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Abstract 
Continued fractions constitute a very important subject in mathematics. 
Their importance lies in the fact that they have very interesting and beautiful 
applications in many fields in pure and applied sciences. This review article 
will reveal some of these applications and will reflect the beauty behind their 
uses in calculating roots of real numbers, getting solutions of algebraic Equa-
tions of the second degree, and their uses in solving special ordinary differen-
tial Equations such as Legendre, Hermite, and Laguerre Equations; moreover 
and most important, their use in physics in solving Schrodinger Equation for 
a certain potential. A comparison will also be given between the results ob-
tained via continued fractions and those obtained through the use of well-known 
numerical methods. Advances in the subject will be discussed at the end of 
this review article. 
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1. Introduction 

The subject of continued fractions (CF) is an old subject although many people 
are not aware of it. Actually, continued fractions have so many applications in 
algebra and in various fields such as mathematics, physics, and chemistry [1]. 

The easiest way of forming a continued fraction is by writing a certain amount 
in the form of a numerator and a denominator, and each denominator is com-
posed of a numerator and a denominator and so on. Usually, the successive nu-
merators are equal to one. 

Continued fractions have a long history; they were known since the appear-
ance of Euclidean algorithm for finding the greatest common divisor (GCD) of 
two numbers. That was around the year 300 B.C. [1] [2]. Research works and 
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papers continue then to be performed and a huge accumulation of applications 
arise; this is due to their simplicity to deal with and the smooth way of the cal-
culations involved, because all what we need are the four simple mathematical 
operations, namely addition, subtraction, multiplication, and division. 

We should add that the subject of continued fractions is still very fruitful and 
interesting for researchers. In fact, their uses are clear in many applied areas, in 
mathematics, physics, chemistry, and in medical sciences. 

Somewhat recently, a short article was written about the history of continued 
fractions presenting research works on them and their use in power series fields 
over a finite field [3]. Hence, we see the motive behind writing this review ar-
ticle. 

In the next section, we introduce continued fractions and give few examples to 
clarify concepts and ideas which are related to them showing how to write an 
ordinary fraction in the form of a continued one [4] [5] [6]. To add, we show the 
relationship of continued fractions with Fibonacci numbers, series and recur-
rence formulae [1].  

In section 3 and section 4, we give some applications in mathematics which 
include ways of computing roots of real numbers [7], and representation and 
solution of algebraic Equation of the second degree in one unknown [5] [7]. We 
also make a comparison between the results obtained via continued fractions 
techniques and the results obtained through the use of some numerical methods 
such as the general method to compute the nth root of real numbers [8], and 
Newton-Raphson method [9]. 

Using continued fractions in solving differential Equations such as Legendre, 
Hermite, and Laguerre Equations is the subject of section 5 [10]. Section 6 deals 
with applications of continued fractions in quantum mechanics in solving the 
time-dependent Schrodinger Equation [11]. In section 7, we discuss the conver-
gence of CFs. 

Finally, and in the last section, we present a concluding discussion. 

2. Preliminaries 

Definition 1 
An expression of the form 

1
1

2
2

3
3

ba
ba ba

+
+

+


                       (1) 

Is called a continued fraction; and where , 1, 2,3,ia i =   and , 1, 2,3,ib i =   
are real numbers. 

If it happens that the numerator in each fraction is equal to one, then the con-

tinued fraction is a simple one. i.e. 1

2

3
4

1
1

1

a
a

a
a

+
+

+
+

 is a simple continued 
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fraction [1]. 

Note that any normal fraction ( p
q

, p and q are integers and 0q ≠ ) can be 

expressed as a continued fraction as [2] 

[ ]1 ; , ,
1

p a a b c
q b

c

= + ≡
+

+





                  (2) 

Definition 2 
The finite continued fraction in a simple one with a finite number of contin-

ued ones. i.e. it has the form 

[ ]0 1 2; , , , na a a a                         (3) 

Definition 3 
An infinite continue fraction is expressed in terms of an infinite number of 

continued ones; namely it has the form [2] [12] 

[ ]0 1 2; , ,a a a                           (3) 

Definition 4 
An infinite continued fraction is called a periodic fraction if there exist two 

positive numbers k and N such that n n ka a +=  n N∀ ≥ . The fraction is then 
written as [2] 

[ ]0 1 2 1 1 1; , , , , , , , , ,N N N k N Na a a a a a a a+ + − +                (4) 

In a compact form we write (4) as 

0 1 2 1 1; , , , , , ,N N N ka a a a a a+ + −
                      (5) 

Now, we see that it is easy to simplify a continued fraction to a usual fraction. 
This can be seen from the example below 

Example 1 

( )
( )

( )
( )

a c f h db f hba a
d c f h d c f h dc

f h

+ + +  + = + =
+ + + ++

+

. 

Moreover a normal fraction can always be expressed as a CF. Example 2 illu-
strates this process 

Example 2 

To express the fraction 64
25

 as a CF we proceed as follows  

64 2 25 14= × + ,  

25 1 14 11= × + ,  

11 3 3 2= × + ,  

3 1 2 1= × + ,  

2 1 2 0= × + .  

Hence it is clear that 
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[ ]64 12 2;1,1,3,1,2
125 1 11 13 11

2

= + =
+

+
+

+

, which is a finite CF. 

What was done in this example is exactly what is to be done using Euclidean 
algorithm for finding the GCD of two numbers [1].  

Remarks 

1) If [ ]0 1 2; , ,i

i

p
a a a

q
= 

 then [ ]0 1 20; , , ,i

i

q
a a a

p
= 

 and vice versa. e.g. 

[ ]45 2;1,4,3
16

= , then [ ]16 0;2,1,4,3
45

= . 

2) We call the first integer appearing in the CF as the first element in the list. 2 

is the first element for the fraction [ ]28 2;1,1,5
11

= ; and 5 is the last element in 

the list for the fore-mentioned example, namely for [ ]2;1,1,5 . 

3) To find the CN for a negative fraction p
q

−  we search for a negative in-

teger which when multiplied by q and subtracted from −p we get a smallest posi-
tive integer and the first element should be a negative number. e.g.  

[ ]37 11 1;6,3,2
144 6 13

2

− = − + = −
+

+

. 

4) Any rational number can be expressed in terms of a finite CF; while an ir-
rational number can only be written as an infinite CF [13]. 

3. Continued Fractions and Series 

Continued fractions have very good relations with various series; to begin with 
we start with Fibonacci series: 

3.1. Fibonacci Series 

Leonardo Fibonacci (1170-1250 A.D.) was a merchant and dealt a lot with Arab 
mathematicians [1]; one of the things he was famous for was his series about a 
couple of rabbits, male and female, giving birth to off-springs and getting after n 
months the following series 

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,            (6) 

The question which needed an answer was: After n months how many couples 
of rabbits were there? The answer was given by Fibonacci where he took into 
account of the fertility of the rabbits and that the numbers of couples in the thi  
month ( iu ) is the sum of the ones born in that month and the previous number 
counted in the ( )th1i −  month ( 1iu − ) reaching the conclusion given in (6). 
These are Fibonacci numbers and are denoted by  

( ) ( ) ( ) ( ) ( )0 1 2 3 40 , 1 , 1 , 2 , 3 ,u u u u u= = = = =   [1]. The recurrence relation  
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1 1i i iu u u+ −= +                          (6) 

Used before is very common in nature especially in the classification of leaves 
in botany and in sunflower studies [1]. 

Now, it clear that Fibonacci numbers can be written in terms of CF. This is 

shown as follows: 02
2 1 0

1 1

1
uuu u u

u u
= + ⇒ = + ; and  

4
4 3 2

33

2

1

0

1 11 1
11 11

uu u u
uu
u

u
u

= + ⇒ = + = +
+

+

.  

3.2. Continued Fractions in Recursive Forms 

Assume that we have the fraction 

[ ]0 1 2 0

1

2
3

1; , , ,
1

1

1

n
n

n

n

p
a a a a a

q a
a a

a

= = +
+

+
+

+







             (7) 

The numerators in each of the fractions are [5] 

0 0 1 0 1 1 0, 1 1, ,etc.p a p a a a p= = + = +                  (8) 

In general it can be shown that [5] 

1 2n n n np a p p− −= +                         (9) 

Equation (9), gives the recurrence relations between the successive numera-
tors of the meant fractions; while the similar recurrence relations between the 
successive denominators iq  are given by 

1 2n n n nq a q q− −= +                         (10) 

Also it is clear that 

1 2

1 2

, 2n n n n

n n n n

p a p p
n

q a q q
− −

− −

+
= ≥

+
                     (11) 

Example 3 
since 

[ ] 0 1 2

0 1 2

3

3

17 1 3 1 2 71;2,2,2 , 1, 1 , 1 1 ,
112 2 2 5 52
2

1 1 5 17and 1 1 1
1 2 12 122 21 52

2

p p p
q q q

p
q

= ∴ = = + = = + = + =
+

= + = + = + =
+ +

+

   (12) 

As expected. 
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3.3. Ascending Continued Fractions 

Although this kind of fraction is not very much used but there is no harm in de-
fining it here at least from historical point of view [1] [4]. We can write the frac-

tion a
b

 as an Ascending continued fraction as 

111 1 1 1 1a e
b c d c c e c

+
≡ + = + ⋅ =                    (13) 

Example 4 

To write the fraction 5
12

 in terms of an ascending CF, we see that 

115 1 1 1 1 1 4
12 3 12 3 3 4 3

+
= + = + ⋅ = . 

4. The Use of Continued Fractions in Finding Roots of Real  
Numbers 

4.1. The Square Root 

There are three methods used to compute square roots of real numbers using 
continued fractions [7]; we start with the first method, 

Method 1 
To get the square root of a certain number A and if a is the largest number 

such that its square is less than A; then we can compute the square root of A as 
shown in the example below. 

Example 5 
To represent the irrational number 2  as a CF we see that 2A =  and 

1a = , therefore 2 1 2 1= + − . Hence we get 

1 1 12 1 1 1
1 1 2 1 2 11
2 2 1 2 1

= + = + = +
+ +− ×

− +

; but 12 1 2
2 1

+ = +
+

. 

Substituting with 1
2 1+

 and repeating the substitution process, we get 

[ ]12 1 1;2, 2, 1; 2
12 12
2

 = + = =  
+

+
+





. Therefore, we were able to write 

2  in terms of CFs. 
Method 2 

If 2r z a b a c= = + ≡ + , where a is the greatest positive integer such that 
its square is less than z and b is the remaining i.e. 2z a b= + , then it is easy to 

see that 
2

bc
a c

=
+

. This will be the recurrence relation we will use in the calcu-

lation to get square roots for real numbers. To begin with, we see that the first 
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approximation for z  is 1 0r a c= +  and the second approximation is 

2 1
02

br a c a
a c

= + = +
+

, and this gives the second approximation for the re-

quired root. The third approximation is given by  

3 2

2
2

br a c a
ba
a

= + = +
+

. continuing, we get 

2

2
2

2
2

br z a b a
ba ba ba

a

= = + = +
+

+
+

+

            (14) 

This is the required recurrence relation, in terms of a CN, for computing 
square roots of real numbers. 

Example 6 
To use Equation (14) to get 10 . We see that 210 3 1= + , hence 3a =  and 

1b = ; and 2 110 3 1 3
16 16 16

6

r = = + = +
+

+
+

+

; by evaluating the resulting 

CF we get the approximate answer for 10 . 
Method 3 
This method depends on partial guessing of a instead of getting the greatest 

integer mentioned in method 2 [6]. 
Example 7 
To clarify what we meant by partial guessing of a, we compute 2 , using 

Equation (14), as follows 
1

1 2
2

1
3 1 3 42

12 4 2
43 1

43
3

− = − = + 
  −

+
−

+
+

. Table 1 shows some square roots for 

certain prime integers [6]. 

4.2. nth Roots 

Here, we will deal with the nth root of real numbers such that 2n ≥ . We write 

( )
1 1

nn nr z a b a c= = + = + ; then ( )nna b a c+ = + . Using the binomial theorem, 

we get [6] 

( ) ( )( )2 2 3 3
1 1 1 2

2! 3!

n n
n n n n n a c n n n a c

a b a na c
− −

− − − −
+ = + + + +     (15) 

With straightforward simplifications we get 
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Table 1. Square roots for certain prime numbers using CFs. 

Number Root as a CF 

2 1;2    

3 1;1,2    

5 2; 4    

7 2;1,1,1,4    

11 3;3,6    

13 3;1,1,1,1,6    

19 4;2,1,3,1,2,8    

23 4;1,3,1,8    

 

( ) ( )( )2 3 2
1 1 1 2

2! 3!

n n
n

bc
n n a c n n n a c

na
− −

−

=
− − −

+ + +
         (16) 

Hence our first guess 1c  is 

1 1n

bc
na −=                           (17) 

And the first approximation for the root is 

1 1 1n

br a c a
na −= + = +                      (18) 

Using Equation (16) and Equation (17), we get the second guess in c as 

( )2
1 1

2
n

bc
b n

na
a

−

=
−

+
                     (19) 

The second approximation for r is then 

( )2 2
1 1

2
n

br a c a
b n

na
a

−

= + = +
−

+
                (20) 

In general we get 

( )
( )

( )
( )

1 1

1

1

1

( )
1

1
2

2 1
3

2 1
2

5

nn n

n

n

n

br z a b a
b n

na
b n

a
b n

na
b n

a
na

−

−

−

= = + = +
−

+
+

+
−

+
+

+
+

    (21) 

Example 8 
To express 5 33  in terms of CN; we follow the following steps: 
From Equation (21) and since 33, 2, 1z a b= = = , we get 
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5

4

4

4

133 2
45 2 62 2 915 2 112 2 145 5 2

2 2
12

480 64 9240 114 14400
4

r = = +
× +

× +
× +

× +
× × +

× +

= +
+

+
+

+
+

+





 

4.3. Evaluation of Quantities in the Form 
m
nz  

Again we put ( )
m m

n mn nr z a b a c= = + = + , and in the same manner as in the last 

subsection we expand ( )nma c+  using the binomial theorem to get 

( ) ( ) ( ) ( )2 2
1 1

2!

m n
n m nm mn n n a c

a c a na c
−

− −
+ = + + +            (22) 

Noting that 

( ) ( ) ( )
m m nn m n mna b a c a b a c+ = + ⇒ + = +               (23) 

And that 

( ) ( ) ( ) ( )2 2
1 1

2!

n m
m n mn mn m m a b

a b a ma b
−

− −
+ = + + +          (24) 

From the last three Equation s we see that c is given by 

( ) ( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2
1 3 3

2 3
1

1
1 2

2!
1 1 2
2! 3!

n m
n m n m

m n m n
m n

m m a b
ma b m m m a b

c
n n a c n n n a c

na

−
− −

− −
−

−
+ + − − +

=
− − −

+ + +





   (25) 

Directly, we obtain the first guess in c and the first approximation in r as 
( )

( ) ( ) ( )

1

1 11
,

n m
m

m n n m n m

ma b mb mbc r a
na na na

−

− − −
= = = +               (26) 

Following a similar procedure as in the last subsection, we obtain the general 
formula given by [6] 

( )
( )

( )
( )

( )

2
2

3
2

2
3

5
2

m
m mn

n m

m

n m

m

n m
m

mbr z a c a
n m b

na
n m b

a
n m b

na
n m b

a
n m b

na
a

−

−

−

= = + = +
−

+
+

+
−

+
+

+
−

+
+

(27) 
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Example 9 

To evaluate 
2
365r =  in terms of CFs, we see that 65z = , 2m = , 3n = . 

Moreover, we have ( )
2 2

3 23 365 4 1 4r c= = + = + .  

So ( ) ( ) ( )
3 2 33 2 3 224 1 4 4 1 4c c+ = + → + = + . This yields 

2

129
768 48

c
c c

=
+ +

; 

this is the required recurrence relation needed to accomplish the job. As a first 

start we take 0
129
768

c =  and 2
1 0

12916 16.167968
768

r a c= + = + = . Note that the 

second guess for c is  

1 2

129 0.16621768
129 129768 48
768 768

c = =
   + +   
   

 and 2
2 116.16621768r a c= + ; 

and finally we get 
3
2 265 16

112 532
36

r = = +
+

+
+

. 

Note that another way of computing roots of real numbers is given by the Eq-
uation below and this Equation gives the root in a more precise and quicker 
manner as will be shown in the following example. 

Example 10 
To compute 10  using the Equation below 

( )

( )
( )

( )
( )

( )
( )
( )

2 2 2

2 2 2

2 2 2

2

2
4

3 2
16

5 2
9 2

m m
n mn n

m
m

r z a b a c

a bma
n m b

nz b m n
n m b

n z b
n m b

n z b
n z b

= = + = +

= +
−

− + −
−

− −
−

− −
− +

    (28) 

where , , , , , ,r z a b c n m  are as before. 
Here, we see that 10, 3, 1, 2, 1z a b n m= = = = = ; and substituting in Equation 

(28) we obtain 
63

337 15114 35190
266

r = +
−

−
−

−

. Now we see that as a first approximation we  

get 3, the second one is 3.162162162162… and this correct up to three decimal 
figures; the third approximation is 3.16227758007117…, it is correct up to 6 de-
cimal points; the fourth one is 3.16227766011283…, and so on. 

4.4. Comparison between the Use of Continued Fractions and  
Some Other Numerical Methods in Computing Roots 

In this subsection, we make a comparison between the method of CFs (CFM) 
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and two other numerical methods, namely the general method of computing nth 
roots of real numbers (GM) [8] and the well-known Newton-Raphson method 
(NRM) for the same purpose. Just for the sake of comparison [6] [8] [9], we give 
few examples in Table 2.  

Note that the GM is very exact in the sense that whatever digit we get from the 
root is solid and no further modification in it once we get it; while in the other 
two methods various iterations improve the accuracy in the root. In the use of 
CFM we needed ten steps of Approximations to reach the accurate value of 2  
shown in Table 2; and five approximations were needed to get the value of 
3 56423456 . 

As to the use of NRM we have to make five iterations to get the same answers 
for both roots. Moreover, a software has to be used for the calculation of the 
roots for the two methods CNM and NRM. However, the GM, although a soft-
ware can be developed for the calculation, but with patience the value can be 
obtained by using a pen and a pencil and every digit one gets from the root is 
exact and final [8]. 

The GM was obtained by experience and the theory behind it is still unknown. 
The theory may lead to an inverse binomial theorem.  

5. Solutions of Algebraic Equations Using Continued  
Fractions 

The algebraic Equation of the second degree in one variable is given by 
2 0, 0ax bx c a+ + = ≠                       (29) 

It is a common practice to get the roots of the last Equation s via completion 
of the square method or using the general rule which gives the two roots as 

2 4
2

b b acx
a±

− ± −
=                        (30) 

However, these methods yield, in general, irrational answers; therefore we re-
fer to CF method to get approximate roots in a rational form. 

Example 11 
To solve the Equation 2 2 0x − =  we see that 2 1 1x − = ; or ( )( )1 1 1x x− + = , 

from which we obtain 11
1

x
x

= +
+

. Hence we get 

1 11 1
11 21 1

11

x

xx

= + = +
  ++ +  ++ 

; we can continue this process to get the 

required root via CFs; we note that even with the few terms we have written and 
if we take the first guess as 1 then the first approximation is given by 

1
1 71 1.4

2 1 2 5
x = + = =

+
 which is a rational answer and is correct up to one de-

cimal point. It is a crude answer, but acceptable for such one iteration.  
Now, going back to Equation (30) we see that 
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Table 2. A comparison between CFM, GM, and NRM for Computing the values of 2  
and 3 56423456 . 

Number CNM GM NRM 

2  1.4142136248 1.41421356237 1.41421356 
3 56423456  383.54815 383.54815 383.54815 

 
cx b
x

= − − , a is put as 1                  (31) 

And hence the root is given by 

cx b
cb cb cb

b

= − −
− −

− −
− −

− −

                (32) 

Example 12 
Consider the quadratic Equation 2 5 6 0x x− − = , then using  

Equation (32) we see that the root is given by 65
65 65
5

x = +
+

+
+

, and if we 

take the initial guess as 0 5x = , we can compute one of the roots of the given 
Equation using four approximations as 5.999 6x ≅ ≅ . 

6. Continued Fractions and Their Use in Special Ordinary  
Differential Equations 

In this section, we show how to use CNs in solving special ordinary differential 
Equation s leading to special functions; we start with Hermite differential Equa-
tion [10]. 

6.1. Hermite Differential Equation  

Hermite differential Equation has the form 

2 2 0y xy yα− + =                          (33) 

From which we obtain 

d ln 2
d 2

y y
yx y x
y

α
= =

−







                       (34) 

Differentiating Equation (33) and with few simplifications, we get  

( )
d ln 2

2 1d
2

2

y y
x y

x yx
y

α
α

= =
−

−
−







                    (35) 

Again differentiating Equation (33) twice we get 
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( )
( )

iv

d ln 2
2 1d

2
2 2

2
2

y y
x y

x
x

yx
y

α
α
α

= =
−

−
−

−
−





                  (36) 

Now, α  can be 0,1,2,3,α = 
; e.g. if 0α =  then  

d ln 0 constant
d

y y c
x

= ⇒ = = , while if 1α =  then y cx=  and if 2α =  then 

( )22 1y c x= − , …etc. [8]. These polynomials are the first few Hermite polyno-

mials with c taking an appropriate value [10]. 

6.2. Legendre Differential Equation  

Legendre differential Equation is given by 

( ) ( )21 2 1 0x y xy l l y− − + + =                    (37) 

Following the same steps as in the previous subsection we obtain 

( )

( )2

1d ln
d 2 1

l ly y
yx y x x
y

+
= =

− −







                   (38) 

Differentiating Equation (36) and with some simplifications we get 
( )

( ) ( )

( )
2

2

1d ln
1 2d

2 1
4 1

l ly y
l lx y

x x yx x
y

+
= =

+ −
− −

− −







             (39) 

Moreover, it can be shown that 
( )

( ) ( )

( ) ( )

( )

2

2
iv

2

1d ln
1 2d

2 1
1 6

4 1
6 1

l ly y
l lx y

x x
l l

x x
yx x
y

+
= =

+ −
− −

+ −
− −

− −





        (40) 

In the same manner shown in the last subsection we put 0,1,2l =  to obtain 
the first few Legendre polynomials which are ( )2, , 3 1y c cx c x= −  respectively, 
of course with an appropriate choice of the constant c [10]. 

6.3. Laguerre Differential Equation  

The Equation is given by  

( )1 0xy x y yα+ − + =                        (41) 

Repeating the same procedure followed in the last subsection we get 

( )
( )

( )
iv

d ln
1d 1 22

3

y y
x y x x

x x
yx x
y

α
α

α

= =
−

− −
−

− −
− −





           (42) 
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Putting 0,1,3α =  to obtain ( ) ( )2, 1 , 4 2y c c x c x x= − − +  respectively and 
which are the first three Laguerre Polynomials with the right choice of the con-
stant c [10]. 

6.4. Chebyshev Differential Equation  

Chebyshev differential Equation is expressed as 

( )2 21 0x y xy p y− − + =                       (43) 

In the same way followed in the previous subsections we get 

( )

2

2

d ln
d 1

y y p
yx y x x
y

= =
− −







                    (44) 

Further, we obtain 

( )
( )

( )

2

2
2

2
2

iv
2

d ln
d 11

43 1
2 1

y y p
x y px x

px x
yx x
y

= =
−

− −
−

− −
− −





        (45) 

Now, putting 0,1,2p =  we get the first three Chebyshev polynomials 
( )2, , 2 1y c cx c x= −  respectively; with consideration given to the appropriate 

value of c. 
Note that a comparison between the use of CFs and Special Bilinear functions 

(SBF), in computing special functions, is in order. Both are interesting but the 
use of SBF is more direct and illustrative; in fact SBF procedure gives the right 
polynomials directly and moreover it leads to recurrence relations between these 
polynomials [14] [15].  

7. Continued Fractions and the Solution of the  
Time-Dependent Schrodinger Equation  

In this application of CFs, we show how CFs are used to get the solution of the 
time-dependent Schrodinger Equation [11]; the obtained formula will enable us 
to take care of the problem of time variation. 

Assume that a particle (an electron say) moves on Bethe lattice with a Hamil-
tonian   given by 

( ),0 0 i j T i j j i= + +∑                  (46) 

where i j  is the nearest neighbor to Bethe lattice, T is the transpose matrix 
between the two states i and j, and   is the lowest energy of the particle. 

Now we proceed with the solution of Schrodinger Equation. The time-dependent 
Schrodinger Equation is described as 

( )
( )

t
i t

t
∂ Ψ

= Ψ
∂

                       (47) 
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  is the Hamiltonian, 1≡ , and Ψ  is the wave function. We use the me-
thod of eigenfunction expansion to write Ψ  as 

( ) ( )0 n nnt c t f
≥

Ψ = ∑∣                      (48) 

, 0,1, 2,3,nf n =   form a basis of orthogonal functions and ( )nc t  are de-
pendent functions on time. 

Now, if 0f  is chosen then from Gram-Schmidt algorithm, we can build the 
rest of the members of the basis as follows 

1 0 0 0f H f a f= −                      (49) 

0a  is taken such that 0 1 0f f = ; i.e.  

0 0 0 0 0a f f f f=                    (50) 

In the same way we put 

2 1 1 1 1 0f H f a f b f= − −                   (51) 

The orthogonality of the three functions will yield  

1 1 1 1 1a f f f f=                       (52) 

while 1b  is given by 

1 1 1 0 0b f f f f=                       (53) 

In general, we have 

1 1n n n n n nf H f a f b f+ −= − −                  (54) 

where 

n n n n na f f f f=                      (55) 

And 

1 1n n n n nb f f f f− −=                     (56) 

Note that 1 0f− ≅  and 0 0b ≅ , by definition.  
From Equation (47) and Equation (48) we see that 

( ) ( )0 0

d
d
n

n n nn n

c t
i f H c t f

t≥ ≥
=∑ ∑                  (57) 

From Equation (54) and the last Equation we get 

( ) ( ) ( ) ( )1 1 1

d
d
n

n n n n n

c t
i b c t a c t c t

t + + −= + +                  (58) 

where ( )1 0c t− =  and the initial conditions imply that ( )0 0 1c t = =  and 
( )0 0nc t = =  0n∀ > . 
Now the Laplace Transform of ( )nc t  is given by 

( ) ( ) ( ) ( )
0

e d 0zt
n n n nc z c t t zc z c

∞ −= = −∫                   (59) 

With further elaboration on the evaluations of various approximations, we get 
in its final form as 
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( )
1

0
2

1
2

1
nc z

bz ia bz ia
z ia

=
+ +

+ +
+ +





                 (60) 

Once we get ( )nc z , we can evaluate ( )0c t  using inverse Laplace transform 
[9]. Note that na  and , 0,1, 2,3,nb n =   in Equation (60) are very essential in 
taking the change in time into account. 

8. Convergents and Convergence of Continued Fractions 

The following notations can also be used for CNs [16] 

( ) ( ) 0
0 0 1 1 2 0

1
1

2
2

, , , , ,
b

a b a b a a
ba ba

  = + 
+

+





              (70) 

And if we write 

( ) ( ) ( ) 0
0 0 1 1 2 1 0

1
1

2
2

1
1

, , , , , , ,n n

n
n

n

b
a b a b a b a a

ba ba

ba
a

−

−
−

  = + 
+

+

+





      (71) 

Then the truncated CF in Equation (71) is called the nth convergent of the CF 
in Equation (70) [16]. 

Note that the value of a finite CF can be obtained as a rational number; while 
the value of an infinite CF can be calculated in an approximate manner and if 
the limit in the Equation given below exists. 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 0 0 1 1 2 1, , , , , lim , , , , , , ,n n na b a b a a b a b a b a→∞ −   =          (72) 

Then, we say that the infinite CF convergent [16]. 
Several recursive formulae and properties were discussed and theorems proved 

about CFs in the above thesis. Moreover, Harmonic CFs were introduced and 
the use of CFs in developing efficient algorithms that can break public-key crypto-
systems, which are the backbone of internet secure communication, was illu-
strated [16]. For more information about convergents and CFs convergence one 
can refer to Reference [12]. 

9. Concluding Discussion 

The subject of continued fractions is still vital in many fields. It can help in es-
tablishing an efficient algorithm to evaluate Y’s functions in space dynamics; the 
algorithm is valid to be used for any conic section [17]. 

Also, CFs can be used to organize, as a new theoretical aspect, Euclidean algo-
rithm for finding the GCD of two numbers with the help of a pseudocode [18]; 
the code is independent of programming languages and is universal in the sense 
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that it can be transformed into solutions which lead to important applications of 
CFs with a new approach. The benefits behind that are the usefulness for spe-
cialists and teachers in the fields of informatics, mathematics, and parallel com-
putations [18]. 

Another application of CFs is studying double-sided CFs, with coefficients 
which are non-commutative symbols, and their relation with the theory of dis-
crete integrable systems [19]. 

In quantum mechanics, there is another application for CFs in Probing 
Schrodinger Equation where a continued fraction potential was used to search 
for possible solutions of the Equation [20]. 

A very recent work on CFs is an MA thesis published electronically in De-
cember 2021, which showed the continuous interest in the subject of continued 
fractions and their applications in a variety of fields of mathematics such as 
number theory and abstract algebra [2]. One of the interesting applications of 
CFS is their use in obtaining expressions for functions such as tan x  and the  

evaluation of certain numbers, e.g. 4
π

 [2].  

Even in the complex field, continued fractions play an important role in con-
junction with the evaluation of binary quadratic forms [21]. 

One can continue with presenting the so many applications of CFs and that 
will take a huge amount of work to accomplish the job, but we shall give here one 
more application and consider it as a final one. The application has to do with 
folding; if we repeat folding a strip of paper in half and unfolding it in straight 
angles, then we get a fractal which is known as the dragon curve. The sequence 
of right and left turns is related to a CF which constitutes a simple infinite series; 
so many properties and functions may arise from that leading to a shape resem-
bling the dragon curve [22]. 
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