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Abstract 
Principal component analysis and generalized low rank approximation of 
matrices are two different dimensionality reduction methods. Two different 
dimensionality reduction algorithms are applied to the L1-CSVM model 
based on augmented Lagrange method to explore the variation of running 
time and accuracy of the model in dimensionality reduction space. The re-
sults show that the improved algorithm can greatly reduce the running time 
and improve the accuracy of the algorithm. 
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1. Introduction 

Support Vector Machine (SVM) [1] is a machine learning method based on sta-
tistical learning and optimization theory, first proposed by Vapnik et al. in 1995. 
SVM is a widely used binary classification model. The basic idea is to find a 
hyperplane and divide sample points into two categories. The basic idea of Prin-
cipal Component Analysis (PCA) [2] [3] is to transform the original mul-
ti-variable data into new variables with fewer than before through linear trans-
formation. Considering the dimensionality reduction, the data can still maintain 
the maximum separability between samples and the recent reconstruction of 
samples. However, PCA uses vector data, which requires a large amount of cal-
culation in the process of singular value decomposition. In order to improve the 
disadvantage of large PCA calculation, YE proposed a generalized low rank ap-
proximation of matrices (GLRAM) method in 2005 [4] [5]. The data set used in 
this method is a collection of matrices. The optimization process is to use the 
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method of bilinear transformation for iteration to minimize the reconstruction 
error, which can lead to lower computational cost. 

Sparse representation optimization is widely used. L1 norm is usually used to 
regularize penalty terms to improve the classification accuracy of network mod-
els. The L1 norm uses fewer features for classification by selecting. L1 norm is 
considered to be an effective method to reduce the influence of outliers [6] [7] 
[8]. In 2014, Nie et al. used Augmented Lagrange method (ALM) [9] [10] in 
SVM [11] to solve the classification problem of linear big data. In 2019, Chauhan 
et al. summarized the linear SVM [12] and pointed out that the algorithm of Nie 
et al. was the fastest method to solve the original problem. In 2019, Yan et al. 
proposed the algorithm for ALM to solve L1-CSVM [13]. 

Based on the study of the above theory, this paper takes feature dimension 
reduction as the starting point to enhance the performance of image binary clas-
sification algorithm. PCA and GLRAM are introduced to improve the algorithm 
model of L1-CSVM based on ALM. The experimental results show that when 
calculating the L1-CSVM model based on dimensionality reduction, it can sig-
nificantly reduce the calculation time and generally improve the accuracy due to 
the reduction of the number of data features. 

The following contents of this article are as follows. In Section 2, PCA and 
GLRAM are introduced. In Section 3, PCA-L1-CSVM and GLRAM-L1-CSVM 
are described. In Section 4, the content and results of comparative experiments 
on MNIST and Fashion-MNIST datasets are introduced in detail. Finally, the 
conclusion of this paper is in Section 5. 

2. Related Work 

This section mainly introduces two dimensionality reduction algorithms: PCA 
and GLRAM. 

2.1. PCA 

Given data ( ){ }1 2, , , d m
mT x x x R ×= ∈ , Let’s say we have m samples, and each 

sample corresponds to d attributes. Take any centralized data d
ix ∈  , A new 

coordinate system composed of orthonormal basis vectors is obtained by 

projection transformation { }( )1 2, , , dv v v d d′ ′ ≤ , 2
1iv = , ( )T 0i jv v i j= ≠ . 

The projection of ix  in my new coordinates is ( )1 2; ; ;i i i ids s s s ′=  , meet 

T
ij j is v x=   and 

1
ˆ

d

i ij j
j

x s v
′

=

= ∑ . Therefore, the following optimization model can 

be established 

( )

2

1 1 2
T

2
s.t. 1, 0

m d

ij j i
i j

i i j

s v x

v v v i j

′

= =

−

= = ≠

∑ ∑ 

                     (1) 

The orthogonal coordinate system can be obtained by solving (1), from 
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which low-dimensional characteristic data ( )1 2; ; ; d m
i i i ids s s s R ′×

′= ∈  can be 
obtained. Thus, the original high-dimensional data set T is transformed into 

sparse representation data set ( ){ } { }
1

, 1dmr
i i i

T r y R
=

′= ∈ × ± . 

2.2. GLRAM 

GLRAM minimizes the reconstruction error of the new matrix and the original 
matrix by reducing the dimension of the matrix data, and uses the low-rank ma-
trix set to approximate the original matrix set to complete data compression. 
Given data ( ){ } { }

1
, 1

m r c
i i i

T X y R ×

=
= ∈ × ± , Let’s say we have m samples, and each 

sample corresponds to r c×  attributes. We want to find two orthogonal trans-
formation matrices 1r qL R ×∈ , 2c qP R ×∈  and 1 2 , 1, ,q q

iM R i m×∈ =  , make 
T

iLM P  as close as possible to iX . 
The following optimization model is established 

T1
1

T2
2

1 2

2T

: 1
:

, 1, ,

min
r q

q
c q

q
q q

i

m

i i FL R L L I i
P R P P I
M R i m

X LM P
×

×

×

∈ = =
∈ =

∈ =

−∑



                 (2) 

Adopt iterative method, fix P first, use T T

1

m

L i i
i

M X PP X
=

= ∑  get the 1q  larg-

est eigenvalue pairs 1r qL R ×∈  of LM . Then fix L, use T T

1

m

P i i
i

M X LL X
=

= ∑  get 

the 2q  largest eigenvalue pairs 2c qP R ×∈  of LM . And finally, solve iM  

through T
i iM L X P= . Repeat the solution until the requirements are met. Then 

get new dimension reduction dataset ( ){ } 1 2
1 2, , , , 1, ,q q

mT X X X R i m×′ = ∈ =  . 

In this paper, each sample after dimensionality reduction is pulled into col-

umn vectors to form sample matrix ( ){ } { }
1

, 1dmr
i i i

T r y R
=

′= ∈ × ±  similar to 

section 2.1. 

3. Proposed Model 
The algorithm proposed in this chapter is based on article (13), mainly intro-
duces two improved models: PCA-L1-CSVM and GLRAM-L1-CSVM. The 

first model uses data set is ( ){ } { }
1

, 1
m d

i i i
T x y R

=
= ∈ × ± . The second model 

uses data set is ( ){ } { }
1

, 1
m r c

i i i
T X y R ×

=
= ∈ × ± . 

11 , , mA x x+ + =   ,  

21 , , mB x x− − =   , [ ],X A B=  represents the matrix of the positive sample, 

the matrix of the negative sample, and the matrix of the population sample. 

{ }{ }1 11, , : 1iI i m y= ∈ =  and { }{ }2 21, , : 1jI j m y= ∈ = −  represents the 

subscript set of positive and negative data respectively. 

3.1. PCA-L1-CSVM  

PCA-L1-CSVM uses dimension reduction dataset ( ){ } { }
1

, 1dmr
i i i

T r y R
=

′= ∈ × ± . 

The following planning model is constructed 
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( )
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≠

∑

∑ ∑ 

        (3) 

where 0C >  is a penalty parameter, the second condition of the constraint 
is to use PCA dimensionality reduction for the original data set. First, PCA is 
used to calculate the data after dimensionality reduction, and then the model 
is represented as an unconstrained model  

( )( )2 T

, 1

1min   max 1 1,0
2

m

i iw b i
w C y w r b

=

+ − + +∑              (4) 

Because bias has little effect on model performance, bias is often ignored in 
recent studies, and T T 1,1 d

i ir r R ′+ ← ∈  , T T 1, dw w b R ′+ ← ∈   for conveni-
ence, this section 1d ′ +  is denoted as d ′ . The model (4) was rewritten as an 
unconstrained quadratic programming model 

( ) ( )( )2 T

1

1min : max 1 ,0
2

m

i iw i
f w w C y w r

=

= + −∑              (5) 

Model (5) is expressed in matrix form 

2

1

1min   max 0,
2w

w C Bw d+ +                   (6) 

where 
T

1 1

T

m d

m m

y r
B R

y r

′×

 
 

= − ∈ 
 
 

 , 
1

1

dd R ′

 
 = ∈ 
  

 . 

Introducing variable ds R ′∈ , we obtain the following constrained optimi-
zation problem 

( )21min   
2

s.t.    ,
w

w P s

s Bw d

+

= +
                       (7) 

and ( ) 1max 0,P s C s= . 
Consider the ALM function of model (7) above: 

( ) ( ) ( )2 2T1, ,
2 2

w s w P s s Bw d s BwL dσ
σλ λ+ − − − + − −=  

At iteration k, solve 

( )
,

min , ,k
k k k

w s
w sL

σ
λ ,                      (8) 

obtain ( )1 1,k kw s+ + , and then update the Lagrange multiplier 1kλ + . 

3.2. GLRAM-L1-CSVM 

PCA-L1-CSVM uses dimension reduction dataset  
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( ){ } 1 2
1 2, , , ,q q

mT X X X R i I×′ = ∈ ∈ . The following planning model is con-
structed 

( )

1 2

2T T T
,

1

2

, , , ,

T

1min   
2

s.t.      1 ,  0, 1, , ,

         min  s.t.  , 

i i i

i

ii Iw b r v

i i i

r

m

i i R q qFi

w C

y

X

w

LM P L L I P P I

r b i m

ξ
ξ

ξ ξ

=

∈
+

+ ≥ − ≥

=

=

− =∑

∑
       (9) 

where 0C >  is a penalty parameter, different from the second constraint 
condition in formula (3), the second constraint of formula (9) is to use GLRAM 
to reduce the dimension of the original data. First, GLRAM is used to reduce 
the dimension of the data, and pull the data matrix into column vectors. Then, 
the model is transformed into an unconstrained optimization model as (4). 
Then, the following operations are solved using the same method as in Sec-
tion 3.1. 

4. Experiment and Result Analysis 

In order to test the effectiveness of Algorithm 1 and GLRAM-L1-CSVM, a se-
ries of comparative experiments are conducted on MNIST and fashion-MNIST 
data in this section. Each dataset contains 10 image types, each of which has a 
pixel size of 28 × 28. Eight groups of data were randomly selected from each data 
set and divided into four groups for binary comparison test. This experiment 
only uses the training set data of each kind of data set and divides it into training 
set and test set. The size of the training set is 3000, 4000 and 5000 respectively, 
accounting for 50%, 66% and 83% of the total data set, and the rest is the test set. 
In the experiment, the eigenvalues of 81, 100 and 121 after dimensionality re-
duction were used. All the features in the table refer to the features of the im-
proved algorithm. 

The experimental platform used in this experiment is matlab R2014B, and the 
Windows specification is Windows 10. The device specifications are as follows: 
The processor is Inter(R) Core (TM) I7-10700 (2.90 GHz), and the onboard 
RAM is 8 GB. 

 
Algorithm 1. PCA-L1-CSVM. 

Step 1. Initialize, given parameters ( ), 0,1ρ σ ∈ , 0 0η > , 1 0η > , select 0w , set 
0k = , given error 0ε >  and maximum number of iterations N. 

Step 2. PCA is used to reduce the dimension of the data set. 

Step 3. By calculating (8), get 1kw +  and use Moreau-Yosida regularization obtain

( )1 * 1k ks s w+ += . 

Step 4. Update the Lagrange multiplier ( )1 1 1k k k k
k s Bw dλ λ σ+ + += − − − . 

Step 5. Select 1 1,k k kσ σ σ+ +≤ < +∞ , go to step 2. 
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A bar chart is used to represent the comparison of the accuracy of the first two 
groups of binary classification experiments of different algorithms, and a broken 
line chart is used to represent the running time of each algorithm in the first two 
groups of experiments. The bar charts and line charts from left to right of each 
image are the data results of dimensionality reduction to 81, 100, 121, respec-
tively. The average results of each algorithm under the latter two groups of expe-
riments are shown in the table. The data in bold is the best data, the time unit is 
second, and the precision unit is %. 

4.1. Experimental Results on MNIST Datasets 

The experimental results on the MNIST dataset are presented. 
According to Figure 1, Figure 2, we can find that the two improved algo-

rithms generally improve the accuracy of operation. According to Figure 3, 
Figure 4, it can be found that the original algorithm takes a long time, while the 
two improved algorithms can significantly shorten the running time. According 
to Table 1, it can also be concluded that the improved algorithm can generally 
improve accuracy. Table 2 shows that the time of the two improved algorithms 
is about 10% of the original algorithm. Comparing the two improved algorithms, 
it can be found that GLRAM shows better results in both accuracy and time than 
PCA. 

4.2. Experimental Results on Fashion-MNIST Datasets 

Next, the experimental results on the Fashion-MNIST dataset are presented. 
It can be seen from Figure 5 and Figure 6 that the two improved algorithms 

generally improve the accuracy of operation. The accuracy of GLRAM is im-
proved obviously and has stability. As can be seen from Figure 7, Figure 8, the 
two improved algorithms can shorten the running time. It can be seen from Ta-
ble 3 that the improved algorithm can improve the accuracy on the whole, the 
results of PCA are floating, and the overall results of GLRAM are optimal in 
comparison of the three results. It can be seen from Table 4 that the time of the 
two improved algorithms is about 14% of the original algorithm. Comparing the 
two improved algorithms, the algorithm with GLRAM is better than that with 
PCA in accuracy and time. 

 

 
Figure 1. Precision comparison of the first set of MNIST data. 
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Figure 2. Precision comparison of the second set of MNIST data. 

 

 
Figure 3. The running time of the first set of MNISTdata. 

 

 
Figure 4. The running time of the second set of MNIST data. 

 

 
Figure 5. Precision comparison of the first set of Fashion-MNIST data. 

 

 
Figure 6. Precision comparison of the second set of Fashion-MNIST data. 

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

0
0.2
0.4
0.6
0.8

1
1.2

3000 4000 5000

tim
e

L1-CSVM PCA-L1-CSVM
GLRAM-L1-CSVM

0
0.2
0.4
0.6
0.8

1
1.2

3000 4000 5000

tim
e

L1-CSVM PCA-L1-CSVM
GLRAM-L1-CSVM

0
0.2
0.4
0.6
0.8

1
1.2

3000 4000 5000

tim
e

L1-CSVM PCA-L1-CSVM
GLRAM-L1-CSVM

0
0.2
0.4
0.6
0.8

1
1.2

3000 4000 5000

tim
e

L1-CSVM PCA-L1-CSVM
GLRAM-L1-CSVM

0
0.2
0.4
0.6
0.8

1
1.2

3000 4000 5000

tim
e

L1-CSVM PCA-L1-CSVM
GLRAM-L1-CSVM

0
0.2
0.4
0.6
0.8

1
1.2

3000 4000 5000

tim
e

L1-CSVM PCA-L1-CSVM
GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

97

98

99

100

3000 4000 5000

Accurancy

L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM

https://doi.org/10.4236/jamp.2022.101003


M. Z. Cui, L. Y. Fan 
 

 

DOI: 10.4236/jamp.2022.101003 28 Journal of Applied Mathematics and Physics 
 

 

Figure 7. The running time of the first set of Fashion-MNIST data. 
 

 

Figure 8. The running time of the second set of Fashion-MNIST data. 
 

Table 1. Average Test accuracy about MNIST data. 
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Table 2. Average Test Time about MNIST data. 
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Table 3. Average accurancy about Fashion-MNIST data. 

TN Feature L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM 

3000 

81 

100 

121 

99.27 

99.27 

99.27 

99.59 

99.54 

99.44 

99.80 

99.62 

99.63 

4000 

81 

100 

121 

99.55 

99.55 

99.55 

99.58 

99.64 

99.48 

99.74 

99.67 

99.63 

5000 

81 

100 

121 

99.50 

99.50 

99.50 

99.65 

99.55 

99.65 

99.78 

99.73 

99.78 

 
Table 4. Average Test Time about Fashion-MNIST data. 

TN Feature L1-CSVM PCA-L1-CSVM GLRAM-L1-CSVM 

3000 

81 

100 

121 

1.4102 

1.4857 

1.5022 

0.1978 

0.1947 

0.2272 

0.2080 

0.1926 

0.2272 

4000 

81 

100 

121 

1.9142 

1.9132 

2.1364 

0.2294 

0.2491 

0.2964 

0.2128 

0.2306 

0.3006 

5000 

81 

100 

121 

2.4396 

2.4949 

2.4380 

0.3044 

0.3720 

0.3917 

0.3072 

0.3294 

0.3807 

5. Conclusion 

In this paper, the ALM is applied to solve two models: PCA-L1-CSVM and 
GLRA-L1-CSVM. The main contribution of this paper is as follows: Firstly, 
principal component analysis or GLRAM method is introduced to reduce di-
mension of data set. Then, the data after dimensionality reduction is dichoto-
mized using L1-CSVM. Experimental results show that the improved model can 
greatly reduce the running time while maintaining a general increase in accuracy. 
In the future, we hope to use ALM to solve the original problems of other mod-
els. 
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