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Abstract 
A mathematical model has been developed to numerically model the risk of 
developing Alzheimer’s disease and Chronic Traumatic Encephalopathy 
(CTE) as a person ages. The model was programmed in Excel to provide a 
working prototype computer simulation model. The model provides esti-
mates of the cumulative risk of developing Alzheimer’s disease and CTE as 
age increases. A one-year step size was used. The model has two major parts: 
one predicts changes in slow-wave sleep as a person ages and the second 
component adjusts the flushing efficiency of waste products from the brain. 
The two components work together and interact to lower the flushing of 
waste components as age increases. The development of the model provides 
an overview of how the various factors work together that lead to the onset of 
Alzheimer’s disease and the associated CTE. Calibration of the coefficients in 
the model is based on published data sets presented in the literature. Further 
research and refinement of calibration coefficients should be explored. 
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1. Introduction 

Alzheimer’s disease is a complex, progressive brain deterioration that results in 
memory loss and loss of mental function. It associates with the accumulation of 
protein fragments (amyloid β) that clump outside neurons and tau tangles that 
accumulate inside neurons [1]. Usually, amyloid β starts to accumulate first in 
the front center lobe of the brain that communicates with the hippocampus to 
convert short-term memory information to long-term memory [2]. As the dis-
ease progresses, both amyloid β and tau tangles increase [3] [4]. Both accumula-
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tions are harmful to brain functions. Because the early development of amyloid β 
affects one of the components used in the conversion from short-term to 
long-term memory and memory consolidation, it is logical that one of the early 
symptoms of Alzheimer’s disease is problems with memory. 

Various causes have been suggested. Suggested causes include genetics, pri-
marily the APOE4 allele but include other genes, inflammation, mental trauma 
including depression, physical trauma from head impacts, pressure waves, sleep 
issues, and lifestyle including exercise to name a few. Many other factors, in-
cluding education and environmental pollution, also influence the rate of pro-
gression. Age provides the time for the various processes to operate leading to 
the deterioration of many parts of the brain. As the disease develops, brain 
structure changes, including the loss of brain volume [1] [5] [6] [7] [8] and the 
accumulation of amyloid β and tau tangles. As these changes occur, mental per-
formance and memory, especially short-term memory deteriorates. 

While many factors influence the rate of development, the root cause has not 
been identified. Certainly, many factors are involved in the development as a 
person ages. Some of these factors can be managed to slow the progression but 
need to be controlled early in the process to obtain maximum effect. Thus, a 
model to simulate and preview the risks associated with changes in the various 
contributing factors would be a useful tool. 

Numerous studies have reported the APOE4 allele as the primary genetic risk 
factor [9]-[19]. Safinia et al. [19] report an estimate of 23 percent of the general 
population has one APOE4 allele. Corder et al. [20] studied familial and sporadic 
forms of Alzheimer’s disease. They reported a dose relationship associated with 
the APOE4 allele. They reported an 8-fold increase in the risk of late-onset Alz-
heimer’s disease for people with an APOE4 allele from each parent. Safinia et al. 
[19] suggest that having two APOE4 alleles leads to an 80 percent chance of de-
veloping Alzheimer’s disease by age 75. Thus having an APOE4 allele is a major 
risk factor for developing Alzheimer’s disease. 

There is evidence that APOE4 disrupts lipid homeostasis in glial metabolism 
[9]. The glial cells are a major component of a healthy brain: shrinking during 
slow-wave sleep to flush away waste materials, such as amyloid β ([2] page 160) 
[21] [22] [23]. These glial cells can experience damage from impact sports, such 
as boxing and football [19]. Thus, there is evidence that both APOE4 alleles and 
impacts on the brain are risk factors for CTE discussed later in this paper. 

Gofrit et al. [24] state that Alzheimer’s disease has three major pathological 
features: amyloid β, neurofibrillary tangles, and sustained innate neuroinflam-
mation. They suggest that inflammation is a major player in Alzheimer’s disease 
pathogenesis. In another paper, Gofrit et al. [25] hypothesize that Bacillus Cal-
mette-Guerin (BCG), a vaccine against tuberculosis, reduces inflammation in 
the brain and, thus, explains why people receiving the vaccine have a reduced 
risk of developing Alzheimer’s disease. People treated for bladder cancer with 
BCG had a 4-fold reduction in risk of developing Alzheimer’s disease compared 
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to people without treatment. 
Our exposure to infections may contribute to our risk of developing inflam-

mation and Alzheimer’s disease [26]. Hussein [26] reviewed the history of how 
researchers have concluded that a connection exists between inflammation and 
Alzheimer’s disease. He reported a 2.5-fold higher risk of developing Alzhei-
mer’s disease for people with antibodies associated with primary infection or 
reactivation. 

There is compelling evidence that both APOE4 and infections contribute to an 
increased risk of developing Alzheimer’s disease. Both, however, are processes 
that require time to develop. 

Other factors that contribute to the risk of developing Alzheimer’s disease are 
mental trauma including depression [15] [27]-[33], physical trauma from head 
impacts [19] [34] [35] [36] and pressure waves [37]. Byers, Yaffe [29] and Green 
et al. [15] have reported an approximately 2-fold increased risk for Alzheimer’s 
disease in association with depression. Green et al. [15] reported a dose-effect 
based on the interval between the onset of depression and onset of Alzheimer’s 
disease. Most likely, this time interval indicates the number of years associated 
with depression. Even if depression is treated, the increased risk for Alzheimer’s 
disease may remain. Kessing et al. [38] noted that the odds for Alzheimer’s dis-
ease are lowered by some of the older antidepressants. 

Finally, there is a strong connection between the development of Alzheimer’s 
disease and slow-wave sleep ([2] pages 157-163). This connection will be dis-
cussed later in this paper. Lifestyle, especially fitness through exercise is another 
variable [39] [40]. 

Age provides the time for the various processes to operate leading to the dete-
rioration of many parts of the brain. As the disease develops, brain structure 
changes, including loss of brain volume [1] [5] [6] [7] [8] and the accumulation 
of amyloid β and tau tangles. As these changes occur, mental performance and 
memory, especially short-term memory deteriorates. 

The process of development has numerous variables. No one thing, such as 
genetics or inflammation explains the full process. There obviously is a need for 
a model to explain the process. 

Objective 

Based on the many factors and often suggested causes, there is uncertainty about 
the system that controls the development of Alzheimer’s disease. Walker [2] 
makes a strong argument that sleep interacting with the flushing of waste mate-
rials controls the development of Alzheimer’s disease. On the other hand, Hus-
sein [26] argues against the flushing hypothesis and suggests that infections are 
the cause. Could both be right to some degree? Needless to say, there is a need 
for a more complete mathematical model to describe the development of Alz-
heimer’s disease. 

The objective of this article is to present a mathematical model that offers a 
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possible explanation of how Alzheimer’s disease develops and progresses with 
aging. Connections to the development of CTE are included. 

2. Method 
2.1. Model Development 

The proposed Alzheimer’s disease risk model is built on two major components 
or tasks: 

(1) the expression of slow-wave sleep that controls the timing for engaging 
the glymphatic system to flush waste products from the brain, and 
(2) the effect of genes and injury on the efficiency of the flushing system. 

There is considerable evidence [2] [41] [42] that sleep, especially slow-wave 
sleep is an important factor in the development of Alzheimer’s disease. Certain 
areas of the brain seem to be affected first. Early in the development of Alzhei-
mer’s disease, amyloid β starts to build up in the middle frontal lobe of the brain 
involved in controlling or staging slow-wave sleep. This area of the brain com-
municates with the hippocampus to convert short-term memory to long-term 
memory. The front lobe also is used in our executive function. Walker ([2] page 
158) reports that the more amyloid deposits in the middle frontal lobe, the more 
impaired the deep-sleep or slow-wave sleep is in older individuals. Because 
amyloid β plaques are poisonous to neurons destroying the function of sur-
rounding brain cells, the build-up of amyloid β in the middle frontal lobe acce-
lerates the loss of slow-wave sleep compared to normal aging. It appears to be 
evidence of the beginning development of Alzheimer’s disease. 

Coupled with the switching on and off of slow-wave sleep is the turning on 
and off a 10 to 20 times increase in the flushing of waste products, such as amy-
loid β and tau tangle materials ([2] page 160) [12] [22] [23]. This increase in the 
effectiveness of the glymphatic system to literally flush away waste materials 
from the brain is critical to a healthy brain. Mestre et al. [21] report that “while 
there are several distinct neurodegenerative causes, cerebral small vessel disease 
(SVD) can be found in all forms”. They suggest that glymphatic impairment 
plays an important role in SVD. This system of flushing (biological washing 
machine) can be compromised by the loss of slow-wave sleep or damage to the 
glial cells. Glial cells next to neurons in the brain can shrink by as much as 60 
percent during slow-wave sleep providing space to flush toxins away from neu-
rons into the cerebrospinal fluid to clean the metabolic refuse left by a day’s 
neural activity ([2] page 161). 

Sleep management and sleep quality have been linked to the buildup of amy-
loid β and tau in the spinal fluid of humans [41] [42]. Sleep disruption was 
found to increase amyloid β in the fluid bathing the brain and spinal cord. 
Poor-quality sleep over a few days was associated with higher levels of tau in the 
cerebrospinal fluid. The evidence is strong that for good brain health, we need 
quality sleep, especially slow-wave sleep. 
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The risk of developing Alzheimer’s disease seems to be associated with the 
accumulation of amyloid β waste in the brain. Thus, the risk for developing Alz-
heimer’s disease can be estimated by summing the waste contribution from birth 
to the desired age. The following equation (derived in Appendix A) estimates 
the non-flushed waste that accumulates after one night of sleep: 

1
0e e WFA F S

FW W −=                         (1) 

where WF = waste products remaining in the brain 
W0 = waste production 
A1 = calibration coefficient 
Fe = flushing system efficiency 
SWF = time in slow-wave sleep during a night of sleep 

Equation (1) expressed specifically for amyloid β is shown in Equation (2): 

1
0e e WFA F Sβ β −=                         (2) 

where β = amyloid β remaining in the brain 
β0 = amyloid β production 

Equation (1) expressed specifically for tau is shown in Equation (3): 

1
0e e WFA F Sτ τ −=                          (3) 

where τ = tau remaining in the brain 
τ0 = tau production 

The risk of developing Alzheimer’s disease seems to be associated with the 
accumulation of amyloid β waste. Thus, the risk for developing Alzheimer’s dis-
ease can be estimated by summing the amyloid β waste remaining in the brain 
for each day of life divided by the minimum amount of amyloid β associated 
with symptoms of Alzheimer’s disease: 

( ) 1
0

0

1 1 e e WF
T

A F S
T

R

R R β
β

−= − ∑                    (4) 

where βR = a reference amount of amyloid β generally associated with the onset 
of Alzheimer’s disease symptoms 

RT = accumulated risk through previous step calculation 
T = total time (days for Equation (4); years for Equation (5)) 

The (1 − RT) component in the above equation limits the waste accumulation 
to a probability of developing Alzheimer’s disease. Note that many of the va-
riables in Equation (4) may vary daily as a function of other variables. For exam-
ple, there is growing evidence [43] that genetics through APOE alleles affect the 
generation of amyloid β0. Sleep amount and quality vary with individuals, man-
agement by individuals, and other variables, such as age and exercise. 

Equation (4) estimates the risk of developing Alzheimer’s disease associated 
with one day. Daily values are needed for each variable. Data input can be great-
ly reduced by multiplying the right side of Equation (4) by 365 days/year and 
using average daily values for a year as input: 
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( ) 1
0

0

365 1 e e WF
T

A F S
T

R

R R β
β

−= − ∑                    (5) 

While this change is a practical step to estimate results for a general popula-
tion, it removes the ability to estimate risk for an individual with highly variable 
sleep management. A process to estimate an average slow-wave sleep amount is 
presented in Appendix B. 

Next, we can adjust the slow-wave sleep by multiplying the normal amount of 
slow-wave sleep by (1 − RT), where RT represents the risk total up to the current 
age or year of calculation. It is logical that the buildup of amyloid β and tau tan-
gles in the brain should reduce the various brain functions, such as slow-wave 
sleep and flushing efficiency. The (1 − RT) defines the Fe variable when no me-
chanical insults to the brain have occurred. 

These equations and adjustments were programmed in Excel using a step size 
of one year using the RT from the previous step to update the calculations for the 
current step. Data reported by the Alzheimer’s Association [1] were used to ca-
librate and verify the model. The number of data points is limited. This report 
provides that 5.3 percent age 65 - 74, 13.8 percent age 75 - 84, and 34.6 percent 
age 85 and older have Alzheimer’s disease. To compare to the calculated values, 
we need a specific age instead of a range. Ages for comparison were calculated as 
follows: (65 + 74)/2 = 69.5 and (75 + 84)/2 = 79.5. These ages were rounded up 
to the nearest whole number: 70 and 80 respectively. The number for 85 and 
older is more ambiguous. It certainly must be larger than 90 years. The question 
is how much more? The upper range certainly could be 100 or larger. On the 
other hand, only a small percentage of people live over 100 years. To deal with 
this extended range, it was assumed that a range of 15 years instead of 10 years 
was a reasonable estimate for ages 85 and older: (85 + 100)/2 = 92.5 years. This 
number was rounded up to the nearest whole number, 93. Based on the begin-
ning boundary condition, a 0 risk was used for age 0 to obtain an additional data 
point. An R2 = 0.999 was obtained comparing measured to predicted data for the 
four ages. With four data points, the significance or probability of being a ran-
dom fit was p < 0.001. The values for A1 (6.6) and β0/βR (0.000096 for Equation 
4; 0.035 for Equation (5)) were determined from this process. The predicted 
curve for risk as a function of age from birth to 120 years of age and the meas-
ured data are shown in Figure 1. Figure 1 also illustrates the trend and boun-
dary conditions (0, upper limit ≤ 1.0) for risk. Note that the trend is highly non-
linear and cumulative over a lifespan. 

Because of the uncertainty of the age to be used for 85 and older, the calibra-
tion was tested without the 93 years age prediction. The R2 reduced to 0.998 (p = 
0.05). Either result seems to verify the model to predict the risk of developing 
Alzheimer’s disease for general conditions. 

The predicted values also were compared to the cumulative risk of developing 
Alzheimer’s disease provided by [18]. This data set contained 50 different ages. 
Without any changes in calibration, the predicted values matched these reported 
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values with an R2 equal to 0.99, which was highly significant (p < 0.001). Results 
are shown in Figure 2. The slope of the linear portion in Figure 2 is approx-
imately 0.034, essentially the same as the calibration value for β0/βR. 

A mathematical model is no better than the data set used for calibration. It 
appears that the Alzheimer’s Association either used the data from Lauten-
schlager et al. [18] or that they used independent data in agreement with the 
Lautenschlager data. The mathematical model developed at this point has the 
advantage that it includes theoretical boundary conditions of 0.0 at birth and 1.0 
as a maximum probability value. It will be shown in the next section that Equation 
5 as calibrated for Alzheimer’s disease can also estimate the risk of developing  

 

 
Figure 1. Predicted and measured risk for Alzheimer’s disease. Data from 2021 Alzhei-
mer’s Disease Facts and Figures [1]. 

 

 
Figure 2. Comparison of risk for Alzheimer’s disease for various ages compared to pre-
dictions from the Alzheimer’s risk model. Data points from Lautenschlager et al. [18]. 
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CTE by adjusting the flushing efficiency factor. 

2.2. Chronic Traumatic Encephalopathy (CTE) 

The next step in development was to consider the damage to brain cells from 
external effects. It was hypothesized that these effects might reduce the efficien-
cy, Fe, in clearing waste. External factors that are known to increase the risk of 
Alzheimer’s disease include brain trauma from major head injuries, numerous 
little impacts during football, boxing, and soccer, and compression waves that 
pass through the brain from explosions. 

The following equation (derived in Appendix C) was used to estimate the loss 
of flushing efficiency to include the effect of external stressors on the loss of cells 
in the glymphatic system: 

( )1 e fkI
e TF R −= −                        (6) 

where 1 − RT = the efficiency based on the build-up of waste materials in the 
brain, especially in the front center lobe of the brain that regulates slow-wave 
sleep 

e fkI−  = the efficiency based on the health of brain cells after injury 
k = calibration coefficient 
If = total stressor input 

The “2021 Alzheimer’s Disease Facts and Figures Special Report” (page 16) [1] 
reports that the risk of developing CTE increases by 30 percent per year of play-
ing football. This number is based on information provided by Mez et al. [35]. 
While the waste deposits are different for Alzheimer’s disease and CTE, the 
process of development appears to be the same. Incomplete flushing appears to 
be the process that builds the destructive tau deposits associated with CTE. 

An interesting observation is that not all football players or boxers develop the 
condition of CTE. Some estimates suggest that only about 20 percent develop 
CTE. One estimate for boxers is that at least 17 percent of boxers develop CTE 
[19] [36]. Safinia et al. [19] also report that “longer careers and higher number of 
bouts is associated with higher CTE incidence.” Omalu ([34] pages 13, 61) in his 
book, Play Hard, Die Young: Football Dementia, Depression, and Death, esti-
mates about 20 percent of boxers develop a form of CTE known as dementia pu-
gilistica. He suggests that about 20 percent of football players will also develop 
CTE or gridiron dementia. Safinia et al. [19] report an estimate that 23 percent 
of the general population has an APOE4 allele. Are these numbers related? 

There is evidence [44] [45] that people having an APOE4 allele significantly 
fare worse six months and later after brain injury than people without the 
APOE4 allele. Thus, genetics may be one reason why about 20 percent of boxers 
and football players develop CTE. The APOE4 allele certainly seems to hinder 
long-term recovery from brain trauma. 

It is assumed at this point that the progression from normal aging or from 
early stages of Alzheimer’s disease to CTE is caused by damage to brain cells 
from external stressors, such as impacts to the head in football, boxing, soccer, 
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etc. and/or blast waves that pass through the brain from explosions. Damage to 
the glial cells should greatly reduce their efficiency in removing waste that leads 
to a buildup of tau tangles and amyloid β plaque. 

To calibrate and test Equation (6), a sampling of people exposed to repeated 
head impacts and non-impacted people is needed. Russell et al. [46] analyzed 
professional soccer players each matched to three non-players of the same age 
and socioeconomic status. This design allowed direct analysis of the risk asso-
ciated with the playing of professional soccer. 

They report a risk of 1.6 percent of the matched population control individu-
als developing the neurodegenerative disease during the study period. The Alz-
heimer’s disease model was run for men only (gender factor = 10.5 and relative 
fitness = 0.45). The predicted risk of 0.015 (1.5 percent) occurred at age 69 and 
1.7 percent occurred at age 70 years. Based on this close agreement, a 70-year 
age was used for comparisons between predictions and measured soccer data. 

Injury input was made by entering 1 for each year that the professionals 
played soccer. The model summed the years played to obtain the If value in Equ-
ation 6. After retirement, the input returned to zero, but the summed value was 
used for If for the continued prediction of risks with age. This process is based 
on the assumption that there is minimal recovery of the flushing system after the 
damage is done. Professional players obviously have a beginning playing and 
development of skills in high school or college. A four-year period of playing 
and using the head was assumed prior to the professional years played. The ad-
justed years of head impact (Table 1) was used as input to the model. 

A value of 0.0275 was determined for k in Equation 6. An R2 value of 0.80 was 
obtained comparing measured to predicted values. One degree of freedom was 
lost due to calibration; nevertheless, the results were significant (p = 0.05). Re-
sults are shown in Figure 3. 

If the measured hazard ratio for the 12 years of head impact is eliminated, the 
R2 jumps to 0.97. Russell et al. [46] do not explain why the 6 - 10 year range of 
professional play has a higher risk than the 11 - 15 range. One possibility is that 
defenders, midfielders, and multi-position players with a higher risk of CTE re-
tire before forwards and outfielders. They analyzed the hazard ratio for soccer  

 
Table 1. Risk of neurodegenerative disease for soccer players. 

Years  
Professional  

Play1 

Adjusted  
Professional  

Years 

Adjusted Years  
of Head Impact2 

Hazard  
Ratio1 

Risk 
% 

Predicted  
Risk % 

0 0 0 1.00 1.6 1.7 

< 5 3 7 2.26 3.6 3.3 

6-10 8 12 4.61 7.4 5.1 

11-15 13 17 4.28 6.8 7.5 

> 15 17 21 5.20 8.3 10.0 

1Data from Russel et al. [46]. 2Four years of impact were assumed prior to professional play. 
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Figure 3. Comparison of measure and predicted risk for neurodegenerative disease in 
professional soccer players. Data from Russel et al. [46]. 

 
positions and determined that defender and multiposition had ratios of 4.98 
and 4.94 respectively compared to forwards (2.79) and outfielders (3.83). Even 
with the noise in the measured data, the model appears to be a reasonable and 
stable system to predict both Alzheimer’s disease and CTE resulting from 
playing soccer. 

Next, data for football players were analyzed to further evaluate the CTE 
model. Mez et al. [35] used data collected from three brain banks to determine 
the odds of developing CTE as a function of years played by football players. 
Their data do not provide the actual risk of a football player developing CTE. 
Nevertheless, their data is useful to estimate the risk of developing CTE. Figure 
4 was used to retrieve the log odds as a function of years played. Figure 4 shows 
the data and a linear line fit through the log data. The 0.29 slope in the fitted eq-
uation is about the same as the 0.3 value reported in their paper and in the 2021 
Alzheimer’s disease Facts and Figures report [1]. 

An exponential of the log data odds was used to convert to odds in real instead 
of log space. This operation reveals that the last few points (especially the largest 
odds value associated with 20 years of play dominated the log fit equation (Figure 
5, P e0.3). An exponential equation using a calibration of 0.17 (P e0.17) is a much 
better fit than a 0.3 calibration for the data for years played less than 16 years. 

The data for years played larger than 16 years does not follow the same pat-
tern as less than 16 years. It is unknown if there is a bias in the data selection as-
sociated with years played over 16 years or if a second function (P e0.17+) starts 
to dominate for the higher years played. In either case, the first 15 years of play-
ing football seem to be almost independent in terms of mathematical function 
from the other points. 

The data set also does not have any direct connection to a general population  
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Figure 4. Log Odds data from Mez et al. [35]. 

 

 
Figure 5. Odds data from Mez et al. [35] in normal space illustrating how the maximum 
odds point causes the model to miss match lower values of odds data. Two other models 
are shown for the lower values. 

 
of men. The only connection is the odds and years of playing football. On the 
other hand, there is a strong indication that the risk for CTE increases as a func-
tion of years played football. 

There may be a way, however, to finesse a general calibration for football 
players. If we use the suggestion that about 20 percent of football players will 
develop CTE [34] before they die, we can make a rough calibration if we know 
the average age of death. 

The average age of the football players in the study by Mez et al. [35] is 61 
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years. This age is about the same as the average age at death for football players 
reported by various websites. This age was used to calibrate and further test the 
CTE component of the model for football players. 

The value for k in Equation (6) that was determined for soccer players was 
assumed for football players. The model was then run with 20 years of playtime 
and an input number for injury input. The value for yearly input was varied un-
til a prediction of risk close to 0.2 was obtained at age 61 years. A value of 2.3 of 
input for each year played for a playtime of 20 years results in predicted risk of 
0.208. Based on this rough calibration, each year playing football is 2.3 times 
more stressful than a year of playing soccer. 

An input of 2.3 for each year played was used starting at age 18 (senior year in 
high school) and continuing for 20 years of active playing. Zero input was used 
for each year before age 18 and for each year after age 37. The Excel model was 
programmed to sum the inputs to get a value for If for each year. The variable If, 
thus varied from zero to 46 (20 × 2.3) and continued at 46 after age 37. 

It is logical that contact sports should reduce the efficiency of the flushing and 
blood circulation system in the brain affecting the health of the various cells. 
During impact, the soft tissue of which the brain is made experiences 
stress/strain changes. This mechanical loading on the tissue cause minor damage 
to the various cells. It is logical that If would be directly related to the amount or 
number of loading events. Hence, 

f yrI h S= ∑                          (7) 

where h = hit factor based on number and severity of head impacts 
(h = 1.0 for soccer players) 
(h = 2.3 for football players) 

yrS∑  = sum years played for impact sports 
It also seems reasonable that football players might receive 2.3 times more hits 

and/or more severe hits to the head than soccer players. 
There also may be a secondary effect imbedded in contact sports data. The 

body, including the brain, attempts to heal the damage. While the process is 
complex, generally there is swelling and inflammation from the healing process. 
Usually, the benefits of short-term or acute inflammation outweigh the side ef-
fects. With contact sports, the process is repeated numerous times and the acute 
inflammation lingers and tends to exist long-term. Long-term or chronic in-
flammation is harmful and appears to be another source of damage. The sec-
ondary or inflammation damage should also be a function of the amount or 
number of loading events. 

During the testing of this model, the relative risk data were adjusted by divid-
ing the odds data by a calibration constant. The relative risk was adjusted to ob-
tain the least residual error (best R2 value for the first 15 years of playing foot-
ball). See Table 2. An R2 = 0.97 as illustrated in Figure 6 was obtained. The rela-
tive risk for this match occurred when the odds values were divided by 103. 
Thus, for 1 to 15 years of playing, the predicted risk from the model matched the  
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Table 2. Predicted and relative risk of CTE. 

Years Played Log Odds* Odds Relative Risk** Predicted Predicted?? 

0    0.004  

1 −1.0 0.37 0.004 0.006  

2 −0.5 0.61 0.006 0.008  

3 −0.3 0.78 0.008 0.010  

4 0.0 1.00 0.010 0.013  

5 0.25 1.28 0.012 0.017  

6 0.5 1.65 0.016 0.022  

7 0.75 2.12 0.021 0.027  

8 1.0 2.72 0.026 0.034  

9 1.25 3.49 0.034 0.042  

10 1.6 4.95 0.048 0.051  

11 1.76 5.81 0.056 0.061  

12 2.0 7.39 0.072 0.073  

13 2.15 8.58 0.083 0.086  

14 2.3 9.97 0.097 0.101  

15 2.6 13.46 0.131 0.117 0.117 

16 2.9 18.17 0.176  0.134 

17 3.3 27.11 0.263  0.152 

18 3.75 42.52 0.413  0.171 

19 4.5 90.02 0.874  0.189 

20 5.9 365.04 3.544  0.208 

*Data obtained from Figure 3 A (Mez et al, [35]);**Relative Risk obtained by dividing 
Odds data by 103 to best match years played 1 - 15; Relative Risk in red exceeds the value 
of 1.0, the upper limit for probability; Highlighted predicted probability is based on esti-
mates of a maximum lifetime risk of 20%. 

 
shape of the relative risk data well. 

For 16 to 20 years of play, the predictions from the model began to mismatch 
the relative risk data. The extreme point associated with 20 years of play for the 
relative risk data is 3.544. This number exceeds the upper limit of 1.0 for the 
probability of developing CTE. If we divide the odds data by the maximum value 
of 365, then the relative risk for playing football from 1 to 15 years seems to be 
extremely low; even below the risk of developing Alzheimer’s disease for a gen-
eral population. 

The predicted values for 1 to 20 years of playing football and the relative risk 
excluding the values for playing 17 to 20 years are shown in Figure 7. Predic-
tions for play times of 16 - 20 years are shown in red indicating that these values  
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Figure 6. Predicted risk for CTE and the relative risk derived from the odds data of Mez 
et al. [35] for playing 1 to 16 years of football. 

 

 
Figure 7. Comparison of the predicted risk for CTE and relative risk data derived from 
Mez et al. [35] for 1 to 20 years of playing football. Predicted risk expressed in red are not 
verified with relative risk data. 

 
are not verified with the relative risk data. 

While the R2 value and significance level are acceptable, the failure to have an 
agreement between the relative and predicted risk for the most extreme years of 
play (16 - 20) is a concern. It is certainly possible that donations to the brain 
bank were not random in terms of years played. It seems likely that people mak-
ing donations would be most likely to donate the brains of people with the most 
extreme symptoms of a problem. 

Based on the model presented, the development of Alzheimer’s disease and 
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CTE appears to be governed by the same process. In addition to the loss of 
slow-wave sleep that reduces flushing of waste, injury to various brain cells ap-
pears to further reduce flushing efficiency and leads to an increase in deposits of 
tau tangles throughout much of the brain. 

2.3. Depression 

Another medical problem, depression, seems to be associated with the develop-
ment of both Alzheimer’s disease and CTE. Early-onset of depression seems to 
increase the risk of developing Alzheimer’s disease by about two times [29]. 

Data for depression and risk for Alzheimer’s disease is fuzzy in nature with 
some studies in apparent conflict with other studies. There is uncertainty if de-
pression causes an increase in risk for Alzheimer’s disease or if Alzheimer’s dis-
ease leads to depression. The nature of late-onset depression and Alzheimer’s 
disease is especially unclear. The increased association between late-onset de-
pression and Alzheimer’s disease is not considered in the model at this time. 

Early-onset depression, however, appears to increase the risk for Alzheimer’s 
disease. Byers and Yaffe [29] in their discussion of early-onset depression con-
clude that “early-onset of depression is significantly associated with risk of de-
veloping dementia.” They state the following: 

Four of the 5 studies were longitudinal and suggest that early-onset of de-
pression, as well as the duration and frequency of depression, were asso-
ciated with a 2 to 4-fold increased risk of developing dementia…The second 
study demonstrated a strong association between the number of depressive 
episodes (i.e., recurrent depression) and the risk of dementia over a median 
follow-up time of 24 years, suggesting a dose-dependent relationship of 
cumulative depression episodes to the risk of dementia. 
…One cross-sectional (case-control) study suggests that a history of de-
pression even 25 years prior to AD onset is significantly associated with an 
almost 2-fold increase in the likelihood of developing AD… 

To further complicate the modeling of depression effects on the risk of Alz-
heimer’s disease, there is evidence that some antidepressants can reduce the de-
velopment of risk for Alzheimer’s disease [38]. Kessing et al. [38] report a rela-
tive risk of 0.66 for Alzheimer’s disease for older antidepressants compared to 
newer antidepressants. Furthermore, continued use of the older antidepressants 
was implied with two or more prescriptions of older antidepressants being more 
effective than only one prescription. If a person has depression and takes pre-
scriptions of antidepressants until the depression is in remission and then quits 
medication, is the risk for Alzheimer’s disease reduced? If it is reduced, is it be-
cause of treatment? Is it due to the antidepressant or lack of depression for the 
rest of life? Obviously, questions like these complicate the understanding of data. 

In a study at Duke University [47], aerobic exercise as a treatment was com-
pared to a serotonin treatment (selective serotonin reuptake inhibitor, SSRI, ser-
traline [Zoloft]). Both had similar effects with a relatively rapid response to 
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treatment then flattened to a relative slow improvement over a long period of 
time. The aerobic treatment can be modeled with changes in VO2max. They 
measured VO2max before and after the period of study and verified that the exer-
cise increased VO2max. Obviously, the medication did not change VO2max; thus, 
this study implies that the change is related to something affected by both exer-
cise and the medication. 

Exercise and antidepressants both tend to “increase the activity of the 
so-called monoamine neurotransmitters: norepinephrine, dopamine, and sero-
tonin” ([48] pages 115 and 121). It is also generally understood that depression 
often affects sleep resulting in too little or too much with poor sleep efficiency 
and probably reduced slow-wave sleep. For the model development, it was as-
sumed that like aerobic exercise depression and slow-wave sleep are related. A 
slow-wave efficiency factor, d3, was added to the prediction of slow-wave sleep. 
Without depression, the factor has a value of 1.0. With depression, this factor or 
multiplier is less than 1.0 depending on the severity of depression. It was hy-
pothesized that depression may build up from stress in life or reduce in response 
to treatment and reduced stress in life. 

There is evidence, at least in rats, that stress changes neurogenesis in the hip-
pocampus area of the brain [49]. As neurogenesis (gray matter development) 
decreases and oligodendrogenesis (white matter development) increases, an im-
balance in the ratio of gray to white matter occurs, which may explain in part 
how stress increases the risk of depression and the reduced sleep quality that of-
ten develops in parallel with depression. It is common knowledge now from 
various research studies that aerobic exercise in rodents and humans slowly in-
creases neuron regeneration—a counter measure to depression as observed in 
the Blumenthal et al. [47] study. 

Because stress or aerobic exercise can change and be managed over time, the 
depression component or more general emotional stress component of the Alz-
heimer’s disease model was designed to allow a slow recovery when stress is re-
moved or antidepressant management is used. 

A column in Excel was created to input zero for no depression and a number 
between 0 and 4 for each year depressed with 2 as an average degree of depres-
sion. The user inputs (a number between 0.0 and 4.0) are based on the work of 
Byers and Yaffe [29]. The model uses a weighted average between the previous 
depression efficiency factor and the new input to compute a new efficiency fac-
tor. The weighted average essentially provides an exponential decay function to 
reduce slow-wave sleep over time due to depression or a saturating exponential 
to increase efficiency back to 1.0 when treatment is effective. The following equ-
ation is used: 

( )( )3 3 1 1old ES Sd d m C E m= + − −                   (8) 

where d3 = current calibration for slow-wave sleep 
d3old = previous calibration (year before) 
CES = calibration to adjust depression severity to the risk of developing 
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Alzheimer’s disease (0.22) 
ES = new input associated with depression severity (value of number is 

roughly the increase in the risk of developing Alzheimer’s disease 
m = weight for old calibration (0.98) 

The weight value of 0.98 is the same as was used by your author to model the 
change in VO2max over a period of time of active bed rest in a study by Saltin et 
al. [50]. This same value may be a coincidence or both may be related to passive 
changes in metabolism. The value for CES of 0.22 was determined by an input of 
2.0 for ES for each year starting at age 20 going to age 70 and approximately 
doubling the risk for Alzheimer’s disease at age 70. If depression starts later in 
life, there are fewer years (less dose of depression) to increase Alzheimer’s dis-
ease. 

After this rough calibration, the model was run for depression starting at dif-
ferent ages to see the nature of the predicted risk for Alzheimer’s disease. The 
model also was run for depression starting at age 20 and ending at various ages. 
Results are shown in Figure 8. These simulations produced about the same level 
of risk for Alzheimer’s disease in terms of years depressed more or less indepen-
dent of how the depression years occur. The results seem to match the dose sug-
gestion by Byers and Yaffe [29]. Also, the odds value for 20 years of depression 
followed by no depression for the following 30 years compared to 50 years of 
depression is 0.65 compared to the report of 0.66 from Kessing et al. [38]. The 
model has the potential to adjust for successful treatment by turning off or re-
ducing the severity of the depression input. 

It may also be possible to use the emotional stress input to link sexual assault and 
other traumatic experiences to the increased risk of developing Alzheimer’s  

 

 
Figure 8. Illustration of predicted odds of developing Alzheimer’s disease in association 
with years of depression. 
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disease later in life. Thurston et al. [51], have related sexual assault to poor sleep, 
depression, and anxiety. Thurston et al. [52] have also related sexual assault and 
other traumas to white matter hyperintensities among midlife women. These 
white matter hyperintensities that show up on neuroimages are normal in older 
adults, but women who have been traumatized early in life tend to have an in-
creased volume of these white matter spots. Further research is needed to pro-
vide sufficient data to calibrate the emotional input in the Alzheimer’s disease 
model to predict this type of input on the risk of developing Alzheimer’s disease. 

No data were found that directly measured a dose effect of depression on the 
risk of Alzheimer’s disease as shown in Figure 8. Green et al. [15], however, re-
ported data relating the interval between the onset of depression and the onset of 
Alzheimer’s disease. This information was used in conjunction with the simu-
lated data used to prepare Figure 8 to provide a rough verification of the depres-
sion model and calibration used to predict the increased risk of Alzheimer’s dis-
ease. 

The average age of people in their study was 70 years rounded to the nearest 
year. This age matches the 70-year age used to determine the odds of Alzhei-
mer’s disease in Figure 8. Their data are shown in Table 3 along with the pre-
dicted values based on the average of the individual odds associated with each 
row criteria used by Green et al. [15]. A comparison of measured and predicted 
odds is shown in Figure 9. 

An R2 value of 0.70 was obtained by comparing measured and predicted val-
ues. The results were statistically significant (p = 0.05). It appears from these re-
sults that using the input of emotional stress (a number between 0 and 4 for de-
pression) is a reasonable way to model the effects of depression on the develop-
ment of Alzheimer’s disease. 

Green et al. [15] raised the question of how depression causes an increased 
risk for Alzheimer’s disease: “Is there something about depression that is poten-
tially ‘toxic’ to the brain and predisposes to a later vulnerability to AD?” Based 
on the present model, the answer may be as simple as changes in sleep quality. 

 
Table 3. Comparison of measured and predicted odds. 

Interval (yrs) 
Depression 

Years 

Measured 
OR1 

Predicted 
OR (Average 
of Odds on 

Right) 

Depression Years 

10 15 20 25 30 35 40 

Predicted Odds Associated  
with Depression Years 

>5 1.39 1.43 1.10 1.18 1.30 1.42 1.54 1.66 1.78 

>10 1.34 1.48  1.18 1.30 1.42 1.54 1.66 1.78 

>15 1.58 1.54   1.30 1.42 1.54 1.66 1.78 

>20 1.70 1.60    1.42 1.54 1.66 1.78 

>25 1.71 1.66     1.54 1.66 1.78 

1Measured data from Green et al., [15]. 
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Figure 9. Measured and predicted odds as a function of depression years (predicted val-
ues) and interval between depression onset and Alzheimer’s disease onset (measured val-
ues). 

3. Results 

The results comparing estimates from the model to data reported in the litera-
ture were presented as each component of the model was developed. The general 
population result is shown in Figure 2. The model is not independent of this 
data set; however, both the model estimates and this data set are in agreement 
with the risk reported by the Alzheimer’s Association [1]. 

Results for soccer players with CTE are shown in Table 1 and Figure 3. This 
data set compared men soccer players to non soccer players of the same social 
and economic status. The results indicate a linear relationship between odds of 
developing CTE and years played. 

A second data set considering years played for football was also considered. 
This data set did not have a comparison to non-football players of the same so-
cial and economic status. Nevertheless, this data set was used for a relative com-
parison. The first 15 years of playing football followed a linear increase with 
years played. The remaining five years deviated from the pattern of the first 15 
years. The calibration by Mez [35] seemed to be highly influenced by these 
points in log space. The Alzheimer’s Association [1] seems to have used this ca-
libration for their reporting, which seems to be an exaggeration of the real risk. 
The results from the present analysis indicate that playing professional football 
has about 2.3 times higher risk for each year played compared to soccer. 

Finally, the model predicts that untreated depression will increase the risk of 
developing Alzheimer’s disease as a function of dose or years depressed. The age 
at which depression starts does not seem to be a factor other than an early start 
has the potential to increase the number of years depressed. 

https://doi.org/10.4236/jbbs.2022.124008


J. M. Gregory 
 

 

DOI: 10.4236/jbbs.2022.124008 150 Journal of Behavioral and Brain Science 
 

4. Discussion 

A mathematical model was developed to estimate the risk of developing Alzhei-
mer’s disease as a function of age. Predictions from the model matched reported 
risk values published in the literature with an R2 of 0.99, which was highly sig-
nificant (p < 0.001). The model includes a gender factor and a relative fitness 
that adjusts VO2max that in turn is used to adjust the amount of slow-wave sleep. 
Variations in these variables were not tested with Alzheimer’s data. The model 
does predict that the risk of developing Alzheimer’s disease is highest for the 
least aerobically fit (lowest maximum oxygen uptake) people. It also predicts 
that women are at a higher risk of developing Alzheimer’s disease than men. 

Predictions with the current model used a relative fitness average for a per-
son’s lifetime. The model can evaluate the effects of increased or decreased rela-
tive fitness as a person ages using a yearly input of relative fitness. There is much 
potential to use maximum oxygen uptake as a management tool to predict the 
benefits of aerobic exercise to delay or at least slow the progression of Alzhei-
mer’s disease. 

The model is based on the concept that as sleep is reduced with age or lack of 
fitness, the efficiency of the central front lobe in the brain starts to deteriorate as 
amyloid β begins to build up in this part of the brain. As this part of the brain 
becomes less efficient, slow-wave sleep is reduced and the time used to wash 
away waste products is reduced leaving more waste material, such as amyloid β 
deposited in the brain. This process cycles each day slowly leading to the devel-
opment of Alzheimer’s disease. 

There is now growing evidence [43] that genetics through APOE alleles affect 
the generation of amyloid β. If genetics affect the generation of amyloid β, then 
it is logical that genetics affect the calibration of β0/βR. 

The generation of amyloid β goes up as cholesterol goes up. While it may be 
possible to reduce the generation of amyloid β by reducing cholesterol, the brain 
needs some cholesterol for other functions. Thus, the goal should be to control 
but not eliminate cholesterol. It may be possible to adjust the model for choles-
terol management through β0/βR. We can think of β0/βR as the risk associated 
with the generation of amyloid β when there is no flushing. It is the potential for 
developing Alzheimer’s disease. Anything that affects the metabolism of brain 
cells probably affects the calibration value for β0/βR. 

In fact, epidemiological studies have shown a strong decrease in the incidence 
of Alzheimer’s disease when patients are treated with statins, such as simvastatin 
and lovastatin [53] [54] [55]. Fassbender et al. [53] provided controlled research 
with guinea pigs that support the epidemiological findings. Guinea pigs treated 
with high levels of simvastatin had a major reduction of cerebral amyloid β levels 
in their cerebrospinal fluid. 

Values for coefficients A1 and β0/βR were calibrated to optimize the fit to pub-
lished Alzheimer’s risk data. In addition to providing the proper limits or boun-
dary conditions, Equation (5) with the two coefficients, A1 and β0/βR, can be used 
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to consider other variables. It is now evident that the production rate of amyloid 
β occurring at the cellular level is a function of cholesterol level in brain cells 
[43] [54]. Various satins lower cholesterol in the blood and the cerebrospinal 
fluid [43] [53]. In general, treatment with satins lowers the risk of the develop-
ment of Alzheimer’s disease by 60 to 70 percent [54]. It should be possible to ca-
librate β0/βR as a function of cholesterol management. 

Because the process of generating amyloid β as a function of cholesterol in-
volves APOE alleles, it also appears that the β0/βR coefficient may be a good place 
to calibrate the Alzheimer’s model to include the effects of genetics (APOE4: 0, 
1, or 2 alleles). Table 4 provides values for β0/βR based on some of the odds re-
ported in the literature. 

It has been observed that people with higher levels of education and who use 
their brains in work have less risk of developing Alzheimer’s disease [56]. Some-
times this effect is referred to as cognitive reserve [1]. People who are engaged 
mentally in education and work may have a higher number of brain cells of var-
ious kinds with less production of amyloid β than those who coast through life 
without mental challenges. The coefficient, β0/βR, in Table 4 was computed us-
ing the model and adjusting the β0/βR value to obtain the odds value reported in 
the associated reference. Age 70 years was used for this analysis. It is uncertain, 
however, which of the two coefficients, A1 or β0/βR, should be used to consider 
cognitive reserve. 

As stated in the introduction to this article, the development of Alzheimer’s 
disease is complex and seems to be related to various causes. For example, Hus-
sein [26] provides a strong argument that inflammation may be a major factor in 
the development of Alzheimer’s disease. If inflammation is a factor in brain 
health, then it may be possible to consider this variable through the If variable in 
Equation 11. An acute attack would be considered in terms of the years affected  

 
Table 4. Values of β/βR to adjust the calibration of the Alzheimer’s disease model for a 
few additional variables. 

Odds β0/βR Variable Reference 

0.35 0.0135 Satin medication Wolozin et al. [54] 

0.63 0.0235 CR - high Dekhtyar et al. [56] 

1.00 0.0350 CR - moderate Dekhtyar et al. [56] 

1.34 0.0460 CR - low Dekhtyar et al. [56] 

0.80 0.0290 APOE4 - high CR Dekhtyar et al. [56] 

1.77 0.0590 APOE4 - moderate CR Dekhtyar et al. [56] 

2.85 0.0880 APOE4 - low CR Dekhtyar et al. [56] 

3.0 0.0915 APOE4 2021 Alzheimer’s Disease [1] 

10 0.2130 2 APOE4 2021 Alzheimer’s Disease [1] 

CR = cognitive reserve (years of education and use of brain in work). 
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starting at the age when the inflammation began. 
An example of a possible dose evident association between inflammation and 

Alzheimer’s disease was tested with data from Gofrit et al. [24]. They report in 
their Table 1 a mean age for patients diagnosed with bladder cancer and given 
BCG as a treatment at 67.5 years. The mean age diagnosed and not given BCG 
was 69.0 years. They also report the mean age at follow-up who received BCG as 
78.7 years. For the non BCG treatment, the mean age at follow-up was 75.9 
years. Based on this information, the Alzheimer’s model was run and the pre-
dicted data were analyzed from 68 to 76 years. Subtracting the Alzheimer’s dis-
ease prediction for 68 years from the 76-year prediction yielded an increase of 
2.3 percent. The simulation was run for men (gender factor of 10.5). Gufrit et al. 
[24] report an increase for the treated men group of 2.47 percent. The fact that 
the group treated with BCG closely matches the percentage of 2.3 from the si-
mulation provides evidence that BCG may have removed the inflammation 
threat. 

The model was run again with injury input in units of years affected starting 
at age 68 and ending at age 76 years. The input was varied until a match to the 
reported 9.16 percent increase was obtained. An input of 5.2 for h in Equation 7 
from ages 68 to 76 produced an increase of 9.2 percent. These results do not 
prove that an inflammation effect on Alzheimer’s disease is a dose response 
process, but they provide evidence that the process is feasible—even likely. The 
model provides a new way to look at the process of how infections and inflam-
mation may influence the development of Alzheimer’s disease. 

A derivation was provided in Appendix C that relates Fe to the fraction of 
brains cells that function after damage from impacts to the head, such as playing 
soccer or football. This equation was calibrated using data provided by Russell et 
al. [46]. Predictions matched measured risk values with an R2 of 0.80, which was 
significant (p = 0.5). A second data set [35] was also used to relate the model to 
the risk of playing football. Predictions for the first 15 years of playing football 
matched the relative risk of CTE for football players with and R2 of 0.97, which 
was also significant (p < 0.001). The variable h was used to adjust for different 
levels of injury. 

While the calibration of the CTE component of the model for football is not 
considered precise, the results seem reasonable. More importantly, the model 
provides a mathematical framework to explain how both Alzheimer’s disease 
and CTE develop. The model is robust with stable boundaries of probability be-
tween 0 and 1. 

It may be possible to relate other brain injury types, such as brain trauma or 
exposure to pressure waves that pass through the brain to the calibration years 
affected. The current model is not designed to predict immediate damage from 
these events, but it may provide a process to predict the long-term effects after 
injury. 

Finally, this model describes the process that relates to both the development 
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of Alzheimer’s disease and CTE. Both developments seem to be related to 
slow-wave sleep. Both develop after a period of time. Alzheimer’s disease alone 
seems to start with the buildup of amyloid β. Other factors, such as inflamma-
tion, genetics, or mental stress may also initiate or at least accelerate the process. 
CTE seems to be associated more with the buildup of tau tangles. While the 
process for CTE may start from the mechanical or physical stress on brain cells, 
the development over time appears to be related to the reduced efficiency of the 
flushing system. This current work only describes the development after the 
process starts. Equation 3 was not used in the current model for estimating the 
risk of developing Alzheimer’s disease or CTE. The equation contains the same 
flushing function as used in Equation (5). The τ0 variable is probably a function 
of the damage that occurs to glial and other cells in the flushing system. This 
would explain why CTE seems to be associated with tau tangles more than amy-
loid β. Alzheimer’s disease plus additional secondary damage from tau tangles 
seems to be a reasonable description of CTE patients. 

5. Conclusion 

The development of this article focused on slow-wave sleep. This article and Ex-
cel model only evaluated the system for average conditions of fitness and the 
natural decline of slow-wave sleep with age and the development of Alzheimer’s 
disease and CTE. It is an easy step to expand the model to reduce slow-wave 
sleep for other reasons, such as restricting sleep due to work pressure or reduc-
ing sleep quality due to night work or variations in the circadian cycle. An ob-
vious and major factor that reduces slow-wave sleep is sleep apnea. A model that 
considers both sleep and other factors that affect brain health should be a valua-
ble tool to better understand and to some degree slow the development of Alz-
heimer’s disease and CTE. 
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Appendix A. Equation to Estimate Waste Accumulation in 
Brain after One Night of Sleep 

Cleaning or flushing processes generally can be described as a first-order diffe-
rential equation that produces an exponential decay equation when integrated 
over a time variable. The flushing of waste from the brain primarily occurs dur-
ing a slow-wave sleep cycle. The time variable for a night of sleep is the total 
time of slow-wave sleep. The equation can be derived starting with the following 
differential equation: 

1
d
d e

W

W A F W
S

= −                        (A1) 

where W = waste products remaining in the brain 
A1 = calibration coefficient 
Fe = flushing system efficiency 
SW = time in slow-wave sleep during a night of sleep 

Next, we can separate variables: 

1
d de W

W A F S
W

= −                       (A2) 

Integration from the beginning (W0 = production of waste) to ending limits 
can be used to eliminate the differential variables: 

0

1
0

d d
WFF SW

e W
W

W A F S
W

= −∫ ∫                     (A3) 

Integration yields the following: 

0 1ln lnF e WFW W A F S− = −                    (A4) 

Rearrangement results in 

1
0

ln F
e WF

W A F S
W

= −                       (A5) 

Taking the exponential of both sides results in 

1

0

e e WFA F SFW
W

−=                        (A6) 

Rearrangement yields an equation to estimate the daily amount of waste re-
maining in the brain after sleep is completed: 

1
0e e WFA F S

FW W −=                       (A7) 

Appendix B. Slow-Wave Sleep Model 

Sleep is a cyclic process starting with stage 1, a transition from awake to sleep. 
Stage 2 occurs next. During stage 2, communication occurs between the hippo-
campus (the part of the brain that processes and stores short-term memory) and 
the front center lobe of the brain that provides long-term memory. The trivial 
unimportant memory information is discarded and the perceived important in-
formation is transferred especially during sleep spindles and slow waves ([2] 
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pages 110-114). Stages 3 and 4 are slow waves (brain waves) relative to the other 
sleep stages. Stage 4 has more amplitude in the wave than stage 3. The final type 
of wave during sleep is REM (Rapid Eye Movement) where the brain is active, 
often dreaming, and has a similar wave form as awake. In a young adult, a cycle 
typical starts with stage 1, then stage 2, then stage 3, followed by stage 4, then 
back to stage 2 followed by REM. A cycle takes about 90 minutes. A total of 
about five cycles typically occurs for a total sleep time of about 450 minutes plus 
a few minutes of time-awake disruptions. A typical young adult needs about 
eight hours of sleep—more if they are physically active. In older adults, 
time-awake increases as much as 90 minutes, reducing actual sleep to 6.5 hours 
or less per night. 

Total time in slow-wave sleep is of interest in this Alzheimer’s disease risk 
model because of the linkage between slow-wave sleep and the flushing of waste 
materials from the brain. Gregory [57] developed an equation that predicts the 
increase in slow-wave sleep total as sleep progresses. The equation is 

( )21

2

1 e Td N
WT

dS
d

−= −                      (B1) 

where SWT = total time of slow-wave sleep 
d1 = variable that is a function of maximum oxygen uptake (VO2max) 
d2 = decay rate (1.1) 
NT = number of cycles completed 

Maximum oxygen uptake, VO2max, which will be associated with slow-wave 
sleep, decreases as a linear function of age as follows: 

2maxVO 107.4 RF 1
120

A G = − + 
 

                (B2) 

where VO2max = maximum oxygen uptake (ml∙kg−1∙min−1) 
RF = relative fitness (fraction of upper limit) 

• (1.00) upper limit, Olympic class skier or runner 
• (0.82) approximate upper limit for endurance trained 
• (0.67) endurance trained 
• (0.50) active (upper boundary for sedentary) 
• (0.45) estimate for control or average population (1/4 endurance trained & 

3/4 sedentary) 
• (0.38) sedentary 
• (0.22) approximate lower limit for sedentary 
• (0.00) non active bed rest 
• A = age (years) 
• G = gender coefficient (males: 10.5; females: 3.5) ml∙kg−1∙min−1 

This equation describes the effect of age for both males and females through 
the gender factor. The slope is the same for both males and females at the same 
relatively fitness. Predictions from Equation (B2) matched the measured values 
for women [58] with an R2 = 0.85 and for men [59] with an R2 = 0.75. Both re-
sults were highly significant using t distribution to predict the probability of type 
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I error (p < 0.001). The various relative fitness descriptions and values are based 
on these two data sets comparing the measured fitness of runners to sedentary 
people. 

Next, data for slow-wave sleep and age were obtained from the literature as 
shown in Table B1. A value of 1.1 was used for d2 in Equation (B1). Assuming a 
90-minute average cycle, the number of cycles was estimated from the measured 
sleep time. A value for d1 was obtained and listed in Table 1 as a measured value. 
Values for VO2max were estimated using a relative fitness (RF) of 0.45 for average 
fitness. These values are listed in Table B1. The following equation was devel-
oped to predict d1: 

( )1 3
2max

0.0000168
VO

d =                        (B3) 

This equation predicted d1 with an R2 equal to 0.84. This result was highly sig-
nificant (p < 0.001). Predicted values are shown in Table B1. The relationship is 
shown in Figure B1. 

While the calibration of Equation (B3) was based on a relative fitness of 0.45, 
the curves generated for sedentary (RF = 0.38) and active (RF = 0.50) seem to  

 
Table B1. References and measurements for slow-wave sleep. 

Source 
Age 

(years) 
Slow Wave 

(hours) 
VO2max 

ml.kg−1.min−1 
d1 

Measured 
d1 

Predicted 

Coble [60] 7.4 2.17 52.35 2.40 2.41 

Coble [60] 9.4 1.87 51.54 2.10 2.30 

Coble [60] 11.4 1.63 50.74 1.80 2.19 

Coble [60] 13.0 1.57 50.09 1.70 2.11 

Coble [60] 14.8 1.25 49.37 1.40 2.02 

Gaillard [61] 20.0 2.22 47.28 2.40 1.78 

Hayashi and Endo [62] 20.9 1.33 46.91 1.63 1.73 

Gaillard [61] 23.0 1.78 46.07 2.00 1.64 

Gaillard [61] 26.0 1.27 44.86 1.40 1.52 

Gaillard [61] 29.0 1.38 43.65 1.50 1.40 

Banks [63] 30.4 1.33 43.09 1.37 1.34 

Gaillard [61] 44.0 0.97 37.61 1.10 0.89 

Reynolds [64] 64.6 0.28 29.31 0.30 0.42 

Reynolds [64] 65.2 0.05 29.07 0.05 0.41 

Reynolds [65] 70.1 0.52 27.10 0.58 0.33 

Reynolds [64] 73.5 0.05 25.73 0.05 1.29 

Reynolds [64] 73.8 0.11 25.61 0.13 0.28 

Hayashi and Endo [62] 82.1 0.25 22.26 0.27 0.19 
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Figure B1. Relationship between slow-wave sleep coefficient, age, and relative fitness. 
Data from Table B1. 

 
be reasonable boundaries for most of the measured data points. Equation (B3) 
coupled with Equations (B1) and (B2) provide a way to consider lifestyle effects 
on slow-wave sleep. 

To use Equation (B1), we also need an estimate of the number of cycles used 
for sleep. Total sleep time with the assumption of 90-minute cycles or measured 
cycle number when reported was used with the sleep data sources listed in Table 
B1 to develop the following equation for cycle number as a function of age: 

5.26 0.0212TN A= −                       (B4) 

This linear function from ages 7 to 80 years of age fit the cycle number data 
well (R2 = 0.85; p < 0.001). 

Appendix C. Estimating Flushing Efficiency 

It is assumed that flushing efficiency depends on the health of the glymphatic 
system including glial cells that are part of the flushing system. The change in 
the number of cells damaged per change in impact from stressors should be a 
direct function of the total number of undamaged cells available to be damaged: 

( )d
d T
C k C C
i
= −                        (C1) 

where C = number of cells damaged 
i = unit impact of external stressor 
k = calibration coefficient 
CT = initial total number of undamaged cells 

We can now separate variables to prepare for integration to eliminate the dif-
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ferentials: 

d d
T

C k i
C C

=
−

                        (C2) 

To prepare for integration, let X = CT − C. The differential dX = −dC. Next, 
we multiply both sides of the equation by −1 to make dX = −dC, then integrate: 

0 0

d d
T f f

T

C C I

C

X k i
X

−

−

= −∫ ∫                       (C3) 

where Cf = final number of cells damaged 
If = total stressor input 

The results after integration are 

ln
0

T f
f

T

C C
kI

C
− 

= − − 
                     (C4) 

We can now take the exponential of both sides to obtain 

e fkIT f

T

C C
C

−−
=                        (C5) 

The number of the undamaged cells over the initial number of cells should be 
a reasonable estimate of the efficiency of the system controlled by these cells. 
Thus, the flushing efficiency, Fe becomes 

( )1 e fkI
e TF R −= −                       (C6) 

where 1 − RT = the efficiency based on build-up of waste materials in the brain, 
especially in the front center lobe of the brain that regulates slow-wave sleep 

e fkI−  = the efficiency based on the health of brain cells after injury 
In other words, the flushing efficiency, Fe, is assumed to be the product of two 

efficiencies: efficiency considering the buildup of toxic waste in the brain and the 
efficiency of the brain cells (damage or inclusion of tau tangles in neurons and 
glial cells and damage to the vascular system that provides nutrients to the cells). 
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