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Abstract 
The identification of objects in binary images is a fundamental task in image 
analysis and pattern recognition tasks. The Euler number of a binary image is 
an important topological measure which is used as a feature in image analy-
sis. In this paper, a very fast algorithm for the detection and localization of 
the objects and the computation of the Euler number of a binary image is 
proposed. The proposed algorithm operates in one scan of the image and is 
based on the Image Block Representation (IBR) scheme. The proposed algo-
rithm is more efficient than conventional pixel based algorithms in terms of 
execution speed and representation of the extracted information. 
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1. Introduction 

In our days, vast amounts of image and video data are generated, transmitted 
and analyzed, thus the development of fast algorithms able to achieve high 
processing rates is of great importance for many applications.  

Binary images are suitable for a number of image analyses, pattern recogni-
tion, document processing, robot vision, and image based industrial applica-
tions, especially when the shape of the objects is important and the segmentation 
from the background is simple and without uncertainty. Object detection and 
localization are fundamental tasks in various applications. The Euler number E 
of a binary image is an important topological property that remains invariant 
under certain image rubber-sheet transformations, such as stretching and under 
scaling, rotation, or translation [1]. It is defined as the difference between the 
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number of connected object components C and the number of holes H of the 
binary image, E = C − H. It has been used in various image processing and anal-
ysis applications such as medical image diagnosis [2], image database retrieval 
[3], and robot vision. Since C is the number of objects, the operations of object 
detection and Euler number computation are closely related. 

Algorithms for object detection were developed 50 years ago [4]. Due to their 
mode of operation, they are called Connected Components Labeling (CCL). In 
recent years, new improved CCL algorithms with reduced complexity have been 
presented [5] [6] [7]. 

The CCL operation assigns a unique label to the pixels of each connected 
component of the image. Each connected component is a different object. After 
the labeling operation, the separation of objects from the image is feasible. As a 
result, the output of any CCL algorithm is an array of pixel labels, where each 
label corresponds to a different object in the image. Subsequently, the feature 
extraction and object classification tasks can be performed using the above labe-
ling. Therefore, CCL is a significant operation in binary image analysis, pattern 
recognition, object tracking [8], and computer vision in general.  

For the calculation of the connected components labeling, two kinds of algo-
rithms have been presented. The first one is the label equivalence-based algo-
rithms, which process the image with raster scans. A provisional label is assigned 
to each foreground pixel in the first scan, while the resulting label equivalences 
are resolved in the subsequent scans [9] [10] [11]. The second kind is the label 
propagation algorithms which scan the image, locate a foreground pixel, assign 
to it a new label and then assign this label to its connected foreground pixels 
[12]. 

A number of different approaches have been proposed for the calculation of 
the Euler number on binary images. Dyer [13] and Samet and Tamminen [14] 
proposed an algorithm based on the quadtree representation of images. Chen 
and Yen presented a parallel algorithm using graphs of the image [15]. 
Díaz-De-León et al. presented an algorithm using the skeleton of the image [16]. 
Zenzo et al. presented a run-based algorithm using the number of runs and 
8-neighbor runs in the image [17]. Also, there are algorithms based on 2 × 2 pix-
el patterns called bit-quads in the image [6] [18]. Parallel implementation on a 
multicore computer for the computation of CCL [19] and a VLSI implementa-
tion [20] were also proposed. 

Recently, He et al. proposed the GLC algorithm for integrating connected 
components labeling and Euler number computation [7]. In the GLC algorithm, 
a binary image is converted into a graph G, and using Euler’s theorem [21], the 
Euler number can be calculated according to the numbers of vertices, edges, and 
faces. The advantage of the above GLC algorithms is that they use 16 possible 
patterns of the connected-component labeling masks, but they take into account 
only the four of them. So they achieve bigger acceleration than the previous al-
gorithms CHE [22] and ML [6], which were also proposed previously by He et al. 
All of these algorithms compute the Euler number and the connected component 
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labeling in one scan, simultaneously. 
He et al. relied on Chen’s and Yan’s algorithm [15] to implement a new algo-

rithm to calculate the Euler number [6]. More specifically, they transform a bi-
nary image into a square graph G, where the 8-connectivity of the neighboring 
pixels is utilized. Each foreground pixel in the image is considered as a vertex in 
the graph and an edge is added if pixels p and q are 8-neighbors. Suppose v, e, r, 
and c are the numbers of vertices, edges, squares, and connected components in 
G, respectively.  

According to Euler’s theorem [21], v − e + r = c + 1, where squares include 
holes, basic faces, and an infinite square outside of G. Also h and s are respec-
tively the numbers of holes and basic faces in graph G. Then, r = h + s + 1. Thus, 
the Euler number E of G can be represented as: 

E = c − h = v − e + s                  (1) 

The faces are the basic right angle triangles, each of which consists of two 
right-angle sides of length one, as shown in Figure 1(a) and Figure 1(b). 

The Euler number can be calculated by counting the numbers of vertices, fac-
es, and edges by adding pixels one-by-one in the raster scan. For each pixel being 
added, the increments of the numbers of vertices, edges, and faces generated by 
adding this pixel are calculated. If the pixel is a background pixel, no new vertex, 
edge, or face is generated, and thus nothing needs to be done. Otherwise, the 
pixel is a foreground pixel and the number of vertices should be increased by 
one. Due to the fact that it is not convenient to compute the Euler number by 
directly counting the numbers of vertices, edges, and faces generated by adding a 
foreground pixel one-by-one [9], He et al proposed the usage of the Dv, De, and 
Ds, which are the increments in the numbers of vertices, edges, and faces, re-
spectively, when the current foreground pixel is added. Thus, the corresponding 
change in the Euler number DE can be calculated as 

DE = Dv – De + Ds                     (2) 

These increments can be calculated by using the mask patterns of Figure 2. In 
fact, the Euler number can be calculated by using the patterns of the masks of 
Figure 2. So, by using the connected component labeling the Euler number can 
be calculated as: 

E = w – k                         (3) 

where w is the number of provisional labels, such as the number of pattern P1 
occurrences from Figure 2, and k is the number of label equivalence resolutions, 
that is the total number of occurrences of patterns P10-P12 from Figure 2. The 
label equivalences, the Euler number and the connected components labeling 
can be calculated by the HCS algorithm, proposed by He et al. [9]. This algo-
rithm is referred to as GLC. He et al. also proposed the calculation of the Euler 
number only, from the DE of the mask patterns in Figure 2. 

In short, the GLC algorithm operates in one image scan considering only the 
foreground pixels and is the fastest pixel based CCL and Euler number algo-
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rithm to date. The execution of the GLC algorithm requires the checking of four 
neighboring previous pixels of the current foreground pixel. 

 

 
Figure 1. (a) Binary image and (b) the graph of this image. 

 

 

Figure 2. The mask patterns for the execution of the GLC algorithm. 
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In this paper, a very fast algorithm for the detection of objects and the com-
putation of Euler number in one scan of the image is presented. This algorithm 
is called Euler number in Block Represented Images (EBRI) and is based on Im-
age Block Representation (IBR) [23], which represents the binary image as a set 
of non-overlapping rectangular areas with foreground pixels. Each foreground 
pixel belongs to one block, and the IBR is an information lossless representation 
equivalent to the 2D array image representation. The presented EBRI algorithm 
is faster than any CCL algorithm. However, the greater benefit of the EBRI algo-
rithm is that it provides, in one scan, improved machine perception of the binary 
image. Any object of the image is represented as a list of coordinates, thus all the 
information concerning the object and its location is directly provided to the 
machine. In contrast, the CCL algorithms require additional image scans, in or-
der to separate the objects according to their labels. 

The rest of the paper is organized as follows. In Section 2 the EBRI algorithm 
is introduced and analyzed. Experimental results and comparisons are given in 
Section 3, while conclusions are given in Section 4. 

2. The EBRI Algorithm 

The proposed EBRI algorithm consists of a number of discrete tasks, which are 
implemented concurrently. These steps are 1) the Block Representation of the 
binary image, 2) the extraction of connectivity among the blocks, 3) the objects 
detection and representation using blocks’ coordinates, and 4) the holes detec-
tion and Euler number calculation. The first step of block representation is the 
only step that involves pixel checking, and all the subsequent steps work directly 
on the derived blocks.  

In order to clarify the algorithm, these tasks are initially presented separately 
and the combined algorithm follows. 

2.1. Image Block Representation 

In a binary image, the foreground pixels are represented by a set of non-overlapping 
rectangles with edges parallel to the axes, in such a way that every object’s pixel 
belongs to only one rectangle. These rectangles are called blocks and this repre-
sentation is called Image Block Representation (IBR) [23] and is an information 
lossless representation of the image.  

A binary image is called block represented, if it is represented by a set of 
blocks with object level, and if each pixel of the image with object value belongs 
to one and only one block.  

A block represented image is denoted as the set of the blocks, where each 
block is described by four integers, the coordinates of the upper left and down 
right corner in vertical and horizontal axes as shown in Figure 3(a). In Figure 
3(b) the blocks that represent the image of character d, as extracted when using 
Algorithm 1, are illustrated. A block represented image is denoted as: 

( ) { }, : 0,1, , 1i nof x y b i b= = −

                 (3) 
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(a)                     (b) 

Figure 3. (a) A block b. (b) Image of the character d and the derived blocks. 
 

where bno is the number of the blocks. 
The IBR process requires one image scan and simple pixel checking opera-

tions; Algorithm 1 implements the IBR. 
 

Algorithm 1. Image block representation. 

1 

2 

3 

4 

5 

For each row y of the image f 

Find object level intervals in row y 

Compare intervals of row y with blocks of row y-1 

If an interval matches with a block, the end of the block is in row y 

If an interval does not match with any block, create a new block 

2.2. Connectivity of the Blocks 

In correspondence with the 4 and D pixel connectivity, the following definitions 
clarify block connectivity schemes. 

Definition 1. Two blocks are 4-connected, if there exists a pair of 4-connected 
pixels, one from each block. 

Definition 2. Two blocks are D-connected, if they are not 4-connected and 
exist a pair of D-connected pixels one from each block. 

The connectivity among the image blocks may be determined during the im-
age block representation process, or directly on a given block represented image, 
using the following criteria [24]: 

Lemma 1. Two blocks are 4-connected if their projections on one of the x or y 
axes are overlapped and their projections on the other axis are neighbors. 

Lemma 2: Two blocks are D-connected if their projections on both axes are 
neighbors. 

Each block b is stored as the structure 

b = {y1, x1, y2, x2, nc, c[]}                 (5) 

where y1, x1, y2, x2 the coordinates of the upper left and lower right angular 
points, nc the number of the connected blocks and c[] the list with their indices. 

2.3. Object Detection 

The connectivity information of each block allows the creation of lists of con-

x

y

x b1, x b2,

y b2,

y b1,

b
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nected blocks that form the objects. A suitable data structure for storing the m 
objects is the vector o[], where each object oi, i = 0, 1, …, m − 1 is the data 
structure 

oi = {bidi[], nbi}                        (6) 

where the vector bidi[] that belongs to the object structure, holds the indices of 
the blocks that constitute the i-th object oi, while nbi is the number of the blocks 
that form oi. 

In order to extract the objects, the following procedure is used. All blocks of 
the binary image are examined; if the examined block (current block) has not 
been assigned to an object, a new object is created and the current block is as-
signed to the new object (current object). For the current block, every single 
neighboring block is being processed. If a neighbor is not assigned to an object, 
then it is assigned to the current object. Otherwise, if the neighbor is already as-
signed to a different object, a conflict between the two objects occurs and has to 
be resolved. The algorithm that resolves the label equivalences and presented by 
He et al. [9] is used to handle this object equivalence similar situation. Algo-
rithm 2 implements the extraction of objects using the block and the connec-
tions among the blocks as presented above. 

 
Algorithm 2. Object extraction. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

ono ← 0 
i ← 0 
while (i<bno) // for all blocks 
 if (oid[i] == -1)  
 // i-th block has not assigned to an object yet  
  oid[i] ← ono 
  o[ono].bid[0] ← i 
  o[ono].nb ← o[ono].nb+1 
  ono ← 1 
 endif 
 else if 
  m ← oid[i] // it has assigned to an object, save the object id 
 endif 
 k ← 0 
 while(k<b[i].nc)  //for all the current block's neighbors 
  neighbor ← b[i].c[k] 

if (oid[neighbor] == -1) // neighbor not assigned to any object  
   AddNeighborToObject(i,neighbor) 
  endif 
  else if 
   n ← oid[neighbor] 
   ObjectEquivalenceResolve (m,n) 
  endif 
  k ← k+1 
 endwhile 
 i ← i+1 
endwhile 
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The auxiliary vector oid[] holds the object index for each block, i.e. oid[k] is 
the object id in which the k-th block belongs. The function AddNeighborToOb-
ject(), assigns the neighbor block to the object of the current block and is given 
in Algorithm 3.  

 
Algorithm 3. Function AddNeighborToObject. 

1 
2 
3 
4 
5 
6 

function AddNeighborToObject (current, neighbor) 
 k ← oid[current] 
 o[k].b[o[k].bno] ← neighbor 
 o[k].bno ← o[k].bno + 1 
 oid[neighbor] ← k 
end function 

 
In the case of the equivalence between two objects, the lists of the blocks that 

make up the two involved objects, are merged into one list, as the two objects 
become one. The ObjectEquivalenceResolve() function is responsible for solving 
the object equivalence situation and is presented in Algorithm 4. The m and n 
are the representative objects for each object and u and v are the conflicting ob-
jects whose equivalence should be resolved. 

 
Algorithm 4. Function ObjectEquivalenceResolve. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

function ObjectEquivalenceResolve (u,v) 
m←rep_object[u] 
n←rep_object[v] 
if(m<n) 

equiv_listm← equiv_listm∪equiv_listn 
while(object_label_W∈equiv_listn) 

rep_object[object_label_W] ←m 
object_label_W ←object_label_W+1 

end while 
end if 
else if(m>n) 

equiv_listn← equiv_listn∪equiv_listm 
while(object_label_W∈equiv_listm) 

rep_object[object_label_W] ←n 
object_label_W ←object_label_W+1 

end while 
end if 

end function 

 
The vector rep_object[] stores the representative object for each object. The 

2-D array equiv_listn is the equivalence list of the object n and contains all the 
previous equivalent objects in relation to it. 

Considering the application of Algorithm 2 on the image of Figure 4(a), the 
extracted objects are o0 = {[0, 2], 2}, o1 = {[1, 3, 4], 3}. In the example of the Fig-
ure 4(b) image, two objects o0 = {[0, 2, 3], 3}, o1 = {[1, 4, 5], 3} are initially ex-
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tracted. In the examination of the block b3 the two north neighbor blocks b2, b1 
belonging to different objects o0, o1 are detected, and the execution of function 
ObjectEquivalenceResolve() sets the equivalence 0 1o o≡  and the blocks of o1 
are merged with the blocks of o0. Thus, only one object is extracted from the 
image, that is the object o0 = {[0, 2, 3, 1, 4, 5], 6}. 

A significant feature of the proposed algorithm is that it directly provides the 
information for the localization of each extracted object using the coordinates of 
its blocks. 

2.4. Hole Detection and Euler Number 

Based on the previous approach for the extraction of the objects, a hole is de-
tected when there is a block with two north neighbor blocks that belong to the 
same or equivalent objects. If the two objects already have the same representa-
tive object, it means that the left and right sides belong to the same object, as the 
top side is common.  

In Figure 5 two examples of hole detection are demonstrated. In Figure 5(a) 
all the extracted blocks are assigned to the same object o0. Therefore in the ex-
amination of block b4, the two north neighbor blocks b3, b5 belong to the same 
object and a hole is detected. 

 

  

(a)                            (b) 

Figure 4. Two examples of the Object Extraction task.  
 

  

(a)                            (b) 

Figure 5. Two examples of hole detection. (a) The hole is detected during 
the examination of block b4. (b) The first and second holes are detected 
during the examination of block b5, while the third hole is detected during 
the examination of block b8.  
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In Figure 5(b), in the examination of block b5, the north neighbors b1, b2 be-
long to different objects that are not equivalent yet, thus no hole is detected; in-
stead, the function ObjectEquivalenceResolve() is called and sets the equivalence 
of objects o0, o1. Also in the examination of b5, the north neighbors b2, b3, b4 be-
long to the same object, and the two holes are detected. In the examination of 
block b8 the north neighbors b6, b7 belong to the same object and the third hole 
of the object is detected. 

As the number of Objects C and the number of Holes H of a binary image are 
known, the Euler number can be found as E = C − H. 

2.5. The Proposed One Scan EBRI Algorithm 

The proposed algorithm’s goal is to calculate simultaneously in one image scan 
the blocks and their location coordinates, the number of the Objects and their 
location coordinates, the number of holes and the Euler number. The combina-
tion of the steps described in the previous subsections constitutes the proposed 
EBRI Algorithm. The proposed algorithm scans each pixel of the binary image 
and searches for object level intervals in the image rows. When an interval is 
found, then the interval is assigned to an existing block or a new block is created; 
in the case of a new block, the block connectivity, object assignment and hole 
detection tasks are executed, as presented in Algorithm 5. 
 
Algorithm 5. EBRI. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

kp← 0 //number of blocks on previous image row 
bno← 0 //number of the extracted blocks 
ono← 0 //number of the extracted objects 
while(y<L) 

kc← 0 //number of blocks on current row 
intervalfound←0  
j_curr← 0 //currently examined block of previous row  
x←0 
while(x<W) 

try2match←0 
if(img(y,x) AND intervalfound=0) // block’s x1 coordinate 

intervalfound←1; x1←x 
end if 
if (img(y,x)=0 AND intervalfound=1)  

intervalfound←0; x2←x-1; try2match←1 
end if 
if (x=W-1 AND img(y,x) AND intervalfound=1) // row end 

x2←x; try2match←1 
end if 
if (try2match=1) //match interval with blocks of previous row 

intervalmatched←0 
j_last ←j_curr // last examined block of the previous line  
j←j_last  
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

while (j<kp AND x1>=b[p[j]].x1) 
j_curr ← j 
if (x1==b[p[j]].x1 AND x2==b[p[j]].x2) 
// interval matched with block from previous row 

c[kc] ←p[j]; b[p[j]].y2←y; intervalmatched←1 
end if 
j←j+1 

end while 
if (intervalmatched=0)  

NewBlock(bno, x1, x2, y) //creation of block bno 
j_last = j_curr; ii←j_last 
while (ii<kp AND x2>=b[p[ii]].x1-1)  

j_curr←ii 
// connectivity check with the block of previous row 
if((b[bno].x1<=b[p[ii]].x2+1) AND (b[bno].x2>=b[p[ii]].x1-1))  

ConnectivityRegistration(bno, p[ii])  
if (oid[bno] <0)  // block has no object 

oid[bno] ← oid[p[ii]] // of left northern neighbor  
BlockToObjectRegistration (oid[bno], p[ii]) 
//add block p[ii] into blocks that make  
//up the object with tag bno (oid[bno]) 

end if 
else // resolve the equivalence 

ObjectEquivalenceResolve(oid[bno], oid[p[ii])  
end if 

end if 
ii←ii+1 

end while 
if (oid[bno] <0) // create new object 

oid[bno]  ← ono+1 
BlockToObjectRegistration (oid[bno], b[p[ii]]) 

end if 
c[kc] ← bno+1  

end if 
kc ← kc+1 

end if 
x←x+1 

end while 
p←c ; kp←kc 
y←y+1 

end while  
 

The function NewBlock() creates a new block and is presented in Algorithm 
6. Algorithm 7 presents the function ConnectivityRegistration (u, v) which reg-
isters the connectivity of the blocks b[u] and b[v]. The function BlockToObjec-
tRegistration (u, v) performs the registration of the v-th block b[v] in the list of 
the blocks that constitute the u-th object o[u] and is presented in Algorithm 8. 
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Algorithm 6. Function NewBlock. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

function NewBlock(v, x1, x2, y)  

//creates the v-th block with coordinates x1, x2, y, y 

oid[v] ← -1 //not associated with an object yet 

b[v].x1← x1 

b[v].x2← x2 

b[v].y1← y 

b[v].y2← y 

b[v].nc← 0 

end function 

 
Algorithm 7. Function ConnectivityRegistration. 

1 

2 

3 

4 

5 

6 

7 

function ConnectivityRegistration(u, v) 

// registration of connectivity of blocks b[u] and b[v]  

b[u].c[b[u].nc] ← v 

b[u].nc← b[u].nc+1 

b[v].c[b[v].nc] ← u 

b[v].nc← b[v].nc+1 

end function 

 
Algorithm 8. Function BlockToObjectRegistration. 

1 

2 

3 

4 

5 

function ObjectRegistration(u, v)  

//registers the v-th block into the list of the blocks of the u-th object  

o[u].bid[u].nb] ← v 

o[u].nb ← o[u].nb+1 

end function 

 
The variables W and L are the image width and length, the flag intervalfound 

detects the beginning of an object level interval in an image row, the flag 
try2match detects the completion of an object level interval and enables the 
matching of the interval with the blocks of the previous image row. The value 1 
in the flag intervalmatched indicates the matching of the interval with a block of 
the previous image row, while the value 0 enables the creation of a new block. 
The vectors p[], c[] hold the blocks of the previous and current image row, while 
kp, kc are their number. The vector oid[] holds the object indices for each ex-
tracted block, i.e. oidk is the index of the object in which the k-th block b[k] be-
longs to; its initial value is −1 and the negative value indicates that the block is 
not yet associated with an object. 

3. Experimental Results 

In this section, the experimental results for the execution of the proposed EBRI 
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algorithm are presented. Also, experimental results and comparisons with the 
fast algorithm GLC are provided. The results provided by the two algorithms are 
equivalent for all the test images used, that is, the number of objects and their 
location as well as the number of holes are always the same. The location of the 
objects in the proposed method is described by the blocks’ coordinates. 

3.1. Qualitative Results 

It has to be stressed that the EBRI algorithm provides all the necessary informa-
tion of objects and their location in a compact form, in one image scan. Moreo-
ver, it requires less execution time, and usually real world images require less 
information than the pixel based algorithms. In order to clarify the qualitative 
superiority of the EBRI algorithm in comparison with CCL algorithms, consider 
the simplified image of Figure 6(a), which depicts text. The image of Figure 
6(a) contains 5 characters or 5 objects according to the EBRI algorithm or 5 
connected components represented by labels according to CCL algorithms. Fig-
ure 6(b) demonstrates the 5 connected components as extracted by the GLC al-
gorithm. In the CCL case for the extraction of each labeled object, an additional 
image scan is required, so that each object pixel is copied to an image fL, where L 
is the label. 
 

 
(a) 

 
(b) 

Figure 6. (a) An example of a binary image used as input to GLC and EBRI 
algorithm. (b) The result of the GLC algorithm. 
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Table 1 demonstrates the information of objects and blocks as extracted by 
the EBRI algorithm. The image contains 5 objects, 38 blocks and each object is 
represented by the corresponding blocks without any necessity for an additional 
image scan. Obviously, this is a compact representation of the binary image, as it 
includes the number of objects and their localization information is determined 
by the coordinates of the blocks. This qualitative feature constitutes the first ad-
vantage of the proposed method in comparison with the CCL methods. The 
smaller execution time of EBRI complements and enhances this qualitative cha-
racteristic. 

3.2. Time Complexity 

For the experimental evaluation, a computer with total 8 AMD Opteron cores at 
2.2GHz and 16 GB of memory was used. The operating system was Linux Cen-
tOS 7, all the programs implemented in C programming language, compiled 
with gcc for serial execution using one CPU core. To decrease random variation, 
all the execution time complexities were measured as the average of 1000 runs. 
Figure 7 demonstrates a sample of the test binary images in different sizes that 
have been used in the experiments. 
 
Table 1. The result of EBRI algorithm for the input image of Figure 6(a). 

O0 = {11, [0, 7, 8, 14, 15, 22, 26, 27, 33, 34]} 
O1 = {1, [1]} 
O2 = {8, [4, 9, 10, 18, 19, 28, 29, 35]} 
O3 = {7, [5, 11, 12, 20, 30, 31, 36]} 
O4 = {11, [2, 3, 6, 13, 16, 21, 23, 24, 25, 32, 37]} 

 

b0 = {1, 1, 8, 2, 1, [8]} 
b1 = {1, 11, 19, 12, 0, []} 
b2 = {1, 36, 9, 37, 1, [16]} 
b3 = {5, 42, 6, 43, 1, [6]} 
b4 = {7, 18, 8, 20, 2, [9, 10]} 
b5 = {7, 29, 8, 31, 2, [11, 12]} 
b6 = {7, 41, 8, 42, 2, [3, 13]} 
b7 = {8, 4, 8, 7, 1, [8]} 
b8 = {9, 1, 9, 7, 2, [7, 14]} 
b9 = {9, 16, 10, 17, 2, [4, 18]} 
b10 = {9, 21, 10, 22, 2, [4, 19]} 
b11 = {9, 27, 10, 28, 2, [5, 20]} 
b12 = {9, 32, 10, 33, 1, [5]} 
b13 = {9, 40, 9, 41, 2, [6, 16]} 
b14 = {10, 1, 10, 3, 2, [8, 17]} 
b15 = {10, 7, 11, 8, 2, [8, 22]} 
b16 = {10, 36, 10, 41, 3, [2, 13, 21]} 
b17 = {11, 1, 15, 2, [14, 26]} 
b18 = {11, 15, 15, 16, 2, [9, 28]} 

b19 = {11, 22, 15, 23, 2, [10, 29]} 
b20 = {11, 26, 15, 27, 2, [11, 30]} 
b21 = {11, 36, 12, 39, 3, [16, 23, 24]} 
b22 = {12, 8, 15, 9, 2, [15, 27]} 
b23 = {13, 36, 19, 37, 1, [21]} 
b24 = {13, 39, 14, 40, 2, [21, 25]} 
b25 = {15, 40, 16, 41, 2, [24, 32]} 
b26 = {16, 1, 17, 3, 3, [17, 33, 34]} 
b27 = {16, 7, 17, 8, 2, [22, 34]} 
b28 = {16, 16, 17, 17, 2, [18, 35]} 
b29 = {16, 20, 17, 21, 2, [19, 25]} 
b30 = {16, 27, 17, 28, 2, [20, 6]} 
b31 = {16, 32, 17, 33, 1, [36]} 
b32 = {17, 41, 17, 42, 2, [25, 37]} 
b33 = {18, 1, 19, 2, 1, [26]} 
b34 = {18, 4, 19, 7, 2, [26, 27]} 
b35 = {18, 17, 19, 20, 2, [28. 29]} 
b36 = {18, 29, 19, 32, 2, [30, 31]} 
b37 = {18, 42, 19, 43, 1, [32]} 
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(a)                          (b)                       (c) 

 
(d)                         (e)                        (f) 

Figure 7. A sample of test images used in experiments. (a) Lena with size 256 × 256, (b) Shapes 
with size 1024 × 1024, (c) negative of Text page with size 1024 × 1024, (d) negative of Finger-
print1 with size 1024 × 1024, (e) negative of Fingerprint2 with size 1024 × 1024 and (f) negative of 
Birds with size 2048 × 2048 pixels. 

 
Table 2 presents the number of blocks and the number of foreground pixels 

for each test image. It should be noticed that the number of blocks is significant-
ly smaller than the number of foreground pixels. Table 3 demonstrates the re-
quired execution times in milliseconds of the proposed EBRI algorithm and of 
the GLC which is the fastest CCL and Euler number calculation algorithm to 
date. In Figure 8 the mean execution times of the two algorithms for a number 
of test images with sizes from 128 × 128 up to 2048 × 2048 pixels are presented.  

Both EBRI and GLC algorithms operate in real time, but the proposed EBRI 
algorithm has lower time complexity than the GLC algorithm, especially when 
the image size increases. The EBRI algorithm locates the foreground pixels only 
for the extraction of object level intervals in image rows; the rest of the 
processing takes place at a higher level since it deals with the blocks and objects. 
On the contrary, the GLC algorithm deals with 4 neighbor pixels for each fore-
ground pixel, which means memory accesses and execution of logical operations. 
Since the number of blocks is significantly reduced in comparison to the fore-
ground pixels as demonstrated in Table 2, the complexity of the EBRI algorithm 
is lower than the complexity of the GLC algorithm. 

It should be noticed that execution times of the GLC algorithm are measured 
only for the creation of the label images (see Figure 6(b)), where each label 
represents a different object. The label images are not directly useful for any im-
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age analysis and object recognition task. In order to achieve object recognition, 
object segmentation and perhaps the creation of a bounding box for each object 
are usually required; these procedures require one or more image scans, which 
are not taken into account in Table 3 and Figure 8. 

 
Table 2. The size, number of blocks and number of foreground pixels of test images. 

Image Size Blocks Foreground Pixels 

Lena 256 × 256 2102 33,513 

Shapes 1024 × 1024 927 239,421 

Text page 1024 × 1024 18,753 99,606 

Fingerprint1 1024 × 1024 13,812 428,616 

Fingerprint2 1024 × 1024 7362 181,147 

Birds 2048 × 2048 4429 135,158 

 
Table 3. Execution time (msec) of EBRI and GLC algorithms for test images. 

Image Size EBRI GLC 

Lena 256 × 256 1.914 1.473 

Shapes 1024 × 1024 7.809 9.791 

Text page 1024 × 1024 15.840 16.640 

Fingerprint1 1024 × 1024 14.010 16.620 

Fingerprint2 1024 × 1024 13.430 14.440 

Birds 2048 × 2048 21.005 24.630 

 

 
Figure 8. Mean execution time (in msec) for images with different number of pixels. 
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4. Conclusions 

In this paper the EBRI algorithm is presented; which aims to provide block re-
presentation of binary images, connectivity information among the blocks, ex-
traction of objects in a compact form using blocks, holes detection, and Euler 
number computation in one image scan.  

From the experimental results, the proposed EBRI algorithm is evaluated as 
faster than the GLC algorithm and achieves a higher processing rate.  

Additionally to the execution time, there is a qualitative perspective that is al-
so significant. The proposed algorithm produces results in the compact form of 
blocks and objects, which provide to a vision system the perception of image 
areas that are greater than a pixel. Various feature extraction fast algorithms on 
block represented images have been presented in the past, specifically the skele-
tonization [24], the moment computation on binary images [23] and on gray 
images [25] [26] and the Hough transform [27]. 

On the other hand, the GLC algorithm requires an additional image scan to 
extract each labeled object and copy each object pixel to a new image fL, where L 
is the label of the object pixels. In contrast, the proposed EBRI algorithm extracts 
all objects in the same image in one scan and in a shorter time. This feature is 
very important for real-time pattern recognition applications. 

The development of more feature extraction algorithms using block represen-
tation is a direction of our research. Also, the parallel implementation of the re-
lated algorithms is another interesting research direction. Recently, the parallel 
implementation of the IBR algorithm [28] and the parallel computation of dis-
crete orthogonal moments on block represented images [29] using OpenMP API 
on shared memory computers have been presented. The development of a pa-
rallel EBRI algorithm is also a future research direction. 
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