
Journal of Data Analysis and Information Processing, 2022, 10, 91-109
https://www.scirp.org/journal/jdaip

ISSN Online: 2327-7203
ISSN Print: 2327-7211

DOI: 10.4236/jdaip.2022.102006 Mar. 31, 2022 91 Journal of Data Analysis and Information Processing

Fast Object Extraction and Euler Number on
Block Represented Images

Iraklis M. Spiliotis*, Alexandros S. Peppas, Nikolaos D. Karampasis, Yiannis S. Boutalis

Department of Electrical and Computer Engineering, Democritus University of Thrace, GR, Xanthi, Greece

Abstract
The identification of objects in binary images is a fundamental task in image
analysis and pattern recognition tasks. The Euler number of a binary image is
an important topological measure which is used as a feature in image analy-
sis. In this paper, a very fast algorithm for the detection and localization of
the objects and the computation of the Euler number of a binary image is
proposed. The proposed algorithm operates in one scan of the image and is
based on the Image Block Representation (IBR) scheme. The proposed algo-
rithm is more efficient than conventional pixel based algorithms in terms of
execution speed and representation of the extracted information.

Keywords
Image Block Representation, Object Detection, Hole Detection, Euler
Number, Connected Components Labeling

1. Introduction

In our days, vast amounts of image and video data are generated, transmitted
and analyzed, thus the development of fast algorithms able to achieve high
processing rates is of great importance for many applications.

Binary images are suitable for a number of image analyses, pattern recogni-
tion, document processing, robot vision, and image based industrial applica-
tions, especially when the shape of the objects is important and the segmentation
from the background is simple and without uncertainty. Object detection and
localization are fundamental tasks in various applications. The Euler number E
of a binary image is an important topological property that remains invariant
under certain image rubber-sheet transformations, such as stretching and under
scaling, rotation, or translation [1]. It is defined as the difference between the

How to cite this paper: Spiliotis, I.M.,
Peppas, A.S., Karampasis, N.D. and Bouta-
lis, Y.S. (2022) Fast Object Extraction and
Euler Number on Block Represented Images.
Journal of Data Analysis and Information
Processing, 10, 91-109.
https://doi.org/10.4236/jdaip.2022.102006

Received: January 2, 2022
Accepted: March 28, 2022
Published: March 31, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2022.102006
https://www.scirp.org/
https://doi.org/10.4236/jdaip.2022.102006
http://creativecommons.org/licenses/by/4.0/

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 92 Journal of Data Analysis and Information Processing

number of connected object components C and the number of holes H of the
binary image, E = C − H. It has been used in various image processing and anal-
ysis applications such as medical image diagnosis [2], image database retrieval
[3], and robot vision. Since C is the number of objects, the operations of object
detection and Euler number computation are closely related.

Algorithms for object detection were developed 50 years ago [4]. Due to their
mode of operation, they are called Connected Components Labeling (CCL). In
recent years, new improved CCL algorithms with reduced complexity have been
presented [5] [6] [7].

The CCL operation assigns a unique label to the pixels of each connected
component of the image. Each connected component is a different object. After
the labeling operation, the separation of objects from the image is feasible. As a
result, the output of any CCL algorithm is an array of pixel labels, where each
label corresponds to a different object in the image. Subsequently, the feature
extraction and object classification tasks can be performed using the above labe-
ling. Therefore, CCL is a significant operation in binary image analysis, pattern
recognition, object tracking [8], and computer vision in general.

For the calculation of the connected components labeling, two kinds of algo-
rithms have been presented. The first one is the label equivalence-based algo-
rithms, which process the image with raster scans. A provisional label is assigned
to each foreground pixel in the first scan, while the resulting label equivalences
are resolved in the subsequent scans [9] [10] [11]. The second kind is the label
propagation algorithms which scan the image, locate a foreground pixel, assign
to it a new label and then assign this label to its connected foreground pixels
[12].

A number of different approaches have been proposed for the calculation of
the Euler number on binary images. Dyer [13] and Samet and Tamminen [14]
proposed an algorithm based on the quadtree representation of images. Chen
and Yen presented a parallel algorithm using graphs of the image [15].
Díaz-De-León et al. presented an algorithm using the skeleton of the image [16].
Zenzo et al. presented a run-based algorithm using the number of runs and
8-neighbor runs in the image [17]. Also, there are algorithms based on 2 × 2 pix-
el patterns called bit-quads in the image [6] [18]. Parallel implementation on a
multicore computer for the computation of CCL [19] and a VLSI implementa-
tion [20] were also proposed.

Recently, He et al. proposed the GLC algorithm for integrating connected
components labeling and Euler number computation [7]. In the GLC algorithm,
a binary image is converted into a graph G, and using Euler’s theorem [21], the
Euler number can be calculated according to the numbers of vertices, edges, and
faces. The advantage of the above GLC algorithms is that they use 16 possible
patterns of the connected-component labeling masks, but they take into account
only the four of them. So they achieve bigger acceleration than the previous al-
gorithms CHE [22] and ML [6], which were also proposed previously by He et al.
All of these algorithms compute the Euler number and the connected component

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 93 Journal of Data Analysis and Information Processing

labeling in one scan, simultaneously.
He et al. relied on Chen’s and Yan’s algorithm [15] to implement a new algo-

rithm to calculate the Euler number [6]. More specifically, they transform a bi-
nary image into a square graph G, where the 8-connectivity of the neighboring
pixels is utilized. Each foreground pixel in the image is considered as a vertex in
the graph and an edge is added if pixels p and q are 8-neighbors. Suppose v, e, r,
and c are the numbers of vertices, edges, squares, and connected components in
G, respectively.

According to Euler’s theorem [21], v − e + r = c + 1, where squares include
holes, basic faces, and an infinite square outside of G. Also h and s are respec-
tively the numbers of holes and basic faces in graph G. Then, r = h + s + 1. Thus,
the Euler number E of G can be represented as:

E = c − h = v − e + s (1)

The faces are the basic right angle triangles, each of which consists of two
right-angle sides of length one, as shown in Figure 1(a) and Figure 1(b).

The Euler number can be calculated by counting the numbers of vertices, fac-
es, and edges by adding pixels one-by-one in the raster scan. For each pixel being
added, the increments of the numbers of vertices, edges, and faces generated by
adding this pixel are calculated. If the pixel is a background pixel, no new vertex,
edge, or face is generated, and thus nothing needs to be done. Otherwise, the
pixel is a foreground pixel and the number of vertices should be increased by
one. Due to the fact that it is not convenient to compute the Euler number by
directly counting the numbers of vertices, edges, and faces generated by adding a
foreground pixel one-by-one [9], He et al proposed the usage of the Dv, De, and
Ds, which are the increments in the numbers of vertices, edges, and faces, re-
spectively, when the current foreground pixel is added. Thus, the corresponding
change in the Euler number DE can be calculated as

DE = Dv – De + Ds (2)

These increments can be calculated by using the mask patterns of Figure 2. In
fact, the Euler number can be calculated by using the patterns of the masks of
Figure 2. So, by using the connected component labeling the Euler number can
be calculated as:

E = w – k (3)

where w is the number of provisional labels, such as the number of pattern P1
occurrences from Figure 2, and k is the number of label equivalence resolutions,
that is the total number of occurrences of patterns P10-P12 from Figure 2. The
label equivalences, the Euler number and the connected components labeling
can be calculated by the HCS algorithm, proposed by He et al. [9]. This algo-
rithm is referred to as GLC. He et al. also proposed the calculation of the Euler
number only, from the DE of the mask patterns in Figure 2.

In short, the GLC algorithm operates in one image scan considering only the
foreground pixels and is the fastest pixel based CCL and Euler number algo-

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 94 Journal of Data Analysis and Information Processing

rithm to date. The execution of the GLC algorithm requires the checking of four
neighboring previous pixels of the current foreground pixel.

Figure 1. (a) Binary image and (b) the graph of this image.

Figure 2. The mask patterns for the execution of the GLC algorithm.

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 95 Journal of Data Analysis and Information Processing

In this paper, a very fast algorithm for the detection of objects and the com-
putation of Euler number in one scan of the image is presented. This algorithm
is called Euler number in Block Represented Images (EBRI) and is based on Im-
age Block Representation (IBR) [23], which represents the binary image as a set
of non-overlapping rectangular areas with foreground pixels. Each foreground
pixel belongs to one block, and the IBR is an information lossless representation
equivalent to the 2D array image representation. The presented EBRI algorithm
is faster than any CCL algorithm. However, the greater benefit of the EBRI algo-
rithm is that it provides, in one scan, improved machine perception of the binary
image. Any object of the image is represented as a list of coordinates, thus all the
information concerning the object and its location is directly provided to the
machine. In contrast, the CCL algorithms require additional image scans, in or-
der to separate the objects according to their labels.

The rest of the paper is organized as follows. In Section 2 the EBRI algorithm
is introduced and analyzed. Experimental results and comparisons are given in
Section 3, while conclusions are given in Section 4.

2. The EBRI Algorithm

The proposed EBRI algorithm consists of a number of discrete tasks, which are
implemented concurrently. These steps are 1) the Block Representation of the
binary image, 2) the extraction of connectivity among the blocks, 3) the objects
detection and representation using blocks’ coordinates, and 4) the holes detec-
tion and Euler number calculation. The first step of block representation is the
only step that involves pixel checking, and all the subsequent steps work directly
on the derived blocks.

In order to clarify the algorithm, these tasks are initially presented separately
and the combined algorithm follows.

2.1. Image Block Representation

In a binary image, the foreground pixels are represented by a set of non-overlapping
rectangles with edges parallel to the axes, in such a way that every object’s pixel
belongs to only one rectangle. These rectangles are called blocks and this repre-
sentation is called Image Block Representation (IBR) [23] and is an information
lossless representation of the image.

A binary image is called block represented, if it is represented by a set of
blocks with object level, and if each pixel of the image with object value belongs
to one and only one block.

A block represented image is denoted as the set of the blocks, where each
block is described by four integers, the coordinates of the upper left and down
right corner in vertical and horizontal axes as shown in Figure 3(a). In Figure
3(b) the blocks that represent the image of character d, as extracted when using
Algorithm 1, are illustrated. A block represented image is denoted as:

() { }, : 0,1, , 1i nof x y b i b= = −

 (3)

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 96 Journal of Data Analysis and Information Processing

(a) (b)

Figure 3. (a) A block b. (b) Image of the character d and the derived blocks.

where bno is the number of the blocks.
The IBR process requires one image scan and simple pixel checking opera-

tions; Algorithm 1 implements the IBR.

Algorithm 1. Image block representation.

1

2

3

4

5

For each row y of the image f

Find object level intervals in row y

Compare intervals of row y with blocks of row y-1

If an interval matches with a block, the end of the block is in row y

If an interval does not match with any block, create a new block

2.2. Connectivity of the Blocks

In correspondence with the 4 and D pixel connectivity, the following definitions
clarify block connectivity schemes.

Definition 1. Two blocks are 4-connected, if there exists a pair of 4-connected
pixels, one from each block.

Definition 2. Two blocks are D-connected, if they are not 4-connected and
exist a pair of D-connected pixels one from each block.

The connectivity among the image blocks may be determined during the im-
age block representation process, or directly on a given block represented image,
using the following criteria [24]:

Lemma 1. Two blocks are 4-connected if their projections on one of the x or y
axes are overlapped and their projections on the other axis are neighbors.

Lemma 2: Two blocks are D-connected if their projections on both axes are
neighbors.

Each block b is stored as the structure

b = {y1, x1, y2, x2, nc, c[]} (5)

where y1, x1, y2, x2 the coordinates of the upper left and lower right angular
points, nc the number of the connected blocks and c[] the list with their indices.

2.3. Object Detection

The connectivity information of each block allows the creation of lists of con-

x

y

x b1, x b2,

y b2,

y b1,

b

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 97 Journal of Data Analysis and Information Processing

nected blocks that form the objects. A suitable data structure for storing the m
objects is the vector o[], where each object oi, i = 0, 1, …, m − 1 is the data
structure

oi = {bidi[], nbi} (6)

where the vector bidi[] that belongs to the object structure, holds the indices of
the blocks that constitute the i-th object oi, while nbi is the number of the blocks
that form oi.

In order to extract the objects, the following procedure is used. All blocks of
the binary image are examined; if the examined block (current block) has not
been assigned to an object, a new object is created and the current block is as-
signed to the new object (current object). For the current block, every single
neighboring block is being processed. If a neighbor is not assigned to an object,
then it is assigned to the current object. Otherwise, if the neighbor is already as-
signed to a different object, a conflict between the two objects occurs and has to
be resolved. The algorithm that resolves the label equivalences and presented by
He et al. [9] is used to handle this object equivalence similar situation. Algo-
rithm 2 implements the extraction of objects using the block and the connec-
tions among the blocks as presented above.

Algorithm 2. Object extraction.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

ono ← 0
i ← 0
while (i<bno) // for all blocks
 if (oid[i] == -1)
 // i-th block has not assigned to an object yet
 oid[i] ← ono
 o[ono].bid[0] ← i
 o[ono].nb ← o[ono].nb+1
 ono ← 1
 endif
 else if
 m ← oid[i] // it has assigned to an object, save the object id
 endif
 k ← 0
 while(k<b[i].nc) //for all the current block's neighbors
 neighbor ← b[i].c[k]

if (oid[neighbor] == -1) // neighbor not assigned to any object
 AddNeighborToObject(i,neighbor)
 endif
 else if
 n ← oid[neighbor]
 ObjectEquivalenceResolve (m,n)
 endif
 k ← k+1
 endwhile
 i ← i+1
endwhile

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 98 Journal of Data Analysis and Information Processing

The auxiliary vector oid[] holds the object index for each block, i.e. oid[k] is
the object id in which the k-th block belongs. The function AddNeighborToOb-
ject(), assigns the neighbor block to the object of the current block and is given
in Algorithm 3.

Algorithm 3. Function AddNeighborToObject.

1
2
3
4
5
6

function AddNeighborToObject (current, neighbor)
 k ← oid[current]
 o[k].b[o[k].bno] ← neighbor
 o[k].bno ← o[k].bno + 1
 oid[neighbor] ← k
end function

In the case of the equivalence between two objects, the lists of the blocks that

make up the two involved objects, are merged into one list, as the two objects
become one. The ObjectEquivalenceResolve() function is responsible for solving
the object equivalence situation and is presented in Algorithm 4. The m and n
are the representative objects for each object and u and v are the conflicting ob-
jects whose equivalence should be resolved.

Algorithm 4. Function ObjectEquivalenceResolve.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

function ObjectEquivalenceResolve (u,v)
m←rep_object[u]
n←rep_object[v]
if(m<n)

equiv_listm← equiv_listm∪equiv_listn
while(object_label_W∈equiv_listn)

rep_object[object_label_W] ←m
object_label_W ←object_label_W+1

end while
end if
else if(m>n)

equiv_listn← equiv_listn∪equiv_listm
while(object_label_W∈equiv_listm)

rep_object[object_label_W] ←n
object_label_W ←object_label_W+1

end while
end if

end function

The vector rep_object[] stores the representative object for each object. The

2-D array equiv_listn is the equivalence list of the object n and contains all the
previous equivalent objects in relation to it.

Considering the application of Algorithm 2 on the image of Figure 4(a), the
extracted objects are o0 = {[0, 2], 2}, o1 = {[1, 3, 4], 3}. In the example of the Fig-
ure 4(b) image, two objects o0 = {[0, 2, 3], 3}, o1 = {[1, 4, 5], 3} are initially ex-

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 99 Journal of Data Analysis and Information Processing

tracted. In the examination of the block b3 the two north neighbor blocks b2, b1
belonging to different objects o0, o1 are detected, and the execution of function
ObjectEquivalenceResolve() sets the equivalence 0 1o o≡ and the blocks of o1
are merged with the blocks of o0. Thus, only one object is extracted from the
image, that is the object o0 = {[0, 2, 3, 1, 4, 5], 6}.

A significant feature of the proposed algorithm is that it directly provides the
information for the localization of each extracted object using the coordinates of
its blocks.

2.4. Hole Detection and Euler Number

Based on the previous approach for the extraction of the objects, a hole is de-
tected when there is a block with two north neighbor blocks that belong to the
same or equivalent objects. If the two objects already have the same representa-
tive object, it means that the left and right sides belong to the same object, as the
top side is common.

In Figure 5 two examples of hole detection are demonstrated. In Figure 5(a)
all the extracted blocks are assigned to the same object o0. Therefore in the ex-
amination of block b4, the two north neighbor blocks b3, b5 belong to the same
object and a hole is detected.

(a) (b)

Figure 4. Two examples of the Object Extraction task.

(a) (b)

Figure 5. Two examples of hole detection. (a) The hole is detected during
the examination of block b4. (b) The first and second holes are detected
during the examination of block b5, while the third hole is detected during
the examination of block b8.

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 100 Journal of Data Analysis and Information Processing

In Figure 5(b), in the examination of block b5, the north neighbors b1, b2 be-
long to different objects that are not equivalent yet, thus no hole is detected; in-
stead, the function ObjectEquivalenceResolve() is called and sets the equivalence
of objects o0, o1. Also in the examination of b5, the north neighbors b2, b3, b4 be-
long to the same object, and the two holes are detected. In the examination of
block b8 the north neighbors b6, b7 belong to the same object and the third hole
of the object is detected.

As the number of Objects C and the number of Holes H of a binary image are
known, the Euler number can be found as E = C − H.

2.5. The Proposed One Scan EBRI Algorithm

The proposed algorithm’s goal is to calculate simultaneously in one image scan
the blocks and their location coordinates, the number of the Objects and their
location coordinates, the number of holes and the Euler number. The combina-
tion of the steps described in the previous subsections constitutes the proposed
EBRI Algorithm. The proposed algorithm scans each pixel of the binary image
and searches for object level intervals in the image rows. When an interval is
found, then the interval is assigned to an existing block or a new block is created;
in the case of a new block, the block connectivity, object assignment and hole
detection tasks are executed, as presented in Algorithm 5.

Algorithm 5. EBRI.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

kp← 0 //number of blocks on previous image row
bno← 0 //number of the extracted blocks
ono← 0 //number of the extracted objects
while(y<L)

kc← 0 //number of blocks on current row
intervalfound←0
j_curr← 0 //currently examined block of previous row
x←0
while(x<W)

try2match←0
if(img(y,x) AND intervalfound=0) // block’s x1 coordinate

intervalfound←1; x1←x
end if
if (img(y,x)=0 AND intervalfound=1)

intervalfound←0; x2←x-1; try2match←1
end if
if (x=W-1 AND img(y,x) AND intervalfound=1) // row end

x2←x; try2match←1
end if
if (try2match=1) //match interval with blocks of previous row

intervalmatched←0
j_last ←j_curr // last examined block of the previous line
j←j_last

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 101 Journal of Data Analysis and Information Processing

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

while (j<kp AND x1>=b[p[j]].x1)
j_curr ← j
if (x1==b[p[j]].x1 AND x2==b[p[j]].x2)
// interval matched with block from previous row

c[kc] ←p[j]; b[p[j]].y2←y; intervalmatched←1
end if
j←j+1

end while
if (intervalmatched=0)

NewBlock(bno, x1, x2, y) //creation of block bno
j_last = j_curr; ii←j_last
while (ii<kp AND x2>=b[p[ii]].x1-1)

j_curr←ii
// connectivity check with the block of previous row
if((b[bno].x1<=b[p[ii]].x2+1) AND (b[bno].x2>=b[p[ii]].x1-1))

ConnectivityRegistration(bno, p[ii])
if (oid[bno] <0) // block has no object

oid[bno] ← oid[p[ii]] // of left northern neighbor
BlockToObjectRegistration (oid[bno], p[ii])
//add block p[ii] into blocks that make
//up the object with tag bno (oid[bno])

end if
else // resolve the equivalence

ObjectEquivalenceResolve(oid[bno], oid[p[ii])
end if

end if
ii←ii+1

end while
if (oid[bno] <0) // create new object

oid[bno] ← ono+1
BlockToObjectRegistration (oid[bno], b[p[ii]])

end if
c[kc] ← bno+1

end if
kc ← kc+1

end if
x←x+1

end while
p←c ; kp←kc
y←y+1

end while

The function NewBlock() creates a new block and is presented in Algorithm
6. Algorithm 7 presents the function ConnectivityRegistration (u, v) which reg-
isters the connectivity of the blocks b[u] and b[v]. The function BlockToObjec-
tRegistration (u, v) performs the registration of the v-th block b[v] in the list of
the blocks that constitute the u-th object o[u] and is presented in Algorithm 8.

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 102 Journal of Data Analysis and Information Processing

Algorithm 6. Function NewBlock.

1

2

3

4

5

6

7

8

9

function NewBlock(v, x1, x2, y)

//creates the v-th block with coordinates x1, x2, y, y

oid[v] ← -1 //not associated with an object yet

b[v].x1← x1

b[v].x2← x2

b[v].y1← y

b[v].y2← y

b[v].nc← 0

end function

Algorithm 7. Function ConnectivityRegistration.

1

2

3

4

5

6

7

function ConnectivityRegistration(u, v)

// registration of connectivity of blocks b[u] and b[v]

b[u].c[b[u].nc] ← v

b[u].nc← b[u].nc+1

b[v].c[b[v].nc] ← u

b[v].nc← b[v].nc+1

end function

Algorithm 8. Function BlockToObjectRegistration.

1

2

3

4

5

function ObjectRegistration(u, v)

//registers the v-th block into the list of the blocks of the u-th object

o[u].bid[u].nb] ← v

o[u].nb ← o[u].nb+1

end function

The variables W and L are the image width and length, the flag intervalfound

detects the beginning of an object level interval in an image row, the flag
try2match detects the completion of an object level interval and enables the
matching of the interval with the blocks of the previous image row. The value 1
in the flag intervalmatched indicates the matching of the interval with a block of
the previous image row, while the value 0 enables the creation of a new block.
The vectors p[], c[] hold the blocks of the previous and current image row, while
kp, kc are their number. The vector oid[] holds the object indices for each ex-
tracted block, i.e. oidk is the index of the object in which the k-th block b[k] be-
longs to; its initial value is −1 and the negative value indicates that the block is
not yet associated with an object.

3. Experimental Results

In this section, the experimental results for the execution of the proposed EBRI

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 103 Journal of Data Analysis and Information Processing

algorithm are presented. Also, experimental results and comparisons with the
fast algorithm GLC are provided. The results provided by the two algorithms are
equivalent for all the test images used, that is, the number of objects and their
location as well as the number of holes are always the same. The location of the
objects in the proposed method is described by the blocks’ coordinates.

3.1. Qualitative Results

It has to be stressed that the EBRI algorithm provides all the necessary informa-
tion of objects and their location in a compact form, in one image scan. Moreo-
ver, it requires less execution time, and usually real world images require less
information than the pixel based algorithms. In order to clarify the qualitative
superiority of the EBRI algorithm in comparison with CCL algorithms, consider
the simplified image of Figure 6(a), which depicts text. The image of Figure
6(a) contains 5 characters or 5 objects according to the EBRI algorithm or 5
connected components represented by labels according to CCL algorithms. Fig-
ure 6(b) demonstrates the 5 connected components as extracted by the GLC al-
gorithm. In the CCL case for the extraction of each labeled object, an additional
image scan is required, so that each object pixel is copied to an image fL, where L
is the label.

(a)

(b)

Figure 6. (a) An example of a binary image used as input to GLC and EBRI
algorithm. (b) The result of the GLC algorithm.

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 104 Journal of Data Analysis and Information Processing

Table 1 demonstrates the information of objects and blocks as extracted by
the EBRI algorithm. The image contains 5 objects, 38 blocks and each object is
represented by the corresponding blocks without any necessity for an additional
image scan. Obviously, this is a compact representation of the binary image, as it
includes the number of objects and their localization information is determined
by the coordinates of the blocks. This qualitative feature constitutes the first ad-
vantage of the proposed method in comparison with the CCL methods. The
smaller execution time of EBRI complements and enhances this qualitative cha-
racteristic.

3.2. Time Complexity

For the experimental evaluation, a computer with total 8 AMD Opteron cores at
2.2GHz and 16 GB of memory was used. The operating system was Linux Cen-
tOS 7, all the programs implemented in C programming language, compiled
with gcc for serial execution using one CPU core. To decrease random variation,
all the execution time complexities were measured as the average of 1000 runs.
Figure 7 demonstrates a sample of the test binary images in different sizes that
have been used in the experiments.

Table 1. The result of EBRI algorithm for the input image of Figure 6(a).

O0 = {11, [0, 7, 8, 14, 15, 22, 26, 27, 33, 34]}
O1 = {1, [1]}
O2 = {8, [4, 9, 10, 18, 19, 28, 29, 35]}
O3 = {7, [5, 11, 12, 20, 30, 31, 36]}
O4 = {11, [2, 3, 6, 13, 16, 21, 23, 24, 25, 32, 37]}

b0 = {1, 1, 8, 2, 1, [8]}
b1 = {1, 11, 19, 12, 0, []}
b2 = {1, 36, 9, 37, 1, [16]}
b3 = {5, 42, 6, 43, 1, [6]}
b4 = {7, 18, 8, 20, 2, [9, 10]}
b5 = {7, 29, 8, 31, 2, [11, 12]}
b6 = {7, 41, 8, 42, 2, [3, 13]}
b7 = {8, 4, 8, 7, 1, [8]}
b8 = {9, 1, 9, 7, 2, [7, 14]}
b9 = {9, 16, 10, 17, 2, [4, 18]}
b10 = {9, 21, 10, 22, 2, [4, 19]}
b11 = {9, 27, 10, 28, 2, [5, 20]}
b12 = {9, 32, 10, 33, 1, [5]}
b13 = {9, 40, 9, 41, 2, [6, 16]}
b14 = {10, 1, 10, 3, 2, [8, 17]}
b15 = {10, 7, 11, 8, 2, [8, 22]}
b16 = {10, 36, 10, 41, 3, [2, 13, 21]}
b17 = {11, 1, 15, 2, [14, 26]}
b18 = {11, 15, 15, 16, 2, [9, 28]}

b19 = {11, 22, 15, 23, 2, [10, 29]}
b20 = {11, 26, 15, 27, 2, [11, 30]}
b21 = {11, 36, 12, 39, 3, [16, 23, 24]}
b22 = {12, 8, 15, 9, 2, [15, 27]}
b23 = {13, 36, 19, 37, 1, [21]}
b24 = {13, 39, 14, 40, 2, [21, 25]}
b25 = {15, 40, 16, 41, 2, [24, 32]}
b26 = {16, 1, 17, 3, 3, [17, 33, 34]}
b27 = {16, 7, 17, 8, 2, [22, 34]}
b28 = {16, 16, 17, 17, 2, [18, 35]}
b29 = {16, 20, 17, 21, 2, [19, 25]}
b30 = {16, 27, 17, 28, 2, [20, 6]}
b31 = {16, 32, 17, 33, 1, [36]}
b32 = {17, 41, 17, 42, 2, [25, 37]}
b33 = {18, 1, 19, 2, 1, [26]}
b34 = {18, 4, 19, 7, 2, [26, 27]}
b35 = {18, 17, 19, 20, 2, [28. 29]}
b36 = {18, 29, 19, 32, 2, [30, 31]}
b37 = {18, 42, 19, 43, 1, [32]}

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 105 Journal of Data Analysis and Information Processing

(a) (b) (c)

(d) (e) (f)

Figure 7. A sample of test images used in experiments. (a) Lena with size 256 × 256, (b) Shapes
with size 1024 × 1024, (c) negative of Text page with size 1024 × 1024, (d) negative of Finger-
print1 with size 1024 × 1024, (e) negative of Fingerprint2 with size 1024 × 1024 and (f) negative of
Birds with size 2048 × 2048 pixels.

Table 2 presents the number of blocks and the number of foreground pixels

for each test image. It should be noticed that the number of blocks is significant-
ly smaller than the number of foreground pixels. Table 3 demonstrates the re-
quired execution times in milliseconds of the proposed EBRI algorithm and of
the GLC which is the fastest CCL and Euler number calculation algorithm to
date. In Figure 8 the mean execution times of the two algorithms for a number
of test images with sizes from 128 × 128 up to 2048 × 2048 pixels are presented.

Both EBRI and GLC algorithms operate in real time, but the proposed EBRI
algorithm has lower time complexity than the GLC algorithm, especially when
the image size increases. The EBRI algorithm locates the foreground pixels only
for the extraction of object level intervals in image rows; the rest of the
processing takes place at a higher level since it deals with the blocks and objects.
On the contrary, the GLC algorithm deals with 4 neighbor pixels for each fore-
ground pixel, which means memory accesses and execution of logical operations.
Since the number of blocks is significantly reduced in comparison to the fore-
ground pixels as demonstrated in Table 2, the complexity of the EBRI algorithm
is lower than the complexity of the GLC algorithm.

It should be noticed that execution times of the GLC algorithm are measured
only for the creation of the label images (see Figure 6(b)), where each label
represents a different object. The label images are not directly useful for any im-

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 106 Journal of Data Analysis and Information Processing

age analysis and object recognition task. In order to achieve object recognition,
object segmentation and perhaps the creation of a bounding box for each object
are usually required; these procedures require one or more image scans, which
are not taken into account in Table 3 and Figure 8.

Table 2. The size, number of blocks and number of foreground pixels of test images.

Image Size Blocks Foreground Pixels

Lena 256 × 256 2102 33,513

Shapes 1024 × 1024 927 239,421

Text page 1024 × 1024 18,753 99,606

Fingerprint1 1024 × 1024 13,812 428,616

Fingerprint2 1024 × 1024 7362 181,147

Birds 2048 × 2048 4429 135,158

Table 3. Execution time (msec) of EBRI and GLC algorithms for test images.

Image Size EBRI GLC

Lena 256 × 256 1.914 1.473

Shapes 1024 × 1024 7.809 9.791

Text page 1024 × 1024 15.840 16.640

Fingerprint1 1024 × 1024 14.010 16.620

Fingerprint2 1024 × 1024 13.430 14.440

Birds 2048 × 2048 21.005 24.630

Figure 8. Mean execution time (in msec) for images with different number of pixels.

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 107 Journal of Data Analysis and Information Processing

4. Conclusions

In this paper the EBRI algorithm is presented; which aims to provide block re-
presentation of binary images, connectivity information among the blocks, ex-
traction of objects in a compact form using blocks, holes detection, and Euler
number computation in one image scan.

From the experimental results, the proposed EBRI algorithm is evaluated as
faster than the GLC algorithm and achieves a higher processing rate.

Additionally to the execution time, there is a qualitative perspective that is al-
so significant. The proposed algorithm produces results in the compact form of
blocks and objects, which provide to a vision system the perception of image
areas that are greater than a pixel. Various feature extraction fast algorithms on
block represented images have been presented in the past, specifically the skele-
tonization [24], the moment computation on binary images [23] and on gray
images [25] [26] and the Hough transform [27].

On the other hand, the GLC algorithm requires an additional image scan to
extract each labeled object and copy each object pixel to a new image fL, where L
is the label of the object pixels. In contrast, the proposed EBRI algorithm extracts
all objects in the same image in one scan and in a shorter time. This feature is
very important for real-time pattern recognition applications.

The development of more feature extraction algorithms using block represen-
tation is a direction of our research. Also, the parallel implementation of the re-
lated algorithms is another interesting research direction. Recently, the parallel
implementation of the IBR algorithm [28] and the parallel computation of dis-
crete orthogonal moments on block represented images [29] using OpenMP API
on shared memory computers have been presented. The development of a pa-
rallel EBRI algorithm is also a future research direction.

Acknowledgements

This work was partially supported by Special Account for Research Funds, De-
mocritus University of Thrace, Project KE 82319 and Project KE 82742.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gonzalez, R.C. and Woods, R.E. (2018) Digital Image Processing. 4th Edition,

Pearson Education, London.

[2] Hashizume, A., Suzuki, R. and Yokouchi, H. (1990) An Algorithm of Automated
RBC Classification and Its Evaluation. Japanese Journal of Medical Electronics and
Biological Engineering, 28, 25-32.

[3] Bishnu, A., Bhattacharya, B.B., Kundu, M.K., Murthy, C.A. and Acharya, T. (2005)
Euler Vector for Search and Retrieval of Gray-Tone Images. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 35, 801-812.

https://doi.org/10.4236/jdaip.2022.102006

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 108 Journal of Data Analysis and Information Processing

https://doi.org/10.1109/TSMCB.2005.846642

[4] Rosenfeld, A. and Kak, A.C. (1982) Digital Picture Processing. 2nd Edition, Aca-
demic Press, San Diego, CA.

[5] Grana, C., Borghesani, D. and Cucchiara, R. (2010) Optimized Block-Based Con-
nected Components Labeling with Decision Trees. IEEE Transactions on Image
Processing, 19, 1596-1609. https://doi.org/10.1109/TIP.2010.2044963

[6] He, L.F., Zhao, X., Yao, B., et al. (2017) A Combinational Algorithm for Con-
nected-Component Labeling and Euler Number Computing. Journal of Real-Time
Image Processing, 13, 703-712.
https://doi.org/10.1007/s11554-014-0433-y

[7] He, L.F., Zhao, X., Yao, B., et al. (2018) A Fast Algorithm for Integrating Con-
nected-Component Labeling and Euler Number Computation. Journal of Real-Time
Image Processing, 15, 709-723.
https://doi.org/10.1007/s11554-015-0499-1

[8] Dung, L., Wang, S. and Wu, Y. (2018) A Multiple Random Feature Extraction Al-
gorithm for Image Object Tracking. Journal of Signal and Information Processing,
9, 63-71. https://doi.org/10.4236/jsip.2018.91004

[9] He, L.F., Chao, Y.Y. and Suzuki, K. (2008) A Run-Based Two-Scan Labeling Algo-
rithm. IEEE Transactions on Image Processing, 17, 749-756.
https://doi.org/10.1109/TIP.2008.919369

[10] He, L.F., Chao, Y.Y. and Suzuki, K. (2009) Fast Connected-Component Labeling.
Pattern Recognition, 42, 1977-1987. https://doi.org/10.1016/j.patcog.2008.10.013

[11] He, L.F., Chao, Y.Y. and Suzuki, K. (2010) An Efficient First-Scan Method for Label
Equivalence-Based Labeling Algorithms. Pattern Recognition Letters, 31, 28-35.
https://doi.org/10.1016/j.patrec.2009.08.012

[12] Hu, Q., Qian, G. and Nowinski, W.L. (2005) Fast Connected-Component Labelling
in Three-Dimensional Binary Images based on Iterative Recursion. Computer Vi-
sion and Image Understanding, 99, 414-434.
https://doi.org/10.1016/j.cviu.2005.04.001

[13] Dyer, C.R. (1980) Computing the Euler Number of an Image from Its Quadtree.
Computer Graphics and Image Processing, 13, 270-276.
https://doi.org/10.1016/0146-664X(80)90050-7

[14] Samet, H. and Tamminen, H. (1985) Computing Geometric Properties of Images
Represented by Linear Quadtrees. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 7, 229-240. https://doi.org/10.1109/TPAMI.1985.4767646

[15] Chen, M.-H. and Yan, P.-F. (1988) A Fast Algorithm to Calculate the Euler Number
for Binary Images. Pattern Recognition Letters, 8, 295-297.
https://doi.org/10.1016/0167-8655(88)90078-5

[16] Díaz-De-León, J.L. and Sossa-Azuela, J.H. (1996) Οn the Computation of the Εuler
Number of a Binary Object. Pattern Recognition, 29, 471-476.
https://doi.org/10.1016/0031-3203(95)00098-4

[17] Zenzo, S., Cinque, L. and Levialdi, S. (1996) Run-Based Algorithms for Binary Im-
age Analysis and Processing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18, 83-89. https://doi.org/10.1109/34.476016

[18] Gray, S.B. (1971) Local Properties of Binary Images in Two Dimensions. IEEE
Transactions on Computers, 20, 551-561. https://doi.org/10.1109/T-C.1971.223289

[19] Cabaret, L., Lacassagne, L. and Etiemble, D. (2018) Parallel Light Speed Labeling:
An Efficient Connected Component Algorithm for Labeling and Analysis on Mul-

https://doi.org/10.4236/jdaip.2022.102006
https://doi.org/10.1109/TSMCB.2005.846642
https://doi.org/10.1109/TIP.2010.2044963
https://doi.org/10.1007/s11554-014-0433-y
https://doi.org/10.1007/s11554-015-0499-1
https://doi.org/10.4236/jsip.2018.91004
https://doi.org/10.1109/TIP.2008.919369
https://doi.org/10.1016/j.patcog.2008.10.013
https://doi.org/10.1016/j.patrec.2009.08.012
https://doi.org/10.1016/j.cviu.2005.04.001
https://doi.org/10.1016/0146-664X(80)90050-7
https://doi.org/10.1109/TPAMI.1985.4767646
https://doi.org/10.1016/0167-8655(88)90078-5
https://doi.org/10.1016/0031-3203(95)00098-4
https://doi.org/10.1109/34.476016
https://doi.org/10.1109/T-C.1971.223289

I. M. Spiliotis et al.

DOI: 10.4236/jdaip.2022.102006 109 Journal of Data Analysis and Information Processing

ti-Core Processors. Journal of Real-Time Image Processing, 15, 173-196.
https://doi.org/10.1007/s11554-016-0574-2

[20] Dey, S., Bhattacharya, B.B., Kundu, M.K. and Acharya, T. (2000) A Fast Algorithm
for Computing the Euler Number of an Image and Its VLSI Implementation. Pro-
ceedings of 13th International Conference on VLSI Design, Calcutta, 3-7 January
2000, 330-335. https://doi.org/10.1109/ICVD.2000.812628

[21] West, D.B. (2001) Introduction to Graph Theory. 2nd Edition, Prentice Hall, Hoboken.

[22] He, L.F., Chao, Y.Y. and Suzuki, K. (2013) An Algorithm for Connected-Component
Labeling, Hole Labeling and Euler Number Computing. Journal of Computer
Science and Technology, 28, 468-478. https://doi.org/10.1007/s11390-013-1348-y

[23] Spiliotis, I. and Mertzios, B. (1998) Real-time Computation of Two-Dimensional
Moments on Binary Images Using Image Block Representation. IEEE Transactions
on Image Processing, 7, 1609-1615. https://doi.org/10.1109/83.725368

[24] Spiliotis I.M. and Mertzios, B.G. (1997) A Fast Skeleton Algorithm on Block
Represented Binary Images. 13th International Conference on Digital Signal
Processing, Santorini, 2-4 July, 1997, 675-678.

[25] Spiliotis, I. and Boutalis, Y. (2011) Parameterized Real-Time Moment Computation
on Gray Images Using Block Techniques. Journal of Real-Time Image Processing, 6,
81-89. https://doi.org/10.1007/s11554-009-0142-0

[26] Spiliotis, I.M., Karampasis, N.D. and Boutalis, Y.S. (2020) Fast Computation of
Hahn Moments on Gray Images Using Block Representation. Journal of Electronic
Imaging, 29, Article ID: 013020. https://doi.org/10.1117/1.JEI.29.1.013020

[27] Gatos, B., Perantonis, S. and Papamarkos, N. (1996) Accelerated Hough Transform
Using Rectangular Block Decomposition. Electronic Letters, 32, 730-732.
https://doi.org/10.1049/el:19960510

[28] Spiliotis, I.M., Bekakos, M.P. and Boutalis, Y.S. (2020) Parallel Implementation of
the Image Block Representation Using OpenMP. Journal of Parallel and Distributed
Computing, 137, 134-147. https://doi.org/10.1016/j.jpdc.2019.11.006

[29] Spiliotis, I.M., Sitaridis, C. and Bekakos, M.P. (2021) Parallel Computation of Dis-
crete Orthogonal Moment on Block Represented Images Using OpenMP. Interna-
tional Journal of Parallel Programming, 49, 440-446.
https://doi.org/10.1007/s10766-021-00713-2

https://doi.org/10.4236/jdaip.2022.102006
https://doi.org/10.1007/s11554-016-0574-2
https://doi.org/10.1109/ICVD.2000.812628
https://doi.org/10.1007/s11390-013-1348-y
https://doi.org/10.1109/83.725368
https://doi.org/10.1007/s11554-009-0142-0
https://doi.org/10.1117/1.JEI.29.1.013020
https://doi.org/10.1049/el:19960510
https://doi.org/10.1016/j.jpdc.2019.11.006
https://doi.org/10.1007/s10766-021-00713-2

	Fast Object Extraction and Euler Number on Block Represented Images
	Abstract
	Keywords
	1. Introduction
	2. The EBRI Algorithm
	2.1. Image Block Representation
	2.2. Connectivity of the Blocks
	2.3. Object Detection
	2.4. Hole Detection and Euler Number
	2.5. The Proposed One Scan EBRI Algorithm

	3. Experimental Results
	3.1. Qualitative Results
	3.2. Time Complexity

	4. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

