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Abstract 
Firstly, in the general normed linear space, the concepts of generalized isos-
celes orthogonal group, generalized Birkhoff orthogonal group, generalized 
Roberts orthogonal group, strong Birkhoff orthogonal group and generalized 
orthogonal basis are introduced. Secondly, the conclusion that any two non-
zero generalized orthogonal groups must be linearly independent group is 
proven. And the existence of nonzero generalized orthogonal group and its 
linear correlation are discussed preliminarily, as well as some related proper-
ties of nonempty generalized orthogonal group in specific normed linear 
space namely the lp space. 
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1. Related Properties of Generalized Orthogonal Group and  
Generalized Orthogonal Basis 

Orthogonality is an important study content of inner product space. On the one 
hand, as scholars have deepened their understanding of functional analysis, es-
pecially the understanding of Banach geometric theory, generalized orthogonal 
theory in the normed linear space was established and corresponding studies 
were carried out. The essential characteristics of orthogonality were applied to 
extend orthogonality from inner product space to general normed linear space. 
On the other hand, orthogonal groups, orthogonal bases and orthogonalization 
of vector groups have been extensively studied, making the whole system more 
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complete. As a result, the study achievements within these fields have played an 
important role in the improvement of the inner product space theory. Naturally, 
scholars are making efforts to extend related theories to general normed linear 
spaces. At the same time, the application of related orthogonality of nonortho-
gonal function expansion is also rising [1]. 

In this paper, based on the research achievements of orthogonal theory, the 
concepts of generalized orthogonal group and generalized orthogonal basis in 
the general normed linear space were introduced. The conclusion that any two 
nonzero generalized orthogonal groups must be linearly independent groups 
was proven. An example showing that there exist four nonzero Birkhoff ortho-
gonal groups in two-dimensional space was given. Also, this example further 
drew our attention to the study of generalized orthogonal groups’ properties. 
Next, the existence of nonzero generalized orthogonal groups and its linear cor-
relation were discussed, as well as some related questions of nonzero generalized 
orthogonal groups in lp space. 

The research on orthogonal and isometric mapping has attracted much atten-
tion as early as the beginning of the 20th century. In 1934, B. D. Roberts pro-
posed the concept of Roberts orthogonality [2]. The specific definition is as fol-
lows. 

Definition 1.1 ([2]) Let X be a normed linear space, ,x y X∈ , if the equation 

x y x yα α+ = −  

holds for any real number α . Then x is Roberts orthogonal to y, denoted by 

Rx y⊥ . 
Definition 1.2 ([3]) Let X be a normed linear space, ,x y X∈ , if they satisfy 

x y x y+ = − . 

Then x is isosceles orthogonal or James orthogonal to y, denoted by Ix y⊥ . 
According to the property of “The perpendicular segment between the point 

and the line is shortest”, the concept of Birkhoff orthogonality in normed linear 
space was proposed by G. Birkhoff in 1935. 

Definition 1.3 ([4]) Let X be a normed linear space, ,x y X∈ , if the inequel-
ity 

x y xα+ ≥  

holds for any α  in the range of real number. Then x is Birkhoff orthogonal to 
y, denoted by Bx y⊥ . 

Because R. C. James has made outstanding contributions to the study of 
Birkhoff Orthogonal, Birkhoff Orthogonal is also known as James Orthogonal or 
Birkhoff-James Orthogonal. 

Definition 1.4 ([5]) Suppose M and N are two subspaces of X, if for any 
x M∈  and y N∈ , there exist Bx y⊥ , then M is Birkhoff orthogonal to N, 
denoted by BM N⊥ . { } Bx N⊥  and { }BM y⊥  are abbreviated as 

Bx N⊥  and BM y⊥  in particular. 
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Definition 1.5 ([5]) A norm on n
  is standard when satisfies 

1 ∞
⋅ ≤ ⋅ ≤ ⋅ . 

Definition 1.6 ([6]) Let X be a linear space and : X⋅    be a functional 
on X. If for any ,x y X∈  and α ∈ , ⋅  satisfies the following conditions: 

1) 0x ≥ , 0 0x x= ⇔ = ; 
2) x y x y+ ≤ +  (Triangle inequality); 
3) x xα α≤  (Absolute homogeneity). 
Then ⋅  is called a norm on X, and ( ),X ⋅  is called a normed linear space. 

When the norm is not emphasized, X is used to represent ( ),X ⋅ . A real fi-
nite-dimensional normed linear space is called a Minkowski space, and a 
two-dimensional Minkowski space is called a Minkowski plane. 

Based on the definition and related theorems of orthogonality, as scholars 
keep studying in the field of orthogonal elements, conclusions in specific Orlicz 
sequence space were correspondingly drawn [7] [8]. Along with the further un-
derstanding of orthogonal elements, the concept of orthogonal groups was pro-
posed for the reason that orthogonal elements are not commutative. In the inner 
product space, the generalized orthogonal theory was relatively complete. And in 
algebra, studies on vector groups were already carried out. Naturally, the genera-
lized orthogonal groups whose properties are derived from orthogonality while 
keep their own differences were studied in this paper. Considering of different 
orthogonal properties, different orthogonal groups were correspondingly pro-
posed. And the related properties of orthogonal groups were studied in specific 
normed linear space. 

Based on these definitions, in the general normed linear space, the concepts of 
generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, 
generalized Roberts orthogonal group, strong Birkhoff orthogonal group and 
generalized orthogonal basis are introduced correspondingly as follows: 

Definition 1.7 Let X be a normed linear space, ( )1 2, , , mA α α α=   is a vec-
tor group of X, if there exist i B jα α⊥  or j B iα α⊥  for any ,i j Aα α ∈ , then 
the vector group A is a generalized Birkhoff orthogonal group of X. 

Definition 1.8 Let X be a normed linear space, ( )1 2, , , mA α α α=   is a vec-
tor group of X, if there exist i B jα α⊥  and j B iα α⊥  for any ,i j Aα α ∈ , then 
the vector group A is a strong Birkhoff or commutative Birkhoff orthogonal 
group of X. 

Definition 1.9 Let X be a normed linear space, ( )1 2, , , mA α α α=   is a vec-
tor group of X, if there exist i I jα α⊥  for any ,i j Aα α ∈ . Moreover, consi-
dering the symmetry of isosceles orthogonal, then the vector group A is a strong 
Birkhoff or commutative Birkhoff orthogonal group of X. 

Definition 1.10 Let X be a normed linear space, ( )1 2, , , mA α α α=   is a 
vector group of X, if there exist i R jα α⊥  or j R iα α⊥  for any ,i j Aα α ∈ , 
then the vector group A is a generalized Roberts orthogonal group of X. 

Definition 1.11 Let A be a generalized orthogonal group on normed linear 
space X. If A is also a set of basis on X, then A is a generalized orthogonal basis 
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of X. 
Theorem 1.1 Any two elements in any nonzero generalized orthogonal group 

in a normed linear space are linearly independent. 
Proof In the following, we distinguish four cases. 

Case 1: If ( ),x y  is a nonzero Birkhoff orthogonal group. Assuming that 
( ),x y  is linearly related, then there exist y kx= , 

( )1x y x kx k xα α α+ = + = + . 

This is a contradiction to the definition of Birkhoff orthogonal. Thus, if 
( ),x y  is a nonzero Birkhoff orthogonal group, then it is linearly independent. 

Case 2: If ( ),x y  is a nonzero strong Birkhoff orthogonal group. Assuming 
that ( ),x y  is linearly related, then there exist y kx= , 

( )1x y k xα α+ = +  and ( )y x k xα α+ = + . 

This is a contradiction to the definition of Birkhoff orthogonal. Thus, if 
( ),x y  is a nonzero strong Birkhoff orthogonal group, then it is linearly inde-
pendent. 

Case 3: If ( ),x y  is a nonzero isosceles orthogonal group. Similarly, assum-
ing that ( ),x y  is linearly related, then there exist 

( )1x y k x+ = +  and ( )1x y k x− = − . 

This is a contradiction to the definition of isosceles orthogonal. Thus, if 
( ),x y  is a nonzero isosceles orthogonal group, then it is linearly independent. 

Case 4: If ( ),x y  is a nonzero Roberts orthogonal group. Assuming that 
( ),x y  is linearly related, then there exist 

( )1x y k xα α+ = +  and ( )1x y k xα α− = − . 

This is a contradiction to the definition of Roberts orthogonal. Thus, if ( ),x y  
is a nonzero Roberts orthogonal group, then it is linearly independent. □ 

The generalized orthogonal group of two elements is linearly independent, so 
it is natural for us to consider whether there are linear independent orthogonal 
group of three or more elements in two-dimensional space. 

Reasoning 1.1 Any generalized orthogonal group containing two nonzero 
elements in a two-dimensional space is a generalized orthogonal basis. 

However, it should be noted that in a three-dimensional space, a generalized 
orthogonal group containing three elements is not necessarily a generalized or-
thogonal basis. Specific examples are given below. 

Theorem 1.2 Let X be the inner product space and dim X n= , 1 2 1, , , nx x x +  
are orthogonal to each other, then in there exists at least one zero element. 

Proof Proof by contradiction assuming that 1 2 1, , , nx x x +  are nonzero and 
orthogonal to each other. Since dim X n= , we have 

1 1 2 2 1 1 0n na x a x a x+ ++ + + = . 

Thus, 
2

1 1 1 1 2 2 1 1 1 1 1 10 n nx a x x a x x a x x a x+ +⋅ = ⋅ + ⋅ + + ⋅ = . 
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Since 1 0x > , we have 1 0a = . 
Similarly, we have 2 10, , 0na a += = . This contradicts the linear correlation 

of 1 2 1, , , nx x x + , hence the theorem is proved.                          □ 
Theorem 1.3 ([9]) For any convex quadrilateral abcd on the Minkowski plane 

X, the sum of its diagonals is no less than the sum of lengths of any set of oppo-
site sides, that is 

c a d b b a d c− + − ≥ − + −                  (1-1) 

c a d b c b d a− + − ≥ − + −                  (1-2) 

Formula (1-1) holds if and only if 

( ) ( ), Xc a c a b d b d S − − − −  ⊂  . 

Theorem 1.4 ([2]) Let C be a convex body in ( )3n n ≥ . The following 
propositions are equivalent 

1) C is an ellipsoid; 

2) For any straight line L passing through the origin, there is a hyperplane H 
such that C L C H L+ = + . 

Theorem 1.5 Let X be a two-dimensional real normed linear space. If there 
exists a generalized Roberts orthogonal group on X, then 0x y z =  holds. 

Theorem 1.6 ([10]) Let E be a two-dimensional real normed linear space. If 
there exist , ,x y z E∈ , Ix y⊥ , Ix z⊥  and Iy z⊥ , then 0x y z = . 

Note that the theorem above does not hold for Birkhoff orthogonality. 

Example 1.1 ([11]) In 2
  with the norm ( ) { }1 2 1 2, max ,x x x x= , vector 

( )1, 1x = − , ( )1,1y =  and ( )0,1z =  satisfy Bx y⊥ , Bx z⊥  and By z⊥ . 
Example 1.2 Let X be a linear space formed by a continuous function 
( ) 2f α γα ηα= +  on a closed interval [ ]0,1 , and specify 

[ ]
2

0,1
maxf
α

γα ηα
∈

= + . 

Then ( ),X ⋅  is a two-dimensional normed linear space; the two vectors x 

and y in X are Roberts orthogonal to each other if and only if 0x y⋅ = . 

Example 1.3 Let ( )2 ,X = ⋅ , if the norm ( ) { }1 2 1 2, max ,x x x x=  satis-

fies ( ),x α α= − , ( ),y α α= , ( )0,z u=  and ( ),0w v= , where , ,u vα ∈ , 
then Bx y⊥ , Bx z⊥ , Bx w⊥ , By w⊥ , By z⊥ , Bz w⊥  and 

0x y z w ≠ . 

Example 1.3 shows that the number of elements in a nonzero generalized or-
thogonal group can be greater than the number of elements in the basis. 

2. Generalized Orthogonal Group in lp Space 

In this part, the existence of nonzero generalized orthogonal groups and its li-
near correlations were applied in discussing the related questions in the specific 
normed linear space namely the lp space. The existences of generalized ortho-
gonal elements and generalized orthogonal groups in 2

pl  and 3
pl  space were 

proven. 
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Theorem 2.1 Let ( )2 , pX = ⋅ , then any linearly independent group on X 
can be Schmidt orthogonalized. 

Proof Let ( )2 , pX = ⋅  and J is the standard dual mapping on X. Select 

( ) ( )J z J z∈  which is a standard dual mapping satisfying ( ) ( )J z J zλ λ=   for 

Xz S∀ ∈  and λ∀ ∈ . 

It follows that J  is one option of standard dual mapping. 
,x y X∀ ∈ , let [ ] ( )( )|x y J y x=  , and we have [ ] ( )( ) 2|x x J x x x= = . Thus, 

[ ]|⋅ ⋅  is a semi-inner product of a generation norm on X. 
Assume , Xu v S∈ , and we have 

[ ] [ ]| |w v u v u u u= − ⋅ . 

Thus, 

[ ] ( )( ) ( ) ( )( )( ){ } ( )( ) ( )( )2| 0w u J u w J u v u J u v u J u v J u v= = − ⋅ = − =     . 

We have Bu w⊥  which implies that u,w is a set of orthogonal basis.      □ 
Proposition 2.1 ([2]) If X is a Minkowski plane, then for any vector x in X, 

there exists a corresponding H in X (H is a hyperplane passing through the ori-
gin) so that any vector in H is Birkhoff orthogonal to x (denoted by BH x⊥ ). 

However, when the dimension of the space is greater than two, the situation is 
completely different. 

Lemma 2.1 ([2]) Let X be a normed linear space with dimensions great than 
or equal to three. If H exists for any vector x such that BH x⊥  (H is a hyper-
plane through the origin), then x is an inner product space. 

Next, we were trying to find the generalized orthogonal element in 2
pl  space 

using the same proof methods as Lemma 2.1. 
Proposition 2.2 Birkhoff orthogonal element of 2

pl  space. 
2
px l∀ ∈ , { }0kf X∃ ∈ , satisfying ( )f x x=  and 

( )kX x f f= ⋅ . 

Then we have ( ) 2kX x x= = . 

Let 2
py l∈  satisfying ( ) 0kX y = , and it follows that 

( ) ( )k k k kx y X x y x x x x xα α+ ≥ + = = . 

Hence Bx y⊥ . 
In the two-dimensional subspace Xφ  of pl  space, let ( )1 2, ,0, ,0x x x=  , 

( )1 2, ,0, ,0y y y=   and 1 2 1p px x+ = , which is Xx S∈ . 

Let 1
px u=  and 2

px v= , we have 

1
1

px u=  and 1
2

px v= , 

( )1

1

1 2 2
p p p

x y x y x yα α α+ = + + + , 

( )2

1

1
p p p

x x x= + , 
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( ) ( ) ( ) 1 1
1 2 1 2 1 2d d d d d d d d p px x x u u v v x x x− −= ⋅ ⋅ = − . 

If x y xα+ ≥  holds, then  

( ) ( )1 1 2 2

1

1

1

2

pp pp p px y x y x xα α+ + + ≥ +  

must hold for any α . 
Since y kx b= + , we have that 

( )1 1
2 11, p px x− −− , 

which is an orthogonal point pair. Hence  

( )0,1x = ± , ( )1,0y = ± ; 

( )1 2 ,1 2p px = ± , ( )1 2 ,1 2p py = ± − . 

Proposition 2.3 Roberts orthogonal element of 2
pl  space. 

Let ( ),x a b=  be a point on the unit sphere of two-dimensional lp space and 

Xx S∈ , it follows that 

1p pa b+ = . 

Let ( )b b a= , and we have 

( ) ( ) 11 0
ppp a b a p b
−− ′+ = , 

( ) ( ) 11 1 1pp p pb a p a p b a b
−− − −′ = − = − . 

which implies that the hyperplane { }1 1 ,p pH x a b Rλ λ− −= − ∈  supports the 
ball at x. 

When 1 p< < ∞ , the unit sphere is strictly convex, then x is Birkhoff ortho-
gonal to y for any X. If Bx y⊥ , then y H x∈ −  (the point y in the hyperplane 
except for x). 

Let Rx y⊥ , and we have 

x y x yλ λ+ = −  and ( )1 11, p py a b− −= − . 

Thus, 

1 1 1 1p pp p p p p pa b a b a b a bλ λ λ λ− − − −+ + − ⋅ = − + + ⋅ . 

When a b=  or 0ab > , there exists elements Roberts orthogonal to x, 
which are 

( )0,1x = , ( )1,0y = ; ( )1,0x = , ( )0,1y = ; 

( )0, 1x = − , ( )1,0y = − ; ( )1,0x = − , ( )0, 1y = − ; 

( ),1 2 1 2p px = , ( )1, 1y = − ; ( ),1 2 1 2p px = − , ( )1,1y = ; 

( ),1 2 1 2p px = − , ( )1, 1y = − − ; ( ),1 2 1 2p px = − − , ( )1,1y = − . 

Proposition 2.4 If ( ),x α β=  and ( ) ( )2, 1py l pβ α= ± − ∈ < < ∞ , then 

Ix y⊥ . 
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Proof In the following, we distinguish two cases. 
Case 1: Since ( ),x α β=  and ( ),y β α= − , we have 

( ),x y α β β α+ = − +  and ( ),x y α β β α− = + − . 

It follows that 

p ppx y α β β α+ = − + +  and p ppx y α β β α− = + + − . 

Case 2: Since ( ),x α β=  and ( ) ( )2, 1py l pβ α= − ∈ < < ∞ , we have 

( ),x y α β β α+ = + −  and ( ),x y α β β α− = − + . 

It follows that 

p ppx y α β β α+ = + + −  and p ppx y α β β α− = − + + . □ 

Proposition 2.5 The isosceles orthogonality on space ( )3 1pl p< < ∞  can be 
obtained from the foregoing. 

Proof In the following, we distinguish three cases. 

Case 1: If ( ), ,x α β γ=  and ( ) 3, ,0 py lβ α= ± − ∈ , then Ix y⊥ . 

Case 2: If ( ), ,x α β γ=  and ( )0, ,y γ β= ± − , then Ix y⊥ . 

1) If ( ), ,x y α β γ γ β+ = − +  and ( ), ,x y α β γ γ β− = + − , then we have 
p p ppx y α β γ γ β+ = + − + +  and p p ppx y α β γ γ β− = + + + − . 

Hence x y x y+ = − . 
2) If ( ), ,x y α β γ γ β+ = + −  and ( ), ,x y α β γ γ β− = − + , similarly, 

x y x y+ = − . 

Case 3: If ( ), ,x α β γ=  and ( ),0,y γ α= ± − , then Ix y⊥ . 
1) If ( ), ,x y α γ β γ α+ = − +  and ( ), ,x y α γ β γ α− = + − , then we have 

p p ppx y α γ β γ α+ = − + + +  and p p ppx y α γ β γ α− = + + + − . 

Hence x y x y+ = − . 
2) If ( ), ,x y α γ β γ α+ = + −  and ( ), ,x y α γ β γ α− = − + , similarly, we 

have 

x y x y+ = − . □ 

Theorem 2.2 There exist at least n elements in n-dimensional lp space that are 
orthogonal to each other and linearly independent. 

Example 2.1 Let X be a n
pl  space, then ( )1, , nA e e=   is the generalized 

Birkhoff orthogonal group of X, is also the generalized isosceles orthogonal 
group and the generalized Roberts orthogonal group of X, and is linearly inde-
pendent. 

Then we naturally consider the existence of generalized orthogonal groups in 
lp subspaces. 

Reasoning 2.1 Let X be a two-dimensional 2
pl  subspace, ( )1 2,A x x= , 

( )1 2,B y y= , ( )1 0,1x = ± , ( )2 1,0x = ± , ( )1 1 2 ,1 2p py = ±  and  
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( )2 1 2 ,1 2p py = ± . It is proved that A and B are generalized orthogonal groups 

of X, and 1x , 2x , 1y , 2y  are mutually commutative. Hence A and B can also 
be called as generalized commutative Birkhoff orthogonal groups of X. 

Reasoning 2.2 Let X be a two-dimensional 2
pl  subspace, ( )1 2,A x x= , 

( )1 2,B y y= , ( )1 2,C z z= , ( )1 0,1x = ± , ( )2 1,0x = ± , ( )1 1 2 ,1 2p py = ± , 
( )2 1, 1y = ± − , ( )1 ,1 2 1 2p pz = ± − , ( )2 1,1z = ± . It is proved that A, B and C 

are generalized Roberts orthogonal groups of X, and 1x , 2x , 1y , 2y , 1z , 2z  
are mutually commutative. Hence A, B and C are called generalized commuta-
tive Roberts orthogonal groups of X. 

Reasoning 2.3 Let X be a two-dimensional 2
pl  subspace, ( )1 2,A x x= , 

( )1 ,x α β=  and ( )2 ,x β α= ± − . It is proved that A is a generalized isosceles 
orthogonal group of X. 

Reasoning 2.4 Let X be a 3
pl  space, ( )1 2,A x x= , ( )1 2,B y y= , ( )1 2,C z z= , 

( )1 , ,x α β γ= , ( )2 , ,0x β α= ± − , ( )1 , ,y α β γ= , ( )2 0, ,y γ β= ± − ,  
( )1 , ,z α β γ=  and ( )2 ,0,z γ α= ± − . It is proved that A, B and C are generalized 

isosceles orthogonal groups of X. 
Reasoning 2.5 Let X be a 2l∞  space, ( )1 2 3, ,A x x x= , ( )1 0,1x = , ( )2 1,0x =  

and ( )3 1,1x = . It is proved that A is a generalized Birkhoff orthogonal group of 
X. However, 1x , 2x , 3x  are not mutually Brikhoff orthogonal, then A cannot 
be called as a generalized commutative Birkhoff orthogonal group of X. 

However, there still remains further study and discussion on the existence of 
generalized orthogonal groups in other normed linear spaces. 

3. Conclusion 
Based on the concept of orthogonal group in inner product space and some re-
lated properties, the definition of generalized orthogonal group in general normed 
linear space is introduced in this paper. Furthermore, the existence and linear 
correlation of nonzero generalized orthogonal groups are discussed. Some re-
lated problems of nonzero generalized orthogonal groups in specific normed li-
near space namely the lp space are discussed, and corresponding conclusions are 
drawn. Also, generalized orthogonal basis in the three-dimensional Orlicz se-
quence space is discussed, and the isosceles orthogonal basis is extended espe-
cially. 
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