unique in nature and plays a crucial role in many fields including biology, cli-
matology and sociology, etc. [19]. As mentioned in [9], synchronization in neu-
ronal systems can produce a lot of physiological mechanisms of brain functions 
such as attention, learning, memory formation and so on. Thus, to understand 
these brain functions deeply, it is an important task to study synchronization 
behaviors of NNs. For this reason, considerable efforts have been devoted to 
study the synchronization of NNs [5] [6] [20]-[25]. Especially, due to the advan-
tage of faster convergence rate, better robustness and disturbance rejection prop-
erties, FNT and FXT synchronization of various NNs have studied recently. For 
example, in [9], the authors investigated the FXT synchronization of coupled 
discontinuous NNs by introducing new FXT stability results for dynamical sys-
tems. In [11], the authors considered FNT stabilization issue of a class of delayed 
memristive NNs with discontinuous right-hand side by designing two types of 
discontinuous controllers. In [21], the authors concerned the FXT synchroniza-
tion of a class of memristor-based NNs with impulsive effects. In [26], the au-
thors studied the FNT synchronization of a type of complex-valued NNs with 
distributed delays. In [27], the authors studied the FXT synchronization problem 
of a type of quaternion-valued NN with time delays. 

However, it is worthy to note that most of the above mentioned results have 
only considered cases without stochastic perturbations. As depicted in [28], 
noises are frequently encountered in both nature and man-made systems. For 
instance, synaptic transmission in the real nervous systems can be seen as a noi-
sy process which is caused by random fluctuations due to the release of neuro-
transmitters and other probabilistic effects. Besides, for many natural renewable 
energy resources such as wind or solar radiation, their availability is somewhat 
subject to stochastic fluctuations [19]. Therefore, recently many scholars paid 
their attention to study the synchronization of NNs with stochastic perturba-
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tions, and till now there are many excellent results on the complete synchroniza-
tion, lag synchronization, projective synchronization and FNT synchronization 
of stochastic NNs with or without time-delays. But, up to now, there are very few 
results on the FXT synchronization of stochastic NNs. 

Inspired by what mentioned above, in this paper, we considered the FXT 
synchronization of a type of NNs with stochastic perturbations via using some 
improved FXT stability results. The main contributions of this work can be stated 
as follows. 1) Some earlier results on FXT stability of deterministic nonlinear sys-
tems are extended to the stochastic nonlinear systems. 2) Some novel sufficient 
conditions guaranteeing the FXT synchronization of considered stochastic NNs 
are derived via introducing two types of controllers and employing some in-
equality techniques. Lastly, two numerical examples with simulations are pro-
vided to show the feasibility of our theoretical results. 

The rest of the article is structured as follows. In Section 2, some basic assump-
tions together with our new FXT stability lemma are proposed. Our main results 
on FXT synchronization in probability are given in Section 3. Two numerical 
examples are provided in Section 4 and our main conclusions are given in Sec-
tion 5. 

Notations: The notations are quite standard. Throughout this paper, R+  and 
nR  denotes the set of nonnegative real numbers and the n-dimensional Eucli-

dean space, respectively. The superscript T represents the matrix or vector 
transposition. The n n×  identity matrix is denoted as nI . ⋅  is the Euclidean 
norm in nR . N+  denotes the set of positive integers. Moreover,  

{ }( ), , , 0t t
F P FΩ ≥  stands for the complete probability space, where { } 0t t

F ≥  
represents the filtration satisfying the usual conditions [29]. Notation {}E ⋅  
denotes for the operator of mathematical expectation corresponds to the given 
probability measure P. ( )maxλ ⋅  represents the maximum eigenvalue of a real 
symmetric matrix. 

2. Problem Formulation and Preliminaries 

Consider a class of n-dimensional stochastic NNs depicted by the following equ-
ation  

( ) ( ) ( )( ) ( )( ) ( )d d , d ,x t Dx t Ah x t J t t x t tσ ω = − + + +           (1) 

where ( ) ( ) ( ) ( )( )T
1 2, , , nx t x t x t x t=   represents the state vector of the network 

at time t, ( )( ) ( )( ) ( )( ) ( )( )( )T

1 1 2 2, , , n nh x t h x t h x t h x t=   stands for the activa-
tion function of neurons; ( )1 2, , , nD diag d d d=   with 0id >  represents to the 
self-feedback connection weight matrix; ( )ij n n

A a
×

=  represents the connection 
weight matrix between neurons; ( )T

1 2, , , n
nJ J J J R= ∈  denotes neuron in-

put vector; ( ) ( ) ( )( )T
1 , , nt t tω ω ω=   is an n-dimensional Brown motion de-

fined on a complete probability space ( ), ,F PΩ  with a natural filtration 
{ } 0t t

F ≥  generated by ( ) : 0s s tω ≤ ≤ . For more explanations about stochastic 
process, please see the works [19] [22] [29]. 
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The corresponding response system of the drive system (1) is given by  

( ) ( ) ( )( ) ( ) ( )( ) ( )d d , d ,y t Dy t Ah y t J u t t t y t tσ ω = − + + + +        (2) 

where ( ) ( ) ( ) ( )( )T
1 2, , , ny t y t y t y t=   denotes the state vector of the response 

system, ( ) ( ) ( ) ( )( )T
1 2, , , nu t u t u t u t=   is the feedback controller to be intro-

duced. Other parameters ( ), , ,A D J σ ⋅  and ( )ω ⋅  are the same as defined in 
system (1). 

In the paper, we assume that the following assumptions are satisfied for the 
system (1). 

Assumption 1 The neuron activation functions ih  in system (1) satisfy the 
Lipschitz condition. That is, for each i there exists a positive constant iL  such 
that  

( ) ( )
0 , , ,i i n

i

h u h v
L u v R

u v
−

≤ ≤ ∀ ∈
−

 

where 0iL > .  
Assumption 2 For ( )( ),t e tσ , there exists a matrix 0G ≥  with appropriate 

dimensions such that the following inequality holds true  

( )( ) ( )( ) ( ) ( ) ( )T T, , , , .ntrace t e t t e t e t Ge t t e R Rσ σ +  ≤ ∀ ∈ ×   

Now let ( ) ( ) ( )e t y t x t= −  be the synchronization error between drive-response 
systems (1) and (2), then the error dynamical system can be derived as follows:  

( ) ( ) ( )( ) ( ) ( )( ) ( )d d , d ,e t De t Ag e t u t t t e t tσ ω = − + + +         (3) 

where ( )( ) ( )( ) ( )( )g e t h y t h x t= −  and ( )( ) ( )( ) ( )( ), , ,t e t t y t t x tσ σ σ= − . 
Furthermore, to obtain our main results, we give some related properties of 

stochastic perturbation, which can be found in [29]. 
Denote by ( )2,1 ;nC R R R+ +×  the set of all nonnegative functions ( ),V t z  on 
nR R+×  which its first order derivative exist for t and second order derivative 

exist for z. For each ( )2,1 ;nV C R R R+ +∈ × , we define an operator £V  from 
nR R+×  to R given as  

( ) ( ) ( ) ( )( ) ( )( ) ( )( )T1£ , , , , , , ,
2t z zzV z t V z t V z t f t z t trace t z t V t z tσ σ = + +    

where ( ) ( ),
,t

V z t
V z t

t
∂

=
∂

, ( ) ( ) ( )
1

, ,
, , ,z

n

V z t V z t
V z t

z z
∂ ∂ 

=  
∂ ∂ 

 ,  

( )2 ,
xx

i j n n

V z t
V

z z
×

 ∂
=   ∂ ∂ 

. 

Now consider the following general stochastic nonlinear system:  

( ) ( )( ) ( )( ) ( ) ( ) 0d d d , 0 ,z t f z t t g z t t z zω= + =             (4) 

where ( ) nz t R∈  is state vector of system, ( ) ( ) ( )( )T
1 , , nt t tω ω ω=   is an 

n-dimensional Brown motion defined on a complete probability space 
( ), ,F PΩ . ( ) : n nf R R⋅ →  and ( ) : n n mg R R ×⋅ →  are nonlinear vector-valued 
continuous functions and they satisfy the condition ( ) ( )0 0 0f g= = . 
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For convenience, we denote by ( ) ( )0,z t z t z=  the solution of stochastic 
nonlinear system (4) satisfy the initial value ( ) 00z z= . Also, in order to get our 
main results in this part, we state here some needed definitions and lemmas as 
follows. 

Definition 1 (FXT stable in probability [30]). The zero solution of stochastic 
system (4) is called to be FNT stable in probability, if the following conditions 
hold true. 

1) FNT attractiveness in probability. That is, for any initial conditions 
( )0 0 nz R≠ ∈ , the equation ( ){ }0 , 1Pro T z ω < ∞ =  is satisfied, where ( )0 ,T z ω  

is ST function defined as ( ) ( ){ }0 0, inf 0 | , 0,T z T z t z t Tω > = ≥ ; 
2) Stability in probability: For every pair of scalers 0 1µ< <  and 0r > , 

there exists a positive constant ( ), 0rµ∆ = ∆ >  such that  
( ){ }0, 1Pro z t z µ≤ ∆ ≥ − . 

Definition 2 (FXT stable in probability [30]). The zero solution 0z =  of 
system (4) is said to be globally FXT stable in probability, if the following state-
ments are satisfied for all the initial states 0

nz R∈ . 
1) The zero solution 0z =  is globally stochastically FNT stable in probabili-

ty. 
2) Mathematical expectation of ST function ( )0 ,T z ω  is independent on the 

initial state 0z  of (4) and its upper bound is bounded by a positive constant 

maxT . That is, ( )( )0 max,E T z Tω ≤  for all 0
nz R∈ . 

Now, we introduce the following lemmas about FXT stability. 
Lemma 1 [30]. Assume that ( ) : nV z R R+→  is a positive definite Lyapunov 

function, ( )r v  is a continuous function and it belongs to set 0
MV , where 0

MV  
denotes set of the bounded functions which is defined be  

( ) ( ) ( )0
0

1| d and 0 ,MV r z z M r z
r z

∞  ′= ≤ ≥ 
  

∫  

where M is positive constant. If the following inequality is satisfied for all 
( ) ( )0 0, , nz t z t z z R= ∈   

( ) ( )( )£ ,V z r V z≤ −                       (5) 

then the zero solution 0z =  of system (4) is globally stochastically FXT stable 
in probability and the its ST function ( )0 ,T z ω  can be estimated as 

( )0 ,E T z Mω  ≤  .  
Lemma 2 [20]. For system (4), if there exists a positive definite function 
( ) : nV z R R+→  and positive numbers , , , ,a b c θ δ  satisfying , , 0a b c > , 

0 1θ δ< < <  such that  

( ) ( ) ( ) ( ) ( ) { }£ , \ 0 ,nV z cV z aV z bV z z t Rθ δ≤ − − ∀ ∈         (6) 

then the zero solution of system (4) is globally stochastically FXT stable in 
probability, and its ST ( )0 ,T z ω  can be estimated as  

( ) ( )( ) ( )( )
1

0 max
1 1, .

1 1
E T z T

a c b c
ω

θ δ
  ≤ +  − − − −

  
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Lemma 3 [31]. Suppose ( ) { }: 0nV R R+⋅ →   is a positive definite function, 
and it satisfies the following conditions. 

1) ( )( ) ( )0 0V z t z t= ⇔ = ; 
2) For any solution ( )z t  of system (4), following inequality hold true  

( )( ) ( )( ) ( )( ) ( )( ) ( ) { }£ , \ 0nV z t cV z t aV z t bV z t z t Rθ δ≤ − − − ∀ ∈    (7) 

for some , 0, 0,0 1a b c θ> > < <  and 1δ > . Then the zero solution of system 
(4) can achieve FXT stability, and its corresponding ST ( )0 ,T z ω  can be esti-
mated by  

( )( ) ( ) ( )
2

0 max
1 1, ln 1 ln 1 .

1 1
c cE T z T

c a c b
ω

θ δ
   ≤ = + + +   − −   

      (8) 

Lemma 4 [23]. Suppose ( ) : nV z R R→  is a C-regular function such that  

( )( ) ( )( ) ( )( ) ( )( ) ( ) { }£ , \ 0 ,nV z t cV z t aV z t bV z t z t Rθ δ≤ − − − ∈     (9) 

where , 0, 0, 1c R a b δ∈ > > > , and 0 1θ< < , then the following results are 
true. 

1) If 0c ≥ , the zero solution of system (4) is FXT stable and its settling-time 
( )0 ,T z ω  is estimated by  

( )( ) ( ) ( )3
0 max, csc ,aE T z T

a b
ω ε

δ θ
 ≤ =  −

π


π


 

where 1 θε
δ θ
−

=
−

. 

2) If { }0 min ,c a b< − < , the zero solution of system (4) is FXT stable and its 
ST ( )0 ,T z ω  is estimated by  

( )( ) ( )
( )

( )
( )

1
4

0 max

csc
, , ,1

csc
,1 , ,

b bE T z T I
b a c a b c

a aI
a b c a b c

ε

ε

ε
ω ε ε

δ θ

ε
ε ε

δ θ

−
   ≤ = −   − − + −   

   + −   − −

π π

−  

π
+ 

π
 

where ( ), ,I z ρ ν  stands for the incomplete beta function ratio for 
0 1, 0z ρ≤ ≤ >  and 0ν > , which is defined by  

( ) ( ) ( ) 11
0

1, , 1 d ,
,

z
I z t t t

B
νρρ ν

ρ ν
−−= −∫  

here ( ),B ρ ν  is the beta function given by  

( ) ( )1 11
0

, 1 d .B t t tνρρ ν −−= −∫  

Lemma 5 [23]. For system (4), assume ( ) : nV z R R→  is a C-regular func-
tion. If there exist constants 0a > , 0b > , 0 2 abβ< < , 1δ >  and 
0 1θ< <  satisfying 2δ θ+ =  such that  

( ) ( ) ( ) ( ) { }£ , \ 0 ,nV z V z aV z bV z z Rθ δβ≤ − − ∈  

the zero solution of system (4) is FXT stable and its ST can be estimated by  
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( )( ) 5
0 max 2 2

1 2, arctan .
1 24 4

E T z T
ab ab

βω
δ β β

  
  ≤ = +

  − − −  

π
 

Lemma 6 [24]. For system (4), assume that ( ) { }: 0nV z R R+→   is a C-regular 
function. If there exist constants , , 0a bγ > , 0 1θ< <  and 1δ >  satisfying 

2θ δ+ =  such that  

( ) ( ) ( ) ( ) { }£ , \ 0 .nV z V z aV z bV z z Rθ δγ≤ − − − ∈  

Then the zero solution of system (4) is FXT stable and its corresponding ST 
can be estimated as ( )( ) 6

0 max,E T z Tω ≤ , where  

( )

( )

( )

6
max

2 arctan , 0 2 ,
21

2 , 2 ,
1

1 ln , 2 ,
1

ab

T ab

ab

γ γ
δ

γ
γ δ

γ γ
δ γ

   − < < − ∆ ∆  

 =

−
 + −∆ >
 − −∆ − −

π

∆

  

here 24ab γ∆ = − . 
Lemma 7 [21]. If 1 2, , , 0, 0 1, 1mv v v η κ≥ < ≤ > , then  

1

1 1 1 1
, .

m m m m

s s s s
s s s s

v v v m v
η κ

η κ κ−

= = = =

   ≥ ≥   
   

∑ ∑ ∑ ∑  

Lemma 8 [22]. Let v and z be any two column vectors in mR , then the fol-
lowing matrix inequality is satisfied for any positive definite matrix m mQ R ×∈ .  

T T T 12 .v z v Qv z Q z−≤ +  

3. Main Results 

In this section, based on the FXT stability results introduced in above section, we 
will derive some sufficient criteria for the FXT synchronization between the 
drive-response systems (1) and (2). To this, first we design the controller ( )u t  
in response system (2) as follows:  

( ) ( ) [ ] ( ) [ ] ( ) ,p qu t e t e t e tρ ξ= −Λ − −                 (10) 

where ( )1 2, , , ndiag λ λ λΛ =   is a positive constant matrix. ρ  and ξ  are 
the tunable constants, and p and q are the real numbers such that  

0 1, 1p q< < > . ( ) ( ) ( ) ( )( )T

1 2, , ,
s s s s

ne t e t e t e t=  ,  

( )( ) ( )( ) ( )( ) ( )( )( )1 2, , , nsgn e t diag sgn e t sgn e t sgn e t=  , and  

[ ] ( ) ( )( ) ( ) .
sse t sgn e t e t≅                     (11) 

Then, under controller (10), the error system (3) can be rewritten as follows:  

( ) ( ) ( )( ) ( ) [ ] ( ) [ ] ( )

( )( ) ( )

d e e d

, d .

p qe t De t Ag e t e t t t t

t e t t

ρ ξ

σ ω

 = − + −Λ − − 
+

     (12) 

Now let ( )1 2, , , nL diag L L L=  , then based on the FXT controller (12), the 
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following results can be derived. 
Theorem 1. Suppose that the Assumptions 1 and 2 are satisfied, if the control 

gain matrix Λ  satisfy the following matrix inequality  

( ) T
1

1

2
0,

D Q G LA
AL Q

 + Λ − −
Π > 

 
                 (13) 

where 1Q  is an arbitrary n n×  positive matrix. Then the drive-response net-
works (1) and (2) can be FXT synchronized in probability via controller (10), 
and its corresponding ST can be estimated by  

( )( ) { }7 2 3
0 max max max, min , ,E T e T T Tω ≤ =  

where 2
maxT  and 3

maxT  are respectively given in Lemma 3 and Lemma 4 with the 

parameters ( )( )T 1
max 1 12c D Q LA Q AL Gλ −= − − + Λ + + + , 2a ρ= ,  

1
2

pθ +
= , 

1
22
q

b n ξ
−

=  and 
1

2
qδ +

= .  

Proof. First, we construct the following Lyapunov function  

( ) ( ) ( )T .V t e t e t=                       (14) 

Then, by calculating the ( )£V t  along the trajectories of error system (3), we 
get  

( ) ( ) ( ) ( )( ) ( ) [ ] ( ) [ ] ( )

( )( ) ( )( )

T

T

£ 2 e e d

, , .

p qV t e t De t Ag e t e t t t t

trace t e t t e t

ρ ξ

σ σ

 = − + −Λ − − 
 +  

  (15) 

By Lemma 8 and Assumption 1, we obtain the following inequality:  
( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

T T T T 1
1 1

T T T 1
1 1

2

.

e t Ag e t e t Q e t g e t A Q Ag e t

e t Q e t e t LA Q ALe t

−

−

≤ +

≤ +
       (16) 

By Assumption 2, we have  

( )( ) ( )( ) ( ) ( )T T, , .trace t e t t e t e t Ge tσ σ  ≤               (17) 

Also, it is not difficult to check that  

( ) [ ] ( ) ( ) ( )( ) ( ) ( ) 1T T

1

np pp
i

i
e t e t e t sgn e t e t e t

+

=

= = ∑           (18) 

and  

( ) [ ] ( ) ( ) ( )( ) ( ) ( ) 1T T

1
.

nq qq
i

i
e t e t e t sgn e t e t e t

+

=

= = ∑           (19) 

Let ( ) T 1
1 12 D Q LA Q AL G−ϒ − + Λ + + + , and using the well-known Schur 

complement equivalence [32] to 0Π > , which is defined in (15), we obtain 
0−ϒ >  or 0ϒ < . Thus, by substituting (16), (17), (18) and (19) to (15), we 

have  

( ) ( ) ( ) ( )
( ) [ ] ( ) ( ) [ ] ( )

( ) ( ) ( ) ( ) ( )

T T 1
1 1

T T

1 1T
max

1 1

£ 2

2 2

2 2 .

p q

n np q
i i

i i

V t e t D Q LA Q AL G e t

e t e t e t e t

e t e t e t e t

ρ ξ

λ ρ ξ

−

+ +

= =

 ≤ − + Λ + + + 

− −

≤ ϒ − −∑ ∑

      (20) 

By Lemma 7, we can obtain that  
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( ) ( ) ( )
1

121 2 2

1 1

p
pn np

i i
i i

e t e t V t
+

+
+

= =

 ≥ = 
 

∑ ∑                (21) 

and  

( )( ) ( ) ( )
1

1 1 11 22 22 2 22

1 1
.

q
q q qqn n

i i
i i

e t n e t n V t
+

− − ++

= =

 ≥ = 
 

∑ ∑           (22) 

In view of (22), (21) and (22), we can have  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1
2 2 2

max

max

£ 2 2

,

p q q

V t V t V t n V t

V t aV t bV tθ δ

λ ρ ξ

λ

+ − +

≤ ϒ − −

= ϒ − −
        (23) 

where 
1

212 , , 2
2

qpa b nρ θ ξ
−+

= = =  and 
1

2
qδ +

= . 

Therefore, we can conclude from the Lemmas 3 and 4 that the origin of error 
system (3) is FXT stable in probability and its ST can be estimated by  

( )( ) { }7 2 3
0 max max max, min , ,E T e T T Tω ≤ =  

where 2
maxT  and 3

maxT  are given in Lemmas 3 and 4 respectively, and their pa-

rameters are chosen as ( )maxc λ= − ϒ , 2a ρ= , 
1

2
pθ +

= , 
1

22
q

b n ξ
−

= , 

1
2

qδ +
= . The proof is achieved.    

When 2p q+ =  in the controller (10), we have a following Corollary from 
Theorem 1 and Lemma 6.  

Corollary 1. Suppose that 2p q+ =  in the controller (10), if Assumption 1, 
Assumption 2 and matrix inequality (15) are satisfied, then the drive-response 
networks (1) and (2) can be FXT synchronized in probability under controller 
(10), and its ST is estimated by ( )( ) 6

0 max,E T e Tω ≤ , where 6
maxT  is given in  

Lemma 6 with the parameters ( )max 0γ λ= − ϒ > , 2a ρ= , 
1

2
pθ +

= , 

1
22
q

b n ξ
−

=  and 1
2

qδ +
= .  

Proof. Similar to proof of Theorem 1, we know that the inequality (24) is sa-
tisfied under the conditions of Corollary 1. Thus from Lemma 6, we can obtain 
that the conclusions of Corollary 1 hold true. The proof is completed.    

In the following, we will realize the fixed time synchronization between the 
systems (1) and (2) via designing a simplified controller given as follows  

( ) [ ] ( ) [ ] ( ) ,p qu t e t e tρ ξ= − −                     (24) 

where parameters , , pρ ξ  and q are the same as defined in controller (10). 
Theorem 2. Suppose that 2Q  is an arbitrary n n×  positive matrix and the 

Assumptions 1 and 2 hold true, then the drive-response systems (1) and (2) will 
realize FXT synchronization in probability via controller (24). Moreover, its 
corresponding ST can be estimated as ( )( ) 8

0 max,E T e Tω ≤ , where  
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{ }

{ }

4
max

8 3
max max

2 3
max max

, 0 min , ,
, 0,

min , , 0,

T c a b
T T c

T T c

 < < =


<








 

here ( )T 1
max 2 22c D Q LA Q AL Gλ −= − + + + , and the 2 3 4

max max max, ,T T T  are given in 

Lemmas 3 and 4, and their parameters are chosen as c c= −  , 2a ρ= , 

1
2

pθ +
= , 

1
22
q

b n ξ
−

=  and 
1

2
qδ +

= . 

Proof. We again chose the Lyapunov function as ( ) ( ) ( )TV t e t e t= . Then, 
under controller (24), we have  

( ) ( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( )

T

T

£ 2

, , .

p

q

V t e t De t Ag e t sgn e t e t

sgn e t e t trace t e t t e t

ρ

ξ σ σ

= − + −
  − +  

      (25) 

By Equations (16)-(19), we have  

( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

T T 1
2 2

T T

T 1 T
max 2 2

T T

T T
T

T T

£ 2

2 2

2

2 2

2 2

2 2 .

p q

p q

p q

p q

V t e t D Q LA Q AL G e t

e t e t e t e t

D Q LA Q AL G e t e t

e t e t e t e t

ce t e t e t e t e t e t

cV t e t e t e t e t

ρ ξ

λ

ρ ξ

ρ ξ

ρ ξ

−

−

 ≤ − + + + 

− −

 ≤ − + + + 

− −

≤ − −

≤ − −





      (26) 

Introducing (21) and (22) to (26) yields  

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1
2 2 2£ 2 2

= .

p q q

V t cV t V t n V t

cV t aV t bV tθ δ

ρ ξ
+ − +

≤ − −

− −





             (27) 

According to Lemma 4, the drive-response networks (1) and (2) will achieve 
FXT synchronization in probability. In addition, its ST 8

maxT  can estimate 
through following analysis. 

1) If { }0 min ,c a b< < , then from Lemma 4, we can get that 8 4
max maxT T= . 

2) If 0c = , then from Lemma 4 again, we can have that 8 3
max maxT T= . 

3) If 0c < , then from Lemmas 3 and 4, we can obtain that  

{ }8 2 3
max max maxmin ,T T T= . 

where the parameters of 2 3
max max,T T  and 4

maxT  are chosen as  

( )T 1
max 2 22c D Q LA Q AL Gλ −= − + + + , 2a ρ= , 

1
2

pθ +
= , 

1
22
q

b n ξ
−

=  and 

1
2

qδ +
= . 

The proof of Theorem 2 is completed.    
When 2p q+ =  in the controller (24), we have a following result from 

Theorem 2 and Lemma 4.  
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Corollary 2. Suppose that 2p q+ =  in controller (10) and the Assumptions 
1 and 2 are satisfied, then the drive-response systems (1) and (2) will achieve 
FXT synchronization in probability via controller (24). Moreover, its corres-
ponding ST can be estimated as ( )( ) 9

0 max,E T e Tω ≤ , where  
5

max
9 3

max max
6

max

, 0 2 ,
, 0,
, 0,

T c ab
T T c

T c

 < <


=
 <








 

here ( )T 1
max 2 22c D Q LA Q AL Gλ −= − + + + , 3 5

max max,T T  and 6
maxT  are respec-

tively given in Lemmas 4, 5 and 6, and their parameters are chosen as 

c c cγ= = − = −  , cβ =  , 2a ρ= , 
1

2
pθ +

= , 
1

22
q

b n ξ
−

=  and 
1

2
qδ +

= . 

Proof. From the proof of Theorem 2, we know that the inequality (28) is satis-
fied. Thus according to the Lemma 4, the drive-response networks (1) and (2) 
can be FXT synchronized in probability. In addition, its ST 9

maxT  can estimate 
through following analysis. 

1) If 0 2c ab< < , then from Lemma 5, we can get that 9 5
max maxT T= . 

2) If 0c = , then from Lemma 4 again, we can have that 9 3
max maxT T= . 

3) If 0c < , then from Lemma 6, we can obtain that 9 6
max maxT T= . 

Where the parameters of 3 5
max max,T T  and 6

maxT  are chosen as c c= −  , cβ =  , 

cγ = −  , 2a ρ= , 
1

2
pθ +

= , 
1

22
q

b n ξ
−

=  and 
1

2
qδ +

= . The proof is com-

pleted.   
Remark 1. As known to all, when study the synchronization issue of nonli-

near systems, it is an important task to design a controller, and it is desirable to 
design the controller as simple as possible in order to save the control cost. In 
early published works [21] [23] [31] [33], however, the authors realized FXT 
synchronization of NNs via employing a type of hybrid controller ( )iu t  which 
composed of one linear term ( )i ie tλ−  and two nonlinear terms 

[ ] ( ) [ ] ( )p qe t e tρ ξ− − . However, as we done in Theorem 2 and Corollary 2, when 
the linear term ( )i ie tλ−  of ( )iu t  removed, the other two terms 

[ ] ( ) [ ] ( )p qe t e tρ ξ− −  still insures the FXT synchronization of considered net-
works. Thus the results of Theorem 2 and Corollary 2 are simpler and have a 
better applicability. 

Remark 2. Similar to the most of the published works on FXT stabilization 
and synchronization, in Theorem 1 and Corollary 1, we have achieved to FXT 
synchronization by designing a types of controller ( )iu t  which composed of 
one linear term ( )i ie tλ−  and two nonlinear terms [ ] ( ) [ ] ( )p qe t e tρ ξ− − . How-
ever, it is worth to note that, all of the three tunable parameters ,iλ ρ  and ξ  
take effect in the estimation of the upper-bound of ST, and this can be seen the 
main advantages of Theorem 1 and Corollary 1 compared with the early pub-
lished results [23] [31] [34] [35] [36]. 

Remark 3. As mentioned above, it is better to realize the FXT synchronization 
via using simple controller ( ) [ ] ( ) [ ] ( )p q

iu t e t e tρ ξ= − − . However, it is not diffi-
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cult to see that compared the results of Theorem 2 and Corollary 2, the results of 
Theorem 1 and Corollary 1 gives smaller estimation when the control gains 

0iλ >  in controller ( ) ( ) [ ] ( ) [ ] ( )p q
i i iu t e t e t e tλ ρ ξ= − − − , and the bigger iλ  

results in a smaller ST estimation. Therefore, the linear term ( )i ie tλ−  should 
be added in accordance with the convergence time T to be short and the control 
cost not to be high, considering the designer requirements. 

4. Numerical Examples and Simulations 

In this section, the following two numerical examples are provided to illustrate 
the effectiveness of the established theoretical results in above sections.  

Example 1. For n = 3, consider the FXT synchronization between 
drive-response systems (1) and (2) with the following system parameters: 
( ) ( )tanhh v v= , ( )0,0,0J diag= , ( )( ) ( ) ( ) ( )( )1 2 3, 0.5 , ,t x t diag x t x t x tσ =  

and  

0.94 0 0 1.65 4.224 4.224
0 0.94 0 , 4.224 1.452 5.808 .
0 0 0.94 4.224 5.808 1.32

D A
− −   

   = = − −   
   −   

 

Set the initial values of system (1) in Example 1 as ( )1 0 0.1x = − , ( )2 0 0.2x =  
and ( )3 0 0.1x = , then the numerical simulation of system (1) with above para-
meters are illustrated in Figure 1, which shows that it has a chaotic attractor. 

It is not difficult check that the Assumptions 1 and 2 are satisfied with 
( )1,1,1L diag=  and ( )0.5 1,1,1G diag= . By using the LMI Toolbox in Matlab, 

the following solution are obtained for matrix inequality (15)  

1

16.4470 8.1872 6.3667 14.4615 0 0
8.1872 15.4389 0.0097 , 0 14.4615 0 .
6.3667 0.0097 17.7886 0 0 14.4615

Q
−   

   = − Λ =   
   − −   

 

Thus inequality (15) is also satisfied and 3.3655c = . Now choosing two dif-
ferent set of parameters as follows: (i) 1.2ρ = , 2.1ξ = , 0.4p =  and 1.8q = ; 
(ii) 1.2ρ = , 2.1ξ = , 0.2p =  and 1.8q = . Then, from Theorem 1 and Co-
rollary 1, the derive system (1) is FXT stochastic synchronized to response sys-
tem (2) under the controller (10). The time evolution of synchronization errors 
between systems (1) and (2) for above two different set of parameters are shown 
in Figure 2 and Figure 3, respectively, where the initial conditions of response 
systems (2) are randomly chosen in [ ]5,5− . For case (i), from Theorem 1, by 
simple calculations we get 2

max 1.4683T = , 3
max 1.7009T = . Thus  

{ }7 2 3
max max maxmin , 1.7009T T T= = . For case (ii), since 2p q+ = , we can get from 

Corollary 1 that 6
max 1.1097T = , while Lemma 2 and Lemma 3 give the ST esti-

mations 2
max 1.2513T =  and 3

max 1.4510T = , respectively. 
Example 2. For n = 3, consider the FXT synchronization between 

drive-response systems (1) and (2) under the controller (24) with the following 
system parameters: ( ) ( )tanhh v v= , ( )0,0,0J diag= ,  

( )( ) ( ) ( ) ( )( )1 2 3, 0.5 , ,t x t diag x t x t x tσ =  and  
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Figure 1. The transient behavior of system (1) in Example 1.  
 

 
Figure 2. Evaluation of synchronization errors for case (i). 

 

 
Figure 3. Evaluation of synchronization errors for case (ii). 
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0.94 0 0 0.825 2.112 2.112
0 0.94 0 , 0.5 2.112 0.726 2.904 .
0 0 0.94 2.112 2.9048 0.66

D A
− −   

   = = − −   
   −   

 

Now set the initial values of system (1) in Example 2 as ( )1 0 0.6087x = − , 
( )2 0 0.2560x = −  and ( )3 0 0.4875x = , then the numerical simulation of system 

(1) with above parameters are illustrated in Figure 4, which shows that it also 
has a chaotic attractor. 

It is not difficult check that ( )1,1,1L diag= , ( )0.5 1,1,1G diag= . Letting 
( )2 4.5 1,1,1Q diag= ∗ , then by simple calculation we can get that 

( )T 1
max 2 22 7.8766c D Q LA Q AL Gλ −= − + + + = . Now choosing two different set 

of parameters such that (i) 8ρ = , 8.1ξ = , 0.4p =  and 1.8q = ; (ii) 8ρ = , 
8.1ξ = , 0.4p =  and 1.6q = . Then, all the conditions of Theorem 2 and Co-

rollary 2 are satisfied for case (i) and case (ii). Therefore, from Theorem 2 and 
Corollary 2, the derive system (1) is FXT stochastic synchronized to response 
system (2) under the controller (24). The time evolution of synchronization er-
rors between systems (1) and (2) for above two different set of parameters are 
shown in Figure 5 and Figure 6 respectively, where the initial conditions of re-
sponse systems (2) are randomly chosen in [ ]6,6− . For case (i), since 0c > , 
we can calculate from Theorem 2 that 4

max 0.7796T = . Thus  
8 4

max max 0.7796T T= = . For case (ii), since 2p q+ =  and 0c > , we can get from 
Corollary 2 that 9 5

max max 0.4751T T= = , while Lemma 1 and gives the ST estima-
tion 1

max 1.3859T =  for case (i) and 1
max 1.2934T =  for case (ii), respectively. 

Remark 4. From the above two examples, we can see that the settling time es-
timations obtained through Theorems 1, 2 and Corollaries 1, 2 are more accu-
rate compared to the early published results [37] [38] [39] [40] [41]. From this 
point, results obtained in this paper are more general and have better applicabil-
ity.  

 

 
Figure 4. The transient behavior of system (1) in Example 2.  
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Figure 5. Evaluation of synchronization errors for case (i). 

 

 
Figure 6. Evaluation of synchronization errors for case (ii). 

5. Conclusions 

In this paper, first, some recently developed new results on the FXT stability of 
deterministic dynamical systems are extended to stochastic dynamical systems. 
First, some earlier results on FXT stability of deterministic nonlinear systems are 
extended to the stochastic nonlinear systems. Then, based on these results, some 
simple sufficient conditions insuring the FXT synchronization of considered 
networks are derived by introducing two types of FXT controllers and utilizing 
some inequality techniques. Finally, our theoretical results are illustrated via giving 
two numerical examples with their Matlab simulations. 

Recently, the FXT stability and synchronization of impulsive neural networks 
have been studied. However, there are very few works on the FXT synchroniza-
tion issue of the stochastic neural networks with impulsive effects; this issue may 
be somewhat challenging since we have to deal with the effects of caused by im-
pulsive term and stochastic perturbations at the same time, and it will be one of 
our future studying directions. 

https://doi.org/10.4236/jamp.2022.101015


A. Abudireman et al. 
 

 

DOI: 10.4236/jamp.2022.101015 215 Journal of Applied Mathematics and Physics 
 

Funding 

This work was supported by the National Innovation Training Program for Col-
lege Students (Grant no. 202010755075). 

Acknowledgements 

Not applicable. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Wan, Y., Cao, J., Wen, G. and Yu, W. (2016) Robust Fixed-Time Synchronization of 

Delayed Cohen-Grossberg Neural Networks. Neural Networks, 73, 86-94.  
https://doi.org/10.1016/j.neunet.2015.10.009 

[2] Li, X.M., Huang, L.H. and Zhu, H. (2003) Global Stability of Cellular Neural Net-
works with Constant and Variable Delays. Nonlinear Analysis: Theory, Methods 
and Applications, 53, 319-333. https://doi.org/10.1016/S0362-546X(02)00176-1 

[3] Zhou, Q. (2009) Global Exponential Stability of BAM Neural Networks with Distri-
buted Delays and Impulses. Nonlinear Analysis: Real World Applications, 10, 144-153.  
https://doi.org/10.1016/j.nonrwa.2007.08.019 

[4] Tsenov, G.T. and Mladenov, V.M. (2010) Speech Recognition Using Neural Net-
works. Proceedings of the 10th Symposium on Neural Network Applications in Elec-
trical Engineering (NEUREL), Belgrade, 23-25 September 2010, 181-186.  
https://doi.org/10.1109/NEUREL.2010.5644073 

[5] Ouyang, D., Shao, J., Jiang, H., Nguang, S.K. and Shen, H.T. (2020) Impulsive Syn-
chronization of Coupled Delayed Neural Networks with Actuator Saturation and Its 
Application to Image Encryption. Neural Networks, 128, 158-171.  
https://doi.org/10.1016/j.neunet.2020.05.016 

[6] Yang, X., Yang, Z. and Nie, X. (2014) Exponential Synchronization of Disconti-
nuous Chaotic Systems via Delayed Impulsive Control and Its Application to Secure 
Communication. Communications in Nonlinear Science and Numerical Simulation, 
19, 1529-1543. https://doi.org/10.1016/j.cnsns.2013.09.012 

[7] Karakasoglu, A., Sudharsanan, S.I. and Sundareshan, M.K. (1993) Identification and 
Decentralized Adaptive Control Using Dynamical Neural Networks with Applica-
tion to Robotic Manipulators. IEEE Transactions on Neural Networks, 4, 919-930.  
https://doi.org/10.1109/72.286887 

[8] Zhang, C.K., He, Y., Jiang, L., Wang, Q.G. and Wu, M. (2017) Stability Analysis of 
Discrete-Time Neural Networks with Time-Varying Delay via an Extended Reci-
procally Convex Matrix inequality. IEEE Transactions on Cybernetics, 47, 3040-3049.  
https://doi.org/10.1109/TCYB.2017.2665683 

[9] Hu, C., Yu, J., Chen, Z., Jiang, H. and Huang, T. (2017) Fixed-Time Stability of Dy-
namical Systems and Fixed-Time Synchronization of Coupled Discontinuous Neur-
al Networks. Neural Networks, 89, 74-83.  
https://doi.org/10.1016/j.neunet.2017.02.001 

[10] Chen, T., Peng, S., Hong, Y. and Mai, G. (2020) Finite-Time Stability and Stabiliza-
tion of Impulsive Stochastic Delayed Neural Networks with Rous and Rons. IEEE 

https://doi.org/10.4236/jamp.2022.101015
https://doi.org/10.1016/j.neunet.2015.10.009
https://doi.org/10.1016/S0362-546X(02)00176-1
https://doi.org/10.1016/j.nonrwa.2007.08.019
https://doi.org/10.1109/NEUREL.2010.5644073
https://doi.org/10.1016/j.neunet.2020.05.016
https://doi.org/10.1016/j.cnsns.2013.09.012
https://doi.org/10.1109/72.286887
https://doi.org/10.1109/TCYB.2017.2665683
https://doi.org/10.1016/j.neunet.2017.02.001


A. Abudireman et al. 
 

 

DOI: 10.4236/jamp.2022.101015 216 Journal of Applied Mathematics and Physics 
 

Access, 8, 87133-87141. https://doi.org/10.1109/ACCESS.2020.2992686 

[11] Cai, Z. and Huang, L. (2018) Finite-Time Stabilization of Delayed Memristive 
Neural Networks: Discontinuous State-Feedback and Adaptive Control Approach. 
IEEE Transactions on Neural Networks and Learning Systems, 29, 856-868.  
https://doi.org/10.1109/TNNLS.2017.2651023 

[12] Wang, L., Zeng, Z., Zong, X. and Ge, M.-F. (2019) Finite-Time Stabilization of Me-
mristor-Based inertial Neural Networks with Discontinuous Activations and Dis-
tributed Delays. Journal of the Franklin Institute, 356, 3628-3643.  
https://doi.org/10.1016/j.jfranklin.2018.11.040 

[13] Huang, X., Lin, W. and Yang, B. (2005) Global Finite-Time Stabilization of a Class 
of Uncertain Nonlinear Systems. Automatica, 41, 881-888.  
https://doi.org/10.1016/j.automatica.2004.11.036 

[14] Lu, W., Liu, X. and Chen, T. (2016) A Note on Finite-Time and Fixed-Time Stabili-
ty. Neural Networks, 8, 11-15. https://doi.org/10.1016/j.neunet.2016.04.011 

[15] Polyakov, A. (2012) Nonlinear Feedback Design for Fixed-Time Stabilization of Li-
near Control Systems. IEEE Transactions on Automatic Control, 57, 2106-2110.  
https://doi.org/10.1109/TAC.2011.2179869 

[16] Z. Zuo, Han, Q.-L., Ning, B., Ge, X. and Zhang, X.-M. (2018) An Overview of Re-
cent Advances in Fixed-Time Cooperative Control of Multiagent Systems. IEEE 
Transactions on Industrial Informatics, 14, 2322-2334.  
https://doi.org/10.1109/TII.2018.2817248 

[17] Ni, J., Liu, L., Liu, C., Hu, X. and Li, S. (2017) Fast Fixed-Time Nonsingular Ter-
minal Sliding Mode Control and Its Application to Chaos Suppression in Power 
System. IEEE Transactions on Circuits and Systems II: Express Briefs, 64, 151-155.  
https://doi.org/10.1109/TCSII.2016.2551539 

[18] Zhang, W., Yang, S., Li, C. and Li, Z. (2019) Finite-Time and Fixed-Time Synchro-
nization of Complex Networks with Discontinuous Nodes via Quantized Control. 
Neural Processing Letters, 50, 2073-2086.  
https://doi.org/10.1007/s11063-019-09985-9 

[19] Giebel, S. and Rainer, M. (2011) Stochastic Processes Adapted By Neural Networks 
with Application to Climate, Energy, and Finance. Applied Mathematics and Com-
putation, 218, 1003-1007. https://doi.org/10.1016/j.amc.2011.03.121 

[20] Li, N., Wu, X., Feng, J. and Xu, Y. (2019) Fixed-Time Synchronization in Probabili-
ty of Drive-Response Networks with Discontinuous Nodes and Noise Disturbances. 
Nonlinear Dynamics, 97, 297-311. https://doi.org/10.1007/s11071-019-04970-2 

[21] Zhang, Y., Zhuang, J., Xia, Y., Bai, Y., Cao, J. and Gu, L. (2019) Fixed-Time Syn-
chronization of the Impulsive Memristor-Based Neural Networks. Communications 
in Nonlinear Science and Numerical Simulation, 77, 40-53.  
https://doi.org/10.1016/j.cnsns.2019.04.021 

[22] Yang, X. and Cao, J. (2009) Stochastic Synchronization of Coupled Neural Net-
works with Intermittent Control. Physics Letters A, 373, 3259-3272.  
https://doi.org/10.1016/j.physleta.2009.07.013 

[23] Hu, C., He, H. and Jiang, H. (2020) Fixed/Preassigned-Time Synchronization of Com-
plex Networks via Improving Fixed-Time Stability. IEEE Transactions on Cyber-
netics, 51, 2882-2892. https://doi.org/10.1109/TCYB.2020.2977934  

[24] Abdurahman, A., Jiang, H. and Hu, C. (2021) Improved Fixed-Time Stability Re-
sults and Application to Synchronization of Discontinuous Neural Networks with 
State-Dependent Switching. International Journal of Robust and Nonlinear Control, 
31, 5725-5744. https://doi.org/10.1002/rnc.5566 

https://doi.org/10.4236/jamp.2022.101015
https://doi.org/10.1109/ACCESS.2020.2992686
https://doi.org/10.1109/TNNLS.2017.2651023
https://doi.org/10.1016/j.jfranklin.2018.11.040
https://doi.org/10.1016/j.automatica.2004.11.036
https://doi.org/10.1016/j.neunet.2016.04.011
https://doi.org/10.1109/TAC.2011.2179869
https://doi.org/10.1109/TII.2018.2817248
https://doi.org/10.1109/TCSII.2016.2551539
https://doi.org/10.1007/s11063-019-09985-9
https://doi.org/10.1016/j.amc.2011.03.121
https://doi.org/10.1007/s11071-019-04970-2
https://doi.org/10.1016/j.cnsns.2019.04.021
https://doi.org/10.1016/j.physleta.2009.07.013
https://doi.org/10.1109/TCYB.2020.2977934
https://doi.org/10.1002/rnc.5566


A. Abudireman et al. 
 

 

DOI: 10.4236/jamp.2022.101015 217 Journal of Applied Mathematics and Physics 
 

[25] Yang, Y. and Cao, J. (2007) Exponential Lag Synchronization of a Class of Chaotic 
Delayed Neural Networks with Impulsive Effects. Physica A: Statistical Mechanics 
and Its Applications, 386, 492-502. https://doi.org/10.1016/j.physa.2007.07.049 

[26] Liu, Y., Huang, J., Qin, Y. and Yang, X. (2020) Finite-Time Synchronization of 
Complex-Valued Neural Networks with Finite-Time Distributed Delays. Neuro-
computing, 416, 152-157. https://doi.org/10.1016/j.neucom.2019.01.114 

[27] Wei, R. and Cao, J. (2019) Fixed-Time Synchronization of Quaternion-Valued Me-
mristive Neural Networks with Time Delays. Neural Networks, 113, 1-10.  
https://doi.org/10.1016/j.neunet.2019.01.014 

[28] Li, X. and Song, S. (2014) Research on Synchronization of Chaotic Delayed Neural 
Networks with Stochastic Perturbation Using Impulsive Control Method. Commu-
nications in Nonlinear Science and Numerical Simulation, 19, 3892-3900.  
https://doi.org/10.1016/j.cnsns.2013.12.012 

[29] Mao, X. (2008) Stochastic Differential Equations and Their Applications. 2nd Edi-
tion, Horwood Publishing, Chichester. https://doi.org/10.1533/9780857099402 

[30] Yu, J., Yu, S., Li, J. and Yan, Y. (2018) Fixed-Time Stability Theorem of Stochastic 
Nonlinear Systems. International Journal of Control, 92, 2194-2200.  
https://doi.org/10.1080/00207179.2018.1430900 

[31] Chen, C., Li, L., Peng, H., Yang, Y., Mi, L. and Zhao, H. (2020) A New Fixed-Time 
Stability Theorem and Its Application to the Fixed-Time Synchronization of Neural 
Networks. Neural Networks, 123, 412-419.  
https://doi.org/10.1016/j.neunet.2019.12.028 

[32] Boyd, S., Ghaoui, L.E., Fernon, E. and Blakrishnan, V. (1994) Linear Matrix inequa-
lities in System and Control Theory. Society for Industrial and Applied Mathemat-
ics, Philadelphia. https://doi.org/10.1137/1.9781611970777 

[33] Hu, J. and Sui, G. (2019) Fixed-Time Control of Static Impulsive Neural Networks 
with infinite Distributed Delay and Uncertainty. Communications in Nonlinear 
Science and Numerical Simulation, 78, Article ID: 104848.  
https://doi.org/10.1016/j.cnsns.2019.05.006 

[34] Alimi, A.M., Aouiti, C. and Assali E.A. (2019) Finite-Time and Fixed-Time Syn-
chronization of a Class of inertial Neural Networks with Multi-Proportional Delays 
and Its Application to Secure Communication. Neurocomputing, 332, 29-43.  
https://doi.org/10.1016/j.neucom.2018.11.020 

[35] Wei, R., Cao, J. and Alsaedi, A. (2018) Fixed-Time Synchronization of Memristive 
Cohen-Grossberg Neural Networks with Impulsive Effects. International Journal of 
Control, Automation and Systems, 16, 2214-2224.  
https://doi.org/10.1007/s12555-017-0788-5 

[36] Zheng, M., Li, L., Peng, H., Xiao, J., Yang, Y. and Zhang, Y. (2018) Fixed-Time 
Synchronization of Memristive Fuzzy Bam Cellular Neural Networks with Time- 
Varying Delays Based on Feedback Controllers. IEEE Access, 6, 12085-12102.  
https://doi.org/10.1109/ACCESS.2018.2805183 

[37] Li, J., Jiang, H., Hu, C. and Alsaedi, A. (2019) Finite/Fixed-Time Synchronization 
Control of Coupled Memristive Neural Networks. Journal of the Franklin Institute, 
35, 9928-9952. https://doi.org/10.1016/j.jfranklin.2019.09.015 

[38] Ao, W., Ma, T., Sanchez, R.-V. and Gan, H. (2020) Finite-Time and Fixed-Time 
Impulsive Synchronization of Chaotic Systems. Journal of the Franklin Institute, 
357, 11545-11557. https://doi.org/10.1016/j.jfranklin.2019.07.023 

[39] Li, R., Cao, J., Alsaedi, A. and Alsaadi, F. (2017) Exponential and Fixed-Time Syn-

https://doi.org/10.4236/jamp.2022.101015
https://doi.org/10.1016/j.physa.2007.07.049
https://doi.org/10.1016/j.neucom.2019.01.114
https://doi.org/10.1016/j.neunet.2019.01.014
https://doi.org/10.1016/j.cnsns.2013.12.012
https://doi.org/10.1533/9780857099402
https://doi.org/10.1080/00207179.2018.1430900
https://doi.org/10.1016/j.neunet.2019.12.028
https://doi.org/10.1137/1.9781611970777
https://doi.org/10.1016/j.cnsns.2019.05.006
https://doi.org/10.1016/j.neucom.2018.11.020
https://doi.org/10.1007/s12555-017-0788-5
https://doi.org/10.1109/ACCESS.2018.2805183
https://doi.org/10.1016/j.jfranklin.2019.09.015
https://doi.org/10.1016/j.jfranklin.2019.07.023


A. Abudireman et al. 
 

 

DOI: 10.4236/jamp.2022.101015 218 Journal of Applied Mathematics and Physics 
 

chronization of Cohen-Grossberg Neural Networks with Time-Varying Delays and 
Reaction-Diffusion Terms. Applied Mathematics and Computation, 313, 37-51.  
https://doi.org/10.1016/j.amc.2017.05.073 

[40] Wang, S., Guo, Z., Wen, S., Huang, T. and Gong, S. (2020) Finite/Fixed-Time Syn-
chronization of Delayed Memristive Reaction-Diffusion Neural Networks. Neuro-
computing, 375, 1-8. https://doi.org/10.1016/j.neucom.2019.06.092 

[41] Ji, G., Hu, C., Yu, J. and Jiang, H. (2018) Finite-Time and Fixed-Time Synchroniza-
tion of Discontinuous Complex Networks: A Unified Control Framework Design. 
Journal of the Franklin Institute, 355, 4665-4685.  
https://doi.org/10.1016/j.jfranklin.2018.04.026 

 

https://doi.org/10.4236/jamp.2022.101015
https://doi.org/10.1016/j.amc.2017.05.073
https://doi.org/10.1016/j.neucom.2019.06.092
https://doi.org/10.1016/j.jfranklin.2018.04.026

	Some Further Results on Fixed-Time Synchronization of Neural Networks with Stochastic Perturbations
	Abstract
	Keywords
	1. Introduction
	2. Problem Formulation and Preliminaries
	3. Main Results
	4. Numerical Examples and Simulations
	5. Conclusions
	Funding
	Acknowledgements
	Conflicts of Interest
	References

