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Abstract 
In this paper, we study the long-time behavior of a class of generalized nonli-
near Kichhoff equation under the condition of n dimension. Firstly, the Lip-
schitz property and squeezing property of the nonlinear semigroup related to 
the initial-boundary value problem are proved, and then the existence of its 
exponential attractor is obtained. By extending the space 0E  to kE , a family 
of the exponential attractors of the initial-boundary value problem is ob-
tained. In the second part, we consider the long-time behavior for a system of 
generalized Kirchhoff type with strong damping terms. Using the Hadamard 
graph transformation method, we obtain the existence of a family of the iner-
tial manifolds while such equations satisfy the spectrum interval condition. 
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1. Introduction 

Exponential attractor is a compact positive invariant set with finite fractal 
dimension and exponentially attracts every orbit, which is an important feature 
to describe the long-term behavior of nonlinear partial differential equations. In 
reference [1], since Foias and others put forward this concept in 1994, many 
mathematicians have made in-depth research on exponential attractors. Inertial 
manifold refers to the positive invariant Lipschitz manifold of finite dimension, 
which includes the global attractor attracting all solution orbits at exponential 
speed, and it is an important bridge between infinite dimensional dynamical 
system and finite dimensional dynamical system. 
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In reference [2], the author studied the exponential attractors of the following 
nonlinear wave equations by using operator decomposition and finite covering 
methods.  
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Contrary to the global attractor, the exponential attractor has a uniform 
exponential convergence rate on the invariant absorption set of its solution. 
Because of this, the exponential attractor has deeper and more practical properties, 
and under the perturbation and numerical approximation, the exponential attractor 
is more robust than the whole attractor. 

In reference [3], Perikles G. Papadopoulos, Nikos M. Stavrakakis studied the 
global existence and blow-up of the following equations  
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Li et al. [4]. studied the global existence and blow-up of solutions for the 

following high-order Kirchhoff type equations with nonlinear dissipation terms  
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where ( )1NR NΩ ⊂ ≥  is a bounded open region with smooth boundary, υ  is 
an outward normal vector, 1m >  is a positive integer and , , 0p q r >  is a 
normal number. In this paper, using the concavity method, it is obtained that 
the solution has global existence when p r≤ , but when { }max ,2p r q> , for 
any initial value with negative initial energy, the solution explodes in a finite 
time with the norm in 2pL + . Salim [5] not only improves the results in reference 
[4] by modifying the proof method, but also proves that when the positive initial 
energy has an upper bound, the solution explodes in a finite time. Inspired by 
reference [4] [5], Ye et al. [6] studied the following hyperbolic equations of 
Kirchhoff type with damping term and source term:  
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where ( )mA = −∆ , 1m >  is a positive integer, NRΩ ⊂  is a bounded region 
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with smooth boundary, υ  is an outward normal vector, and , , 0a b p >  and 
, 2q r >  are normal numbers. The author not only obtains the global existence 

of the solution by constructing a stable set in 0
mH , but also proves the estimation 

of energy attenuation by using Komornik lemma. 
For more research on exponential attractors and inertial manifolds, we can 

read the literature [7]-[16]. 
Inspired by the above research, this paper will discuss a family of the existence 

of exponential attractors and inertial manifolds of a generalized Kirchhoff equation 
with damping term:  
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where m N +∈ , ( )1nR nΩ ⊂ ≥  is a bounded domain with smooth boundary 

∂Ω , ( )f x  is an external force term, ( )pm
p

M u∇  is the stress term of 

Kirchhoff equation, 0β > , ( )2m
tuβ −∆  is a strong dissipative term, 

( )tu u uρ +  is a nonlinear source term. 

In this paper, our main difficulty is the handling of ( )pm
p

M u∇  and 
nonlinear terms ( )tu u uρ + . In order to overcome the difficulties, certain 
assumptions are needed to solve them. The algorithm of proof process has been 
used by predecessors. The previous algorithms are combined and extended to 
solve the difficulty of nonlinear term in the paper. This paper is organized as 
follows. Section 2 is some basic assumptions. Section 3 proves the existence a 
family of exponential attractors. Section 4 proves the existence of a family of the 
inertial manifolds by using the Hadamard graph transformation method. 

2. Preliminaries 

For brevity, we used the follow abbreviation: 
( )2H L= Ω , ( )2L Ω

⋅ = ⋅ , ( ) ( ) ( )2 2 1
0 0

m mH H HΩ = Ω Ω
,  
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and ( )0,1,2,iC i =   denotes positive constant, 1λ  is the first eigenvalue of 
−∆  with homogeneous Dirichlet boundary condition on Ω . 

The notation ( ), ,⋅ ⋅ ⋅  for the H inner product and norm,that is 
( ) ( ) ( ), du v u x v x x

Ω

= ∫ , ( ) 2,u u u= . 
(H1) assume that Kirchhoff type stress term ( ) [ ]( )2 0, ,M s C R∈ +∞  satisfies:  
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where µ  is a constant. 
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(H2) 8m
n

ρ ≤ . 

3. Exponential Attractors 

We denote the inner product and norm in kE  as following: 

( ) ( ), , 1, 2i i i kU u v E i∀ = ∈ = , 

we have  
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Setting ( )T, ,k tU u v E v u uε∀ = ∈ = + , then Equation (1.1) can be converted 
into the following first-order evolution equation  
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In order to accomplish the proof, we need to construct a map. Let 0 , kE E  are 
two Hilbert spaces with 0kE E→  is dense and continuous injection, and 

0kE E→  is compact. Let ( )S t  is a solution semigroup generated by Equation 
(3.3). 

In the following definitions, 1, 2, , 2k m=  .  
Definition 3.1 [17] kA  compact set k kM E⊂  is called an exponential 

attractor for ( )( ), kS t B  if k k kA M B⊆ ⊆  and 
1) ( ) , 0k kS t M M t⊆ ∀ ≥ , 
2) kM  has finite fractal dimension, ( )F kd M < +∞ , 
3) There exist universal constans 0 1,C C  such that  
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( )S t  in kE .  

Definition 3.2 [17] If for every 10,
8
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, there exist a time * 0t > , an 

integer 0 1N ≥ , and an orthogonal projection 
0NP  of rank equal to 0N  such 

that for every U and V in kB , either  
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then we call ( )S t  is squeezing in kB , where 
0 0N NQ I P= − .  

Theorem 3.1 [1] Assume that 
1) ( )S t  possesses a family of ( )0,kE E -compact attractors kA , 
2) ( )S t  exists a positive invariant compact set 0kB E⊂ , 
3) ( )S t  is a Lipschitz continuous map with a Lipschitz continuous function 

( )l t  on kB , such that ( ) ( ) ( )
kk EE

S t u S t v l t u v− ≤ − , and satisfied the 

discrete squeezing property on kB . 

Then ( )S t  has a family of ( )0,kE E -compact exponential attractors kM  
and  
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Moreover, the fractal dimension of kM  satisfies ( ) 01F kd M cN≤ + , where 

0N  is the smallest N which make the discrete squeezing property established, 
1,2, , 2k m=  .  

Proposition 3.1 [1] There exist ( )0 kt D  such that  
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is the positive invariant set of ( )S t  in 0E , and kB  attracts all bounded 
subsets of kE , where kB  is a closed bounded absorbing set for ( )S t  in kE .  

Proposition 3.2 [1] Let 0 , kB B  respectively are closed bounded absorbing set 
of Equation (3.3) in 0 , kE E , then ( )S t  possesses a family of ( )0,kE E
-compact attractors kA .  

Under of the appropriate hypothesized, the initial boundary value problem 
Equation (1.1) exists unique smooth. This solution possesses the following 
properties:  
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We denote the solution in Theorem 3.1 by ( )( )0S t U U= , the ( )S t  is a 
continuous semigroup in 0E , There exist the balls:  
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respectively is a absorbing set of ( )S t  in 0E  and kE .  
Lemma 3.1 For ( )T, kU u v E∀ = ∈ , when we can obtain  
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Proof. By (3.1), (3.4) we get  
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By employing Hölder’s inequality, Young’s inequality and Poincaré’s inequality, 
we process the terms in (3.16), we have  
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k β βε
= − , we can get  
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The proof is completed. 

Let ( ) ( ) ( ) ( )( )T
0 ,S t U U t u t v t= = , where ( ) ( ) ( )tv t u t u tε= + , 

( ) ( ) ( ) ( )( )T
0 ,S t V V t u t v t= = , where ( ) ( ) ( )tv t u t u tε= + , 

Next set ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
0 0 ,t S t U S t V U t V t w t z tφ = − = − = , where  

( ) ( ) ( )tz t w t w tε= + , then ( )tφ  satisfies:  

( ) ( ) ( ) ( ) ( ) 0,t t H U H V F V F Uφ + − + − =             (20) 

( )0 0 00 .U Vφ = −                       (21) 

In order to certify Equation (1.1) exists a family of exponential attractors,we 
first show the semigroup ( )S t  of system (1.1) is Lipschitz continuous on kB .  

Lemma 3.2 (Lipschitz property) For 0 0, kU V B∀ ∈ , where 0 0,U V  is the initial 
values of problem (1.1), and 0t ≥ , we have  
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( ) ( ) 2 2
0 0 0 0e .

kk

rt
EE

S t U S t V U V− ≤ −                 (22) 

Proof. Taking the inner product of the Equation (3.20) with ( )tφ  in kE , we 
have  
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Next, we deal with the following items one by one. Similar to Lemma 3.1, we 
easily obtain  
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For convenience, let’s call ,
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the mean value theorem, Young’s inequality, we have  

( )( ) ( )( ) ( )

( )( ) ( ) ( )( )( ) ( )

2 2
2 2

2 2
2 2

2 22 2 2 21 1
2

2 22 21 2 1 2

,

, ,

2 2

2 2

k kp pm mm m k
p p

k km mk k

m k m k m k m k

m k m k

M u u M u u z t

M s w z t M s s u z t

w z C w z

C Cw z

ζ

µ µ

µ µ

+ +

+ +

+ + + +

+ +

 ∇ −∆ − ∇ −∆ ∇ 
 

   ′≤ −∆ ∇ + − −∆ ∇   
   

≤ ∇ + ∇ + ∇ ∇

+ +
≤ ∇ + ∇

  (25) 

For the last term, we apply the mean value theorem, by (H2), we have  
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By the interpolation inequality  
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Therefore  
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Integrating (3.24) - (3.26) into (3.23), we have  
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where  
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By using Gronwall’s inequality, we have  
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The proved is completed. 
Now,we introduce the operator −∆ , Obviously, −∆  is an unbounded 

self-adjoin positive operator and ( ) 1−−∆  is compact. So, there is an orthonormal 
basis { } 1i i

w ∞

=
 of H consisting of eigenvectors jw  of −∆  such that 

( ) j j jw wλ−∆ = , 1 20 jλ λ λ< ≤ ≤ ≤ → +∞
. N∀  denote by NP P=  the 

projector, NP  is an orthogonal projection, N NQ Q I P= = − . 
As follows,we will need  
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Lemma 3.3 For 0 0, kU V B∀ ∈ , where 0 0,U V  is the initial values of problem 
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(1.1). Let  
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Proof. Applying 
0nQ  to (3.20), we have  
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Taking the inner product of (3.31) with ( )
0nQ t  in kE , we have  

( ) ( ) ( )( )
( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ( )( )( ) ( )( )

0 0 0

0 0

0 0

0 0

2 2 22
1 2

2
2

2 2
2 2

1 d
2 d

,

,

, 0.

k k

m k
n n nE E

km k
n n

k kp pm mm m k
n np p

k k
n t t n

t k t k z t
t

w t z t

Q M u u M u u z t

Q u u u u u u z tρ ρ

φ φ +

+

+ +

+ + ∇

 − −∆ ∇ 
 
  + ∇ −∆ − ∇ −∆ ∇  

  

+ ∇ + − + ∇ =

 (32) 

Next, we deal with the following items one by one  

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )

( )( )( ) ( )

0 0

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0

2 2
2 2

2 2
2 2

2
2

2
2

2 22 2 2 21 1
11

,

,

,

,

2 2

k kp pm mm m k
n np p

k km m k
n n n n n

km k
n n n

km k
n n n n

m k m k m k m k
n n n

Q M u u M u u z t

M s u M s u z t

M s w z t

M s s u z t

w z C w z

ζ

µ µ

+ +

+ +

+

+

+ + + +

  ∇ −∆ − ∇ −∆ ∇  
  

 = −∆ − −∆ ∇ 
 

 ≤ −∆ ∇ 
 

 ′+ − −∆ ∇ 
 

≤ ∇ + ∇ + ∇ ∇
0

0 0

2 22 21 11 1 11 .
2 2

n

m k m k
n n

C Cw zµ µ+ ++ +   ≤ ∇ + ∇   
   

 (33) 

For the last term, we apply the mean value theorem, by (H2), we have  

( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

( ) ( )

( ) ( )

0 0

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

2 2

12

2 2

13

,

,

2 2

2 2

k k
n t t n

k k
n n t n n n t n n

k k
n t n

n n
L L

k k
n n

n n
L L

Q u u u u u u z t

u u u u u u z t

w z
C u u

w z
C u u

ρ ρ

ρ ρ

ρ ρ

ρ ρ

∞ ∞

∞ ∞

Ω Ω

Ω Ω

∇ + − + ∇

 = ∇ + − + ∇ 
 

 ∇ ∇  ≤ + +     
 ∇ ∇  + + +     
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By the interpolation inequality  

0 0

2 4
14 ,

n
m m

n nu C u
ρρ

∞
≤ ∇  

In the same way with  

0 0

2 4
15 ,

n
m m

n nu C u
ρρ

∞
≤ ∇  

where 8m
n

ρ ≤ . 

Therefore  

( )( ) ( )( ) ( )( )0 0

0 0 0

0 0 0

0 0 0

0 0 0

22 24 4
16

22 24 4
17

22 24 4
18

22 2 2 24 4
1 18

2
17

,k k
n t t n

n n
m m km m

n n n t

n n
m m km m

n n n

n n
m m km m

n n n

n n
m m m m km m

N n n n

m
n

Q u u u u u u z t

C u u w

C u u z

C u u w

C u u w

C u

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

λ +
+

∇ + − + ∇

 
≤ ∇ + ∇ ∇ 

 
 

+ ∇ + ∇ ∇ 
 
 

+ ∇ + ∇ ∇ 
 

  
≤ ∇ + ∇ ∇     

+ ∇
0 0 0

224 4
n n

m km m
n nu z

ρ ρ 
+ ∇ ∇ 

 

        (34) 

Integrating (3.33) - (3.34) into (3.32), we have  

( ) ( )

( )

0 0 0

0 0 0

0 0 0

0

2 2 221 11
1 2

22 2 2 21 11 4 4
1 18

22 24 4
17

22
19 1

1 d 1
2 d 2

1
2

.

k

k

m k
n n nE

n n
m m m m km m

N n n n

n n
m m km m

n n n

m
N n E

Ct k t k z
t

C C u u w

C u u z

C t

ρ ρ

ρ ρ

µ
φ φ

µ
λ

λ φ

+

+
+

+

+ + + − − ∇ 
 

  +
≤ + ∇ + ∇ + ∇     

 
+ ∇ + ∇ ∇ 

 

≤

  (35) 

where 

0 0

0 0

2 24 4
17

2 21 11 4 4
19 182 2

1 1

2
max ,

2

n n
m mm m

n nn n
m mm m

n nm m
N N

C u u
CC C u u

ρ ρ

ρ ρµ
λ λ+ +

  
∇ + ∇    + +  = + ∇ + ∇       

 
 

.  

Using Gronwall’s inequality, we have  

( ) ( )1
0 0

22 22 19 1

1

e e 0 .
2k k

m
k t rtN

n nE E

C
t

k r
λ

φ φ− + 
≤ + 

+ 
            (36) 

The proved is completed.  
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Lemma 3.4 (squeezing property) For 0 0, kU V B∀ ∈ , if  

( ) ( )( ) ( ) ( ) ( )( )0 0

* * * *
0 0 0 0 ,

k k
n n

E E
P S t U S t V I P S t U S t V− ≤ − −     (37) 

then we have  

( ) ( )* *
0 0 0 0

1 .
8 kk

EE
S t U S t V U V− ≤ −                (38) 

Proof. If ( ) ( )( ) ( ) ( ) ( )( )0 0

* * * *
0 0 0 0

k k
n n

E E
P S t U S t V I P S t U S t V− ≤ − − , then  

( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
0 0

0

* *
1

2* *
0 0

2 2
* * * *

0 0 0 0

2
* *

0 0

2
22 19 1

0 0
1

2

2 e e .
2

k

k k

k

k

E

n n
E E

n
E

m
k t rtN

E

S t U S t V

P S t U S t V I P S t U S t V

I P S t U S t V

C
U V

k r
λ− +

−

≤ − + − −

≤ − −

 
≤ + − 

+ 

   (39) 

Let *t  be large enough  

*
12 1e .

256
k t− ≤                         (40) 

Also let 0n  be large enough  

*
2

19 1

1

1e .
2 256

m
rtNC

k r
λ + ≤
+

                    (41) 

Subsituting (3.39) - (3.41) into (3.38), we have  

( ) ( )* *
0 0 0 0

1 .
8 kk

EE
S t U S t V U V− ≤ −            (42) 

The proved is completed.  
Theorem 3.2 Under the above assumptions, 0 kU E∈ , 1, 2, , 2k m=  , 

f H∈ .Then the initial boundary value problem (1.1) the solution semigroup 
has a family of ( )0,kE E -compact exponential attractors kM  on kB ,

( ) ( ) ( )( )
*

*

1 10

j i
k k

j it t

M S t A S t E
∞ ∞

= =≤ ≤

  
=      



 

, and the fractal dimension is 

satisfied ( ) 01F kd M cN≤ + .  

Proof. According to Theorem 3.1, Lemma 3.2, Theorem 3.2 is easily proven.  

4. A Family of Inertial Manifolds 

Next, we will prove the existence of a family of inertial manifolds when N is 
large enough by using graph norm transformation method.  

Definition 4.1 [18] Let ( ) ( ){ } 0t
S t S t

≥
=  be the solution semigroup on 

Banach space ( ) ( )( )2
0 0 1, 2, , 2m k k

kE H H k m+= Ω × Ω = 
, and there is a subset 

k kEµ ⊂ : 
1) kµ  is a finite-dimensional Lipschitz manifold; 
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2) kµ  is the positive invariant set, that is ( ) k kS t µ µ⊂ , 0t∀ > ; 
3) kµ  attracts exponentially all orbits of solutions, that is, there are constants 

0η > , 0C > , Such that  

( )( ), e , 0, ;t
k kd S t x C t x Eηµ −≤ ∀ ≥ ∀ ∈  

It is said that kµ  is an inertial manifold about ( ) ( ){ } 0t
S t S t

≥
= .  

Definition 4.2 [18] Let the operator : k kE EΛ →  have several eigenvalues of 
positive real parts, and its eigenfunction { } 1j j

w
≥

 expands into the corresponding 

orthogonal space in kE , and ( ),b k kF C E E∈  satisfies the Lipschitz condition  

( ) ( ) , , .
kk

F kEE
F U F V l U V U V E− ≤ − ∈              (1) 

If the point spectrum of the operator can be divided into two parts 1σ  and 

2σ , where 1σ  is finite,  

{ } { },1 1 ,2 2sup Re , sup Re ,k kλ λ σ λ λ σΛ = ∈ Λ = ∈          (2) 

{ }, 1, 2.
ik j iE span w j iσ= ∈ =                  (3) 

Then  

,2 ,1 4 ,k k FlΛ −Λ >                       (4) 

1 2
,k k kE E E= ⊕                        (5) 

hold with continuous orthogonal projection 
1,1 :k k kP E E→ , 

2,2 :k k kP E E→ , So 
it is said that the operator Λ  satisfies the spectral interval condition, P is 
orthogonal projection.  

Lemma 4.1 Let the eigenvalues , 1j jµ± ≥  is non-decreasing and for every 
n N∈ , when N n≥ , such that Nµ

−  and 1Nµ
−
+  are consecutive adjacent values.  

Equation (1.1) are equivalent to the following first-order evolution equation:  

( ) ,tU U F U+ Λ =                      (6) 

with  

( ) ( )( ) ( )
T

2 2

0
, , , ,p m mk t m

p

I
U u v E v u

M u β

− 
 = ∈ = Λ =
 ∇ −∆ −∆
 

      (7) 

( )
( ) ( )

0
.

t

F U
f x u u uρ

 
=   − + 

                 (8) 

we consider the graph norm on kE , which induced by the scale product  

( ) ( )( ) ( )( ) ( )2 2, , , ,
k

p m k m km k k
E p

U V M u u y g v+ += ∇ −∆ −∆ + ∇ ∇       (9) 

where ( ) ( )T T, , , kU u v V y g E= = ∈ ; ,y g  represent the conjugation of ,y g  

respectively; ( )2, , , m ku v y g H +∈ Ω . Obviously, the operator Λ  defined in (4.2) 
is monotone. Indeed, for kU E∈ ,  
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( ) ( )( ) ( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

2 2

2 2

2 2

22

, , , ,

,

,

0.

k

p m mm
E p

p m k m km
p

p m mk k m
p

m k

U U v M u u v u v

M u v u

v M u u v

v

β

β

β

+ +

+

 Λ = − ∇ −∆ + −∆ 
 

= − ∇ −∆ −∆

 + ∇ ∇ ∇ −∆ + −∆ 
 

= ∇ ≥

     (10) 

Therefore, ( ),
kEU UΛ  is a non-negative real number. 

In order to determine the characteristic value of Λ , we consider the following 
characteristic equation  

( )T, , ,kU U U u v EλΛ = ∀ = ∈                   (11) 

that is  

( )( ) ( )2 2

,

.
p m mm
p

v u

M u u v v

λ

β λ

− =
 ∇ −∆ + −∆ =

            (12) 

Substituting the first Equation of (4.12) into the second equation can be 
obtained  

( )( ) ( )2 22 0.
p m mm
p

u M u u uλ βλ+ ∇ −∆ − −∆ =            (13) 

Taking the inner product of ( )k u−∆ , on both sides of the Equations of (4.13) 
respectively, we acquire  

( )2 2 22 2 2 0.
pk m m k m k
p

u M u u uλ βλ+ +∇ + ∇ ∇ − ∇ =         (14) 

Regarding (4.14) as a quadratic equation of one variable with respect to λ , 

for j N +∈ , and let 
pm
p

s u= ∇ , ( )M M s= , the corresponding eigenvalues of 

Equation (4.11) are as follows:  

( )2 2 4
,

2

pm
j j jp

j

M uβξ β ξ ξ
λ±

± − ∇
=                (15) 

where 1j ≥ , jξ  is the eigenvalue of ( )2m−∆  in ( )2
0

mH Ω , then 
2m
n

j j jξ λ= . 

If 
( )

2

4
pm
p

j

M u
ξ

β

∇
≥ , then 1

2

4
j

µ
ξ

β
≥ , that is all the eigenvalues of Λ  are 

positive real numbers, and the corresponding eigenvectors are in the form of 

( ),j j j jU u uλ± ±= − . For convenience, we note that for any 1j ≥ ,  

( )2 22 1, 1, , 1, 2, , 2 .m km k k
j j j j

j

u u u k mξ
ξ

− ++∇ = ∇ = ∇ = =  (16) 

Theorem 4.1 Assue ( )
2

4
j

M s
ξ

β
≥ , 1N N +∈  is large enough, when 1N N> , 

the following inequality holds  
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( ) ( )( )2
1

2 24 4
20 1 21 22

4 1

ˆ8 1 .

N N j

n n
m m mm m

M s

C C u C u
ρ ρ

ξ ξ β β ξ

λ

+

−

− − − −

   
≥ ∇ + ∇ +        

          (17) 

Then the operator Λ  satisfies the spectral gap condition ,2 ,1 4k k FlΛ −Λ > .  
Proof: It is known that all the eigenvalues of Λ  are positive real numbers, 

( )
2

j

M s
β

ξ
≥ , and the sequence { }

1j j
λ−

≥
 and { }

1j j
λ+

≥
 are monotonically 

increasing. 
The following four steps to prove Theorem 4.1. 
step 1: Because jλ

±  is a non-decreasing sequence. According to Lemma 4.1, 
given N such that Nλ

−  and 1Nλ
−
+  are consecutive adjacent eigenvalues, the 

eigenvalues of the operator Λ  are decomposed into 1δ  and 2δ , where 1δ  is 
the finite parts, which are expressed as follows.  

{ }{ }1 , max , ,s j s j Nδ λ λ λ λ λ− + − + −= ≤                 (18) 

{ }{ }2 , min , .s j s N s jδ λ λ λ λ λ λ+ ± − − + ±= ≤ ≤              (19) 

step 2: Consider the corresponding decomposition of kE .  

{ }1 1, , ,k s j s jE span U U λ λ δ− ± − += ∈                 (20) 

{ }2 2, , .k s j s jE span U U λ λ δ+ + − ±= ∈                 (21) 

The purpose is to make these two orthogonal subspaces of kE  and satisfy the 
spectral gap Equation (4.4) is true when ,1k Nλ

−Λ = , ,2 1k Nλ
−
+Λ = . Further 

decomposition 
2kE , then 

2 C Rk k kE E E= ⊕ ,  

{ },
Ck s s N sE span U λ λ λ− − − += ≤ ≤                  (22) 

{ },
Rk R N jE span U λ λ+ − ±= ≤                    (23) 

and set 
1N Ck k kE E E= ⊕ . Note that 

1kE  and 
CkE  are finite dimensional, that 

1N kEλ− ∈ , 1 RN kEλ−
+ ∈ , and that the reason why 

1kE  is not orthogonal to 
2kE  

is that, while it is orthogonal to 
RkE  is not orthogonal to 

CkE  

Now we introduce two functions :
NkE RΦ → , :

RkE RΨ → , defined by  

( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( )

22 2 2 2

2 2 22

, 2 , 2 ,

2 , 4 ,

4 , ,

m km k m k m k

m k m k m km k

pm k k
p

U V u y g u

v y v g

M u u y

β β

β

− ++ + +

− + − + − ++

Φ = ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇

− ∇ ∇ ∇

    (24) 

( ) ( ) ( )( )
( )( ) ( ) ( )( )

22 2 2 2

2 2 22

, 2 , ,

, 4 , ,

m km k m k m k

m k m k m km k

U V u y g u

v y g v

β β

β

− ++ + +

− + − + − ++

Ψ = ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇
    (25) 
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with ( ) ( ), , ,U u v V y g= = , ,y g  represents the conjugate of y and g 
respectively. 

For ( ),
NkU u v E= ∈ , then  

( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( )

22 2 2 2

2 2 22

, 2 , 2 ,

2 , 4 ,

4 ,

m km k m k m k

m k m k m km k

pm k k
p

U U u u v u

v u v v

M u u u

β β

β

− ++ + +

− + − + − ++

Φ = ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇

− ∇ ∇ ∇

 

( ) ( )

( ) ( )

( )
( )( )

22 22 22 22 2 2

222 22 2

2 22 2

22
1

2 2 4
2

4 2
2

4

4 ,

m k m km k m k

p m km k m k
p

pm k m k
p

pm k
p

u v u v

M u u v u

u M u u

M u u

ββ

β

β

β ξ

− + − ++ +

− + +

+

≥ ∇ − ∇ − ∇ + ∇

− ∇ ∇ − ∇ − ∇

= ∇ − ∇ ∇

≥ − ∇ ∇

(26) 

For any k, there is ( )2 4k kMβ ξ ξ≥ , and according to the initial hypothesis 

( )
2

0 1 4
kM s

β ξ
µ µ≤ ≤ ≤ , that is ( ), 0U UΦ ≥ , Φ  is positive definite. Similarly, 

for ( ),
RkU u v E= ∈ , then  

( ) ( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )

22 2 2 2

2 2 22

2 22 22 22 2 2 2

22
1

, 2 , ,

, 4 ,

2 4 4

.

m km k m k m k

m k m k m km k

m k m km k m k

k

U U u u v u

v u v v

u v u v

u

β β

β

β β

β ξ

− ++ + +

− + − + − ++

− + − ++ +

Ψ = ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇

≥ ∇ + ∇ − ∇ − ∇

≥ ∇

 (27) 

that is ( ), 0U UΨ ≥ , Ψ  is positive definite. 
Thus Φ  and Ψ  define a scalar product, respectively on 

NkE  and 
CkE , 

and we can define an equivalent scalar product in kE , by  

( ) ( ), , , .
k

N N R RE
U V P U P V P U P V= Φ +Ψ             (28) 

where NP  and RP  are projections of kE  to 
NkE  and 

RkE  respectively, for 
brief, (4.28) can be abbreviated as the following  

( ) ( ), , , .
kE

U V U V U V= Φ +Ψ  

We proved then to show that the subspaces 
1kE  and 

2kE  defined in (4.20), 
(4.21) are orthogonal with respect to the scalar product (4.28). In fact, it is 
sufficient to show that 

NkE  is orthogonal to 
CkE , in turn, this reduces to 

showing that  

( ) ( ), , 0 , .
C N

k
s s s s s k s kE

U U U U U E U E+ − + − + −= Φ = ∀ ∈ ∈      (29) 

Recalling (4.26) and (4.27), ,
C Ns k s kU E U E+ −∀ ∈ ∈   
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( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( )( )
( )

( ) ( )

( ) ( )

22 2 2 2

2 2

2 2

2 22 2

2 22

2

, 2 , 2 ,

2 ,

4 , 4 ,

2 2

4 4

12 2 4 4 .

m km k m k m k
s s s s s s s

m k m k
s s s

m k m k k k
s s s s s s

m k
s s s s

m k k
s s s s

s s s s s s
s

U U u u u u

u u

u u M s u u

u u

u M s u

M

β β λ

β λ

λ λ

β β λ λ

λ λ

β ξ β λ λ λ λ ξ
ξ

− ++ − + + + +

− + − +−

− + − ++ −

+ − +

− ++ −

− + + −

Φ = ∇ ∇ + − ∇ ∇

+ − ∇ ∇

+ − ∇ − ∇ − ∇ ∇

= ∇ − +

+ ∇ − ∇

= − + + −

 (30) 

according to (4.15)  

( ), ,s s s s s s sMλ λ βξ λ λ ξ ξ− + + −+ = =  

thus, (4.30) is equivalent to  

( ) ( ) ( )2 1, 2 2 4 4 0.s s s s s s s s
s

U U Mβ ξ β λ λ λ λ ξ
ξ

+ − − + + −Φ = − + + − =  

step 3: Further, we estimate the Lipschitz constant Fl  of  

( ) ( ) ( )( )T
0, ,tF U f x u u uρ= − +  

( ) ( ) ( )T T T
1 1 1 ,1 2 2 2 ,2, , , , , ,k k kU u v E U u v P U U u v P U∀ = ∈ = = = =  

then  

,1 1 ,2 2, .k kP u u P u u= =  

Give ( ) ( )ˆ ˆ, , , kU u v V u v E= = ∈ , we get  

( ) ( ) ( ) ( )( )
( ) ( )
( ) ( ) ( )( )20

ˆ ˆ ˆ0,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

k
t tE

k k
t t

k k
t t

F U F V u u u u u u

u u u u u u u u

C u u u u u u

ρ ρ

ρ ρ ρ ρ

ρ ρ

∞ ∞

− = + − +

= ∇ − + ∇ −

≤ + ∇ − + ∇ −

 

By the interpolation inequality  

2 4
21ˆ ˆ

n
m mu C u

ρ
ρ

∞
≤ ∇  

2 4
22

n
m mu C u

ρ
ρ

∞
≤ ∇  

where 8m
n

ρ ≤ . 

Therefore  

( ) ( )

( ) ( )( )2 2 24 4
20 1 21 22

2 24 4
20 1 21 22

ˆ ˆ ˆ1

ˆ 1

k

k

E

n n
m m m m k km m

t t

n n
m m mm m

E

F U F V

C C u C u u u u u

C C u C u U V

ρ ρ

ρ ρ

λ

λ

− +

−

−

  
≤ ∇ + ∇ + ∇ − + ∇ −     
   

≤ ∇ + ∇ + −        
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thus  

2 24 4
20 1 21 22ˆ 1

n n
m m mm m

Fl C C u C u
ρ ρ

λ−
   

≤ ∇ + ∇ +        
          (31) 

step 4: Now we need to verify that the spectral interval condition 2 1 4 FlΛ −Λ >  
is established. 1 Nλ

−Λ =  and 1 1Nλ
−
+Λ = , we can get  

( ) ( ) ( )( )2 1 1 1
1 1 ,

2 2N N N N R N R Nβλ λ ξ ξ− −
+ +Λ −Λ = − = − + − +      (32) 

with ( ) ( )2 2 4N NR N M sβ ξ ξ= − . 
and  

( ) ( ) ( )( )( )2
1 1lim 1 4 0.N NN

R N R N M sβ ξ ξ ξ+→+∞
− + + − − =      (33) 

For formula (4.32). There, 1 0N∃ > , such that for 1N N∀ > ,  

( ) ( )
( )( )

2

1 2
1

4
4

N

N

M s
R N

M s
β ξ

ξ β ξ

−
=

−
 

we can get  

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( )
2

1 1

2
1 1 1 1

1 4

4 1 1 1 ,

N N

N N

R N R N M s

M s R N R N

β ξ ξ ξ

β ξ ξ ξ

+

+

− + + − −

= − − + − −
     (34) 

( )( )1lim 1 0.NN
R Nξ

→+∞
− =  

From the condition, it can be determined that 1 0N >  such that for all 

1N N≥ , and with (4.32)  

( )( )21
2 1 1 1

2 24 4
20 1 21 22

4 1
2

ˆ4 1 4

N N
N N

n n
m m mm m

F

M s

C C u C u l
ρ ρ

ξ ξ
λ λ β β ξ

λ

− − +
+

−

−
Λ −Λ = − ≥ − − −

   
≥ ∇ + ∇ + ≥        

    (35) 

under the latter assumption, Theorem 4.1 is proved completely.  
Theorem 4.2 In the conclusions of Theorem 4.1, initial boundary value 

problems admits an inertial manifold kµ  in kE  of the form  

( ) ( ){ }1
: ,k k k k kgraph Eµ ζ ζ ζ= Γ = + Γ ∈              (36) 

where 
1 2

: k kE EΓ →  is Lipschitz continuous with the Lipschitz constant 

Fl ,and ( )graph Γ  represents the diagram of Γ .  

Proof: According to Theorem 4.1, Lemma 4.1 and Definition 4.1 is easily 
proven. 
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