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Abstract 
Natural convection flow of unsteady Maxwell fluid with the effects of con-
stant magnetic force in the course of a porous media is investigated in this 
research work. Fluid motion between a channel of parallel plates is tempted 
by time dependent shear stress applied on one plate. The governing partial 
differential equations of a model under consideration are transformed into 
ordinary differential equations by Laplace transform method and then solved 
for temperature and velocity fields. The obtained results for temperature 
fields are expressed in terms of complementary error function. The influences 
of involved parameters likes Hartmann number, Grashf number, Prandlt 
number and porosity parameter, on temperature and velocity profiles are 
shown graphically. There is no such result regarding Maxwell fluid in the ex-
isting literature. 
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1. Introduction 

Free convection flow of Maxwell fluid subject to the magnetic field (MHD) 
through a porous medium has remarkable applications in engineering industry. 
A porous medium is formed by voids and solid matrix interconnection. Such 
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media allow fluids to flow and have various useful applications in everyday life 
and manufacturing sciences [1] [2] [3]. Furthermore, an electrically conducting 
fluid motion in a magnetic field is known as magnetohydrodynamics. Magneto-
hydrodynamics (MHD) has significant effects on fluid flow and can be observed 
in numerous natural and artificial flows. Fluids flow under the influence of 
magnetic force has several uses in field of science industry, such as: thermal and 
nuclear power generation, pumping the liquids and gases, manufacturing of 
electric pump and many others [4] [5]. In the preceding few years, models of 
rate type MHD fluids embedded in permeable medium have been studied for 
engineering and biological applications by many mathematicians and scientists 
[6]-[11]. 

Flow of non-Newtonian fluids has not only basic mathematical concern, but it 
is also appeared in several useful and applicable process, e.g. drilling, blood flow, 
cooling and heating process, artificial surfing etc. [12]-[25]. Sultan et al. [26] 
have made the clarification for flow of generalized Burgers fluid through channel 
of parallel walls subject to rectified sine pulses stress with the existence of uni-
form magnetic field. Khan et al. [27] analyzed free convection flow of viscous fluid 
for mass transfer on an infinite inclined plane with MHD. Riaz et al. [28] and 
Akhtar et al. [29] discussed the motion of generalized Maxwell fluid and ob-
tained the exact solutions. 

In the present study, the flow of unsteady MHD Maxwell fluid flow embedded 
porous medium in channel of two side plates, is considered. The motion of one 
plate is generated by unsteady shear stress while the other is fixed. The Laplace 
transform is initially applied on the governing equation for the developed model. 
Then, the Stehfest’s and Tzou’s algorithms are applied to obtain the inversion of 
transformed results. The obtained results for solutions of problem are also pre-
sented graphically and the effects of potent parameters are explained by some 
graphs. According to our best knowledge, this piece of research work is still not 
considered in the existing literature.  

2. Statement of Problem 

We reckon a natural convection flow of Maxwell fluid of constant density in a 
porous medium in the presence of magnetic field through a couple of hot side 
plates situated in rectangular coordinates system in such a way that their planes 
lies in xz-plane and separated by distance d. Initially, the whole system with fluid 
and its constrains is in the state of equilibrium at a constant thermal condition 

0T . For time 0t >  the left plat begins to move under the applied time depen-
dent shear stress in its own plane consequently the fluid flow have been induced. 
The temperature of this plate hoist or falls according to ( ) ( )0 0wT T T g t+ −  
where ( )g t  is continues function satisfy the ( )0 0g = . A homogeneous mag-
netic force field of the strength 0B  normal to the plate surface is applied which 
is also normal to the flow direction. Here we presume that fluid motion and its 
temperature are functions of special variable y and time variable t, also induced 
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magnetic field and convective effects can be neglected. Dissipation due to viscos-
ity and Joule heating in energy momentum equations are negligible. With the 
standard Boussinesq’s approximation, governing equations for incompressible 
and unsteady fluid flow are as 

( ) ( ) ( )
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with the following replacement for variable and parameters  
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and after dropping the ∗ , dimensionless model is as  
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with dimensionless conditions  
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( ) ( )1, 0, 1, 1,u t T t= =                         (11) 

where u: is dimensionless fluid velocity, T: dimensionless temperature for fluid, 

wT : temperature at wall, ρ : density, µ : dynamic viscosity, 1λ  relaxation time, 
ν : kinematic viscosity, k: thermal conductivity, g: Gravitational acceleration, Pr: 
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Prandtl number, 0τ : Constant shear stress, 1k : permeability of medium, 0B : 
magnetic field, pC : specific heat at constant pressure, φ , porosity, aH : Hart-
mann number, β : coefficient of volumetric expansion, and σ : represented the 
electrical conduction for fluid.  

3. Solution of Problem 

As Equation (8) is not coupled with Equation (7), so we can solve separately Eq-
uation (8) for temperature field. 

3.1. Thermal Field 

Equation (8) from reduced to ordinary differential equation with the help of 
Laplace transform, as follows  

( ) ( )
2
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Pr , .
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∂

                      (12) 

Transformed temperature ( ),T y s  satisfies the transformed condition 
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=  under all these conditions we obtain the fol-

lowing Laplace transform of temperature profile  
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After the inversion Equation (14), we get  
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Now by inversion of Laplace transform in Equation (13) we reach to the fol-
lowing result for temperature field in t-domain  
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3.2. Calculation of Velocity  

Equation (7) reduces to ordinary equation by Laplace transform as follows  
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Using these conditions we can obtain the following Laplace transform of velocity 
field  
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Equation (22) is very complicated and inverse Laplace transform is not possi-
ble by ordinary inversion formulas. Therefore, we will use numerical techniques 
namely Stehfest’s and Tzou’s algorithms for inversion of Laplace transform in 
Equation (22).  

3.3. Graphical Results and Discussions 

Maxwell fluid flowing through poriferous medium under the influence of a con-
stant magnetic has been studied in this article. Prescribed Maxwell fluid model 
solved by integral transform method and find an analytical. Also results for ve-
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locity and temperature are presented by some graphics to illustrate the effect 
of parameters. All the graphs are plotted for functions ( ) 1 e tg t −= −  and 
( ) 1 cosh t t= − . The inversion is made by performing the Stehfest’s algorithm 

and Tzou’s algorithms to make a validation for our obtained results. 
Figure 1 depicts the temperature dependence on Prandtl number while fixing 

values of other involved parameters. It is clear by the graphic that by increasing 
value Pr the thermal profile fall. An increasing Pr meant that we trimming down 
the heat conduction and improving the viscosity. Figure 2 is sketched to study 
the influence of time t on the thermal profile of fluid. By graphic illustration it is 
clear that for progressive time t the temperature profile fall down. 

 

 
Figure 1. Temperature profiles against y due to Pr given by 
the Equation (19). 

 

 
Figure 2. Temperature profiles against y due to t given by 
the Equation (19). 
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Figure 3 is drawn to elaborated subjectivity of Grashof number Gr over the 
fluid’s motion. For every successive increment to the value of Gr the fluid speed 
up and this is because the fact that an increasing Gr that buoyancy forces in-
creases, causing an increase in the fluid’s motion. Figure 4 is sketch to see the 
effect of Prandtl number on fluid’s velocity and it is noted that fluid slow down 
with the increasing Pr. 

Figure 5 is drawn to discuss the effect of porosity K and from the profile pat-
tern it is observed that developing value of K the fluid’s velocity slow down. 
Physically, this result can be achieved when the voids of the permeable medium 
are very small so that such medium may offer considerable opposition to flow. 
In Figure 6, the influence of Hartmann number Hα  has been explained. An 

 

 
Figure 3. Velocity profiles against y due to Grashof number Gr 
given by the Equation (22). 

 

 
Figure 4. Velocity profiles against y due to Prandlt number Pr 
given by the Equation (22). 
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Figure 5. Velocity profiles due to porocity parameter K given by 
the Equation (22). 

 

 
Figure 6. Velocity profiles due to Hatmann number Ha given by 
the Equation (22). 

 
enhancing t value of Hartmann number decreases the velocity of the fluid but 
gave an increment in the thickness of the boundary layer. The reason behind 
that the Lorentz force resisted fluid motion more vigorously for larger values of 
magnetic field parameter and hence fluid tend to slow down. Figure 7 illustrated 
the influence of λ . For increasing value of λ , the motion of fluid and boun-
dary layer thickness increases. Figure 8 drawn to see the objectivity of fluid’s 
velocity over the time and it is noted that for delaying the instants the fluid’s 
motion as well as the boundary layer thickness boosted. Figure 9 and Figure 10 
are drawn to present the inversion results for the Laplace transform in Equation 
(22) that are obtained by Stehfestís and Tzouís algorithms and overlapping pro-
files is an evidence of validity of inversion results for velocity. 
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Figure 7. Velocity profile due to relaxation time λ  given by the Equation (22). 

 

 
Figure 8. Velocity profiles due to time t given by the Equation (22). 

 

 
Figure 9. Temperature ( ),T y t  profiles for Equation (19). 
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Figure 10. Velocity ( ),u y t  profiles against y for the Equation (22). 

4. Conclusions 

This paper is design for Maxwell fluid flow model and is solved to establish the 
analytical expressions for temperature and velocity with the help of Laplace 
transform method. Obtained results for Velocity and temperature are plotted to 
see the influence of parameters graphically. Inversion of transformed tempera-
ture and velocity fields are made by Tzouís and Stehfestís algorithms and in-
verted results are presented in Figure 9 and Figure 10. Some important re-
markable conclusions of present study are outlined as follows:  

1) An enhancing value of Pr falls down temperature.  
2) Temperature field increases for time development.  
3) Velocity field increases for Gr and λ .  
4) Velocity slows down for Pr, K and Ha.  
5) Achieved profiles for velocity and temperature through both inversion al-

gorithms namely, Stehfestís and Tzouís are equivalent.  
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