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Abstract 
This paper aims at providing an in-depth analysis of forecasting ability of 
different GARCH (Generalized Autoregressive Conditional Heteroskedastic-
ity) models and finding the best GARCH model for VaR estimation for crude 
oil. Analysis of VaR forecasting performance of different GARCH models is 
done using Kupiecs POF test, Christoffersens test and Backtesting VaR Loss 
Function. Crude oil is one of the most important fuel sources and has con-
tributed to over a third of the world’s energy consumption. Oil shocks have 
influence on macroeconomic activities through various ways. Sharp oil price 
changes delay business investment because they raise uncertainty thus re-
ducing aggregate output for some time. Analysis of crude oil prices trends is 
instrumental in informing the economy’s policy and decision making. Con-
tinued development and improvement of models used in analyzing prices 
improve forecasting accuracy which in turns leads to better costs and revenue 
prediction by businesses. The study uses Brent Crude Oil prices data over a 
period of ten years from the year 2011 to 2020. The study finds that the 
IGARCH T-distribution model is the best model out of the five models for 
VaR estimation based on LR.uc Statistic (0.235) and LR.cc Statistic (0.317) 
which are the least among the values realized. ME and RMSE for the five mod-
els used for forecasting have negligible difference. However, the IGARCH 
model stands out with IGARCH T-distribution being the best out of the five 
models in this study with ME of 0.0000963591 and RMSE of 0.05304335. We 
therefore conclude that the IGARCH T-distribution model is the best model 
out of the five models used in this study for forecasting Brent crude oil price 
volatility as well as for VaR estimations. 
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Crude Oil, Backtesting 

 

1. Introduction 
1.1. Background 

Commodity markets are briskly expanding and becoming more interesting to 
many investors in the financial world. The energy market has gained interest 
continually due to the volatile nature of energy commodity prices. The funda-
mental assets in energy markets include: electricity, oil, gas and carbon emis-
sions. Past investigations in the field have shown that the prices involved in such 
markets have four major characteristics: seasonality, spikes, mean reversion and 
non-storability. The large variations in crude oil prices observed in recent years 
have caused a lot of concern among participants and regulators in the market. 
This is because oil price uncertainty has a significant impact on the economy.  

Oil price volatility shows the magnitude of the rise and fall of oil prices over a 
period of time. Volatility arises when some error terms are larger than the rest. 
These error terms become responsible for the unique behaviour of the series. 
This is known as heteroscedasticity. Past studies have shown that besides global 
macroeconomic and geopolitical conditions, crude oil prices are also influenced 
by the fluctuations in supply and demand. Oil is a vital commodity and therefore, 
controlling the oil market is critical in ensuring that global supply and demand 
of oil are met. As a result of this need to control the market, there are some or-
ganizations created that play an important role in controlling this global supply 
and demand. One such organization is The Organization of the Petroleum Ex-
porting Countries (OPEC). It aims at coordinating and unifying the petroleum 
policies of its member countries and ensuring the stabilization of oil markets, so 
as to secure an efficient, economic and regular supply of petroleum to consum-
ers, steady earnings for producers, and fair returns on capital for those investing 
in the petroleum industry. The organization also provides information regarding 
international markets for its member countries. 

Oil prices modelling and quantification of risk are popular topics due to the 
large effects oil price changes have on the economy. Value-at-Risk (VaR) is the 
most commonly used measure or risk. It measures the maximum loss of a port-
folio over a certain time period by a given confidence interval. Although there 
are some theoretical studies about the shortcoming of VaR due to its lack of 
sub-additivity and convexity, Orhan and Kksal (2012) acknowledge that there 
is still no better measure to quantify risk. Analysis of GARCH models using dif-
ferent distributions is important as selection of proper models will improve 
evaluation of VaR leading to better risk measurement and management in the 
crude oil market. Estimation of crude oil price volatility (risk) is vital in im-
proving the measure for VaR 

Research in modeling oil price volatility is inadequate. As seen by Sadorsky 
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(2006) and Narayan and Narayan (2007), most studies use a particular structure 
of models to analyse time series and fail to pay attention to use of appropriate 
model selection criteria to determine what model to use as well as validate the 
choice of the model. An essential detail to note is that since volatility is time va-
rying, the choice of appropriate model may change over the period of time.  

The main objective of this study is to contribute to the development of energy 
markets through analysis of models used in modelling and forecasting crude oil 
price volatility and VaR estimation models. The focus is on GARCH family 
models which have been widely used to model time series. Time series is a set of 
well-defined data items collected at successive points at uniform time intervals. 
Mondal et al. (2014) acknowledges that Time series analysis is an important part 
of statistics that analyses the data set to study the characteristics of the data and 
helps in predicting future values of the series based on the characteristics. Over 
the last few years, modeling volatility of a financial time series has become a 
frequently researched area because volatility is considered an important concept 
for risk management and asset pricing. Volatility from the different GARCH 
models is then compared to test the significance of each model. The VaR results 
for the five models are also compared to find out if better VaR results for a 
GARCH models translates to better forecasting model. This study will; analyse 
properties of the selected data, ascertain existence of volatility in oil spot price, 
fit the models, perform VaR backtesting, forecast volatility using selected sym-
metric and asymmetric models, select the best model by comparing the volatility 
results from the models and provide an analysis to validate the choice of the se-
lected models.  

1.2. Problem Statement 

There is no conclusive answer as to which is the best volatility model for fore-
casting volatility and VaR estimation. Changes in oil prices have a direct effect 
on prices of other commodities. As investors seek to estimate future prices enabl-
ing them to make investment decisions, it is equally important to measure the 
risk of loss for investments. Elder and Serletis (2010) in their study conclude that 
when oil price changes are unpredictable, there is a significant drop in real out-
put. An investor’s goal is to always obtain maximum returns while taking consi-
derably low risk. The use of GARCH models in VaR estimation and forecasting 
cannot be disputed. Aloui and Mabrouk (2010) computed the VaR using FIGARCH, 
FIAPARCH and HYGARCH. Cerović Smolović et al. (2017) study the perfor-
mance of eight GARCH models and conclude that the TS GARCH, T GARCH 
and EGARCH are best for forecasting volatility in the Montenegrin emerging 
market. 

However, there are many contradicting conclusions regarding the choice of 
volatility models to use. This poses a challenge to investors as the choice of vola-
tility model directly affects the performance of the investor. Vlaar (2000) tested 
the GARCH model under different distribution assumptions on Dutch bond 
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portfolios and concluded that the GARCH model under the Normal distribution 
dominates the common practice of using historical simulation models. Miletic 
and Miletic (2015) showed that GARCH models with a t-distribution of resi-
duals in most analysed cases give a better VaR estimation than GARCH models 
with normal errors in the case of a 99% confidence level, while the opposite is 
true in the case of a 95% confidence level. Orhan and Kksal (2012) concluded 
that the ARCH model and leptokurtic error distributions yielded the best results 
for VaR estimations while Angelidis et al. (2004) found no clearly superior mod-
el but concluded that leptokurtic distributions outperformed the Normal distri-
bution; especially for the ARCH model. Few studies have been done focusing on 
both VaR estimation and volatility forecasting under the same conditions. 

This study sheds light on the issue of volatility forecasting under risk man-
agement environment and on the evaluation procedure of various risk models 
while considering different distributions. 

1.3. Objectives 

The objectives of this study are:  

1.3.1. Main Objective 
To perform comparative analysis of different GARCH models to test their ability 
to forecast prices and estimate value at risk for Brent Crude Oil.  

1.3.2. Specific Objectives 
• To fit GARCH models and perform backtesting to find the best GARCH 

model for VaR.  
• To estimate volatility using different GARCH family models.  
• To carry out comparative study of different volatility models and validate the 

choice of the model used for forecasting.  

1.4. Significance of the Study 

Proper analysis of crude oil prices trends will help market participants to make 
informed choices and come up with policies to assist in trading. This will in turn 
open up the energy market to investors seeking a return, as well as traders who 
may wish to purchase the commodity. This study therefore aims at contributing 
to this through modelling the price volatility of crude oil. The focus is on com-
parative analysis of price volatility models where volatility estimated using dif-
ferent GARCH models is compared. The study also takes into account VaR 
where VaR results are compared with forecasting results to find out if the best 
GARCH model for VaR gives the best volatility forecast. The paper is arranged 
as follows: In Chapter 2 we review existing literature on energy markets and 
crude oil price volatility; In Chapter 3 we discuss the models to be used in mod-
elling crude oil prices i.e. GARCH, EGARCH, IGARCH, TGARCH and GJR 
GARCH and various tests done to pick the best model; In Chapter 4, we discuss 
the parameter estimation results, VaR results, forecasting results and compara-
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tive analysis results. Finally, in Chapter 5, we conclude our study.  

2. Past Studies 

This section reviews relevant studies on: Past studies on energy commodities, 
market volatility and characteristics of oil markets, Causes of crude oil price vo-
latility, Models used in modeling volatility, VaR estimation and Impact of crude 
oil price volatility.  

2.1. Characteristics of Oil Markets 

It is important to understand the characteristics of oil markets in order to model 
the prices. Morana (2001) and Bina and Vo (2007) acknowledge that a large 
number of empirical studies have concluded that characteristics of time series of 
crude oil prices are mainly volatility clustering, fat tail distribution, asymmetry 
and mean reversion. Askari and Hossein & Noureddine (2008) in their study 
find that oil price dynamics during the period 2002-2006 were characterized by 
high volatility, intensity jumps and strong upward drift. They also note that the 
oil price dynamics in the same period were associated with oil markets and 
world economy’s underlying fundamentals. 

Doran and Ronn (2008) find that the inclusion of a market price of volatility 
risk is necessary to capture the degree of bias. They conclude that the market 
price of volatility risk is negative and significant for natural gas, crude oil, and 
heating oil and there is a seasonality in the volatility risk premium for natural 
gas. 

2.2. Causes of Crude Oil Price Volatility 

In order to be successful in the oil market, market participants and regulators 
strive to know how price changes occur as well as how markets react to these 
shocks. Kilian (2009) acknowledges that it is crucial to know the cause of a given 
oil price change. Is it demand or supply? This is because the action to take when 
it comes to stock prices, dividend yield components, and volatility depends on 
the origin of the oil price shock since they affect variables such as inflation and 
GDP (Gross Domestic Product). 

Bastianin and Manera (2015) expound on the work of Kilian and Park (2009). 
They study the impact of oil price shocks on stock market volatility using Ki-
lian’s (2009) structural Vector Autoregressive (VAR) model. Crude oil price 
changes are modelled as arising from three different sources: i.e. shocks to the 
supply of crude oil, to the aggregate demand for all industrial commodities and 
to oil-specific demand. They find that the impact of supply shortfalls is negligi-
ble and that volatility responds majorly to shocks hitting the aggregate and oil- 
specific demand. 

Degiannakis et al. (2014) also build on Kilian (2009) work. They use the mod-
el by Kilian (2009) and research on the response of volatility to structural oil 
market shocks. They propose that volatility reacts only to unforeseen changes in 
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total demand. Thus the supply-side and oil-specific demands have no role in 
market shocks. Demirbas et al. (2017) in their study conclude that oil price vola-
tility depends on the combined effects of a number of invariant and variable 
factors. They also find that a drop in oil prices is brought about more by supply 
factors than demand factors. 

2.3. Models Used in Modeling Crude Oil Price Volatility and VaR  
Estimation 

From the above studies, it is evident that a lot of researchers have dedicated their 
time and resources in trying to understand crude oil volatility and risk mea-
surement. 

VaR measures the maximum loss a portfolio could incur over certain time pe-
riod by a given confidence level. GARCH models are some of the most com-
monly used models for VaR estimations. Fan et al. (2008) estimated VaR of 
crude oil price using GARCH models, based on the Generalized Error Distribu-
tion (GED) and detected extreme risk spillover effect between Europe Brent and 
West Texas Intermediate (WTI) markets. Hung et al. (2008) investigated the in-
fluence of fat-tailed process on the performance of one-day-ahead VaR estimates 
about energy commodities using three GARCH models.  

In order to improve the measure for VaR, an investor needs to estimate the 
volatility of crude oil price. Due to the presence of heteroscedasticity in the va-
riance of financial instruments, ARCH and GARCH models were developed by 
Engle (1982) and Bollerslev (1986) respectively. From this, many extensions of 
the GARCH model have been developed to capture the changing volatility due 
to different factors in the time series. However, there is no definite answer as to 
which of the GARCH model types is the best at forecasting volatility for all types 
of financial data. Thus creating the need to have the models restricted to specific 
data sets. 

GARCH models have been widely used in modelling volatility. Khindanova et 
al. (2004) state that GARCH models have been developed to model the volatility 
of finance data. Arouri et al. (2012) seek to find out if structural breaks and long 
memory are applicable in modeling and forecasting the conditional volatility of 
crude oil spot and futures prices using three types of GARCH models-linear 
GARCH, GARCH with structural breaks and FIGARCH. They conclude that the 
long memory evidence seen in the in sample period is not strongly supported by 
the out-of-sample forecasting. 

The GARCH model has been found to be very efficient in modeling volatility. 
Despite these developments, Wang and Wu (2012) acknowledge that the simple 
GARCH (1, 1) model still is still important. This is due to the fact that the model 
converges much faster to a local maximum in quasi-maximum likelihood esti-
mation and it still gives good forecasting results just as the other multivariate 
models. 

Lama et al. (2015) however studies the simple GARCH model and find some 
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weaknesses. He finds symmetric and asymmetric patterns in some time-series 
making the simple GARCH model inefficient for such time-series because it 
deals with the magnitude but not the positivity or negativity of the shocks. The 
simple GARCH model has thus turned out to be relatively inefficient in model-
ing and forecasting such series creating the need for extension of the GARCH 
family model so as to take into account the inefficiencies of simple GARCH 
models. This need was first answered by Nelson (1991) who developed the 
EGARCH model. 

The use of GARCH models is evidently seen with some of the researches done 
using the models explained as; Morana (2001) uses the semi-parametric ap-
proach which uses the GARCH properties of Brent Market crude oil price vola-
tility. Fong and See (2002) use a Markov regime-switching model allowing for 
GARCH-dynamics and sudden changes in mean and variance so as to model the 
conditional volatility of daily returns on crude-oil futures prices. The researchers 
note that regime-switching model performs better than non-switching models, 
no matter the evaluation criteria used in forecasting. Vo (2009) also uses a re-
gime switching stochastic volatility model to studies the behaviour of oil prices 
of WTI market in order to forecast their volatility. He then models the volatility 
of oil return as a stochastic volatility process where the mean is affected by re-
gime shifts. 

2.4. Implication and Impact of Crude Oil Price Volatility 

Liu et al. (2013) investigate the short- and long-term cross-market uncertainty 
transmission implied by OVX (Crude oil volatility index) and other volatility in-
dices. They conclude that there are no strong long-run equilibrium relationships 
among these volatility indices, indirectly verifying the effectiveness of cross-market 
volatility portfolio strategies. They also acknowledge that there is significant short- 
term uncertainty transmission between oil and other major markets. 

Elder and Serletis (2010) in their study conclude that when oil price changes 
are unpredictable, there is a significant drop in real output. This crucially affects 
measures of durable consumption and fixed investment in the US. Backus and 
Crucini (2000) also acknowledge that oil price changes may be responsible for 
variations in the international terms of trade. 

Price volatility effects in the crude oil market are spreading to non-energy 
commodity markets. With the developments in the oil sector where fossil fuels 
have been substituted with bio-fuel and increased hedging of oil prices, the link 
between crude oil market and agriculture markets and metal markets has in-
creased. Ji and Fan (2012) research focuses on oil price volatility effects on 
non-energy commodity markets. They achieve this by constructing a bivariate 
EGARCH model with time-varying correlation construction. They find signifi-
cant spillover effects of crude oil market on non-energy commodity markets.  

3. Model’s Description 

This section introduces the models used to estimate crude oil price volatility and 
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for VaR estimations. The choice of the modelling approach employed is deter-
mined from the characteristics of the historical crude oil spot price data. Energy 
prices have complex distribution/properties and as such there is no widely ac-
cepted answer to what the best models of price volatility are. The steps that are 
followed to model the volatility are as below; analyze historical data to find its 
properties; Test for stationarity of the series and check presence of ARCH effects; 
The Augmented Dickey-Fuller (ADF) test as well as the Philips Perron (PP) test 
are used to test for stationarity and Lagrange multiplier test is done to detect the 
presence of ARCH (Autoregressive Integrated Moving-Average) effects. Explain 
the five GARCH models used in this study and their estimation procedures for 
modelling and forecasting crude oil prices. VaR results are then compared with 
forecasting results to pick the best fitting model.  

3.1. Data 

Daily Brent Crude oil spot prices for a period of ten years (2011-2020) are used 
to model the volatility. The choice of this data is because Brent Crude oil has 
remained supreme in oil market. Crude oil is either traded by themselves or the 
prices are reflected in other types of crude oil. The availability of the data is also 
a factor in making this choice. 

Data analysis is carried out to find various statistical properties of the data i.e. 
Mean, variance, skewness, kurtosis, log-returns, squared log-returns, hereroske-
dasticity. Existence of volatility from the data is also ascertained.  

Lux et al. (2015) formalize financial returns as in Equation (1); 

t t t tr = µ + σ                            (1) 

where ( ) ( )1100 ln lnt t tr p p − = ∗ −  , ( )ln tp  is the log asset price, 
[ ]1t t tE r−µ =  is the return series conditional mean, 

tσ  is the volatility process and 

t  is standard normal distribution. 
Defining t t tX r= −µ , the centered returns are given by; 

t t tX = σ   under the assumption that tµ  follows an AR(1) process. 
The ARCH Lagrangian Multiplier (LM) test proposed by Engle (1982) is 

used to ascertain the existence of volatility in the data while Jarque Bera Test is 
used to test normality for the logreturns. 

Part of the data is used for model building and validation. The rest of the data 
is used for forecasting. Analysis of the data is done using the R Statistical Soft-
ware.  

3.2. Mean Equation Selection 

Various models are considered in the mean computation. According to Klein 
(1997), these models originated in the 1920s in the works of Udny Yule, Eugen 
Slutsky and other researchers. The first known application of the models was 
that of Yule in 1927 while analysing the time-series behavior of sunspots. 
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3.2.1. Autoregressive Model (AR) 
An example of the AR model is the AR(1) model, given by Equation (2); 

0 1t t ty x −= α + α +                           (2) 

where t  is a white noise series with mean 0 and variance 2σ  
The general formulae for an AR process, AR(p) is as in Equation (3); 

0 1 1t p t p ty x x −= α + α + +α +                     (3) 

3.2.2. Moving Average Model (MA) 
The general form of an MA(1) model is as in Equation (4); 

1t t ty −= µ + + θ                           (4) 

where µ  is a constant and t  is a white noise. 
The general form of an MA process, MA(q) model is as in Equation (5); 

1t t t q t qy − −= µ + + θ + + θ                        (5) 

where q > 0 

3.2.3. Autoregressive Moving Average (ARMA(p, q)) 
An ARMA model is a combination of the AR and the MA processes. The AR 
part is a representation of the effects of previous observations. The MA part 
represents effects of previous random shocks (errors). It is specified as in Equa-
tion (6): 

t i t p i t qy y − −= α + θ∑ ∑                        (6) 

3.3. Modelling ARCH Effects 

The GARCH models are used in particular because of the following characteris-
tics of financial time series data: 

1) Fat Tails: A fat tailed distribution is a probability distribution that exhibits 
large skewness or kurtosis. When the distribution of financial time series is 
compared with the normal distribution, fatter tails are observed. 

2) Volatility Clustering: The second stylized fact is periods of volatility clus-
tering which mean that large and small values in the log-returns tend to occur in 
clusters, i.e. large changes tend to be followed by large changes and small 
changes tend to be followed by small changes. When volatility is high it is likely 
to remain high and when it is low, it is likely to remain low. Volatility clustering 
is nothing but accumulation or clustering of information. This feature reflects on 
the fact that news is clustered over time (Engle, 2004). 

3) Mean reverting: The variance of the financial time series data often deviate 
from the mean. In most cases the reversion is not by a constant factor a property 
known as heteroscedaticity. 

Checking for ARCH Effects 
The main test for heteroscedaticity is the Lagrange multiplier (LM) test of Engle 
(1982). This test is equivalent to the F-statistic for testing  

( )0 1,2, ,i i mα = = 
 in the linear regression model in Equation (7). 
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2 2 2
0 1 1t t m t m ty y y− −= α + α + +α +                   (7) 

where 1, 2, ,t m m T= + +   

t  denotes the error term is a pre-specified integer and T is the sample size.  
The hypothesis is as follows; 

0 1 2 3

1 1 2 3

: 0
: 0

m

m

H
H

α = α = α = = α =

α = α = α = = α ≠





 

According to the ARCH LM test the null hypothesis should be rejected when 
the p-values are below 0.5.  

3.4. Stationarity Tests 

A common assumption in many time series techniques is that the data is statio-
nary. A stationary process is one where the process tends to come back to the 
mean i.e. mean reverting. This means a flat series without trends, constant va-
riance and autocorrelation over time and no seasonality. According to Smigel 
(2021), stationarity is important in time series analysis because a predictable dis-
tribution enables forecasting. A series is said to have weak stationarity if mean 
and variance are constant but autocovariance and autocorrelation are dependent 
on the lag length and have strong stationarity if all time series characteristics are 
not dependent on time i.e. they are constant. There are two types of stationarity: 
Trend stationarity and Difference stationarity. If the process is found to be 
non-stationary, detrending of differencing is done to make the process statio-
nary. 

The GARCH (p, q) process is weakly stationary if 1 1 1q p
ji j b

= =
+ <∑ ∑ . 

3.4.1. Detrending 
A trend stationary series is as below; 

( )t t ty t= µ + θ +ψ   where; tθ  is the trend and  

( ) 1 2 2t t t tt − −ψ = + θ + θ +     

ty  is a function coefficient of time and other factors. Detrending of ty  
makes the process stationary i.e. as in Equation (8) 

( )t t ty L−θ = µ +ψ                        (8) 

3.4.2. Differencing 
Suppose we have ty , 1t t ty y y−− = ∆ . The series ty  could be non-stationary 
but its change tyδ  is stationary. i.e. 

( )1t t ty y L−= µ + +ψ  .  

Since the process is non-stationary, the coefficient of 1 1ty − =  i.e. unit root in 
Equation (9) 

( )1t t ty y L− ψ− = µ                         (9) 

makes the process stationary. 
Differencing of a trend stationary process and detrending of difference statio-
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nary series can also be done. 
Failure to have stationary series produces non-sensible regression results. 

There are two stationary status/levels of integration of a series i.e. stationarity at 
levels and difference stationarity series (first level differencing). 

There are various tests for stationarity.  
1) Dickey Fuller (DF) test 
The DF test, accredited to Dickey and Fuller (1979) is as in Equation (10). 

Given  

( )1 1; 1t t t t t ty y y y− −= θ + ∆ = θ− +                  (10) 

The hypothesis is as; 

( )
( )

0

1

: 1; 1 0

: 1; 1 0

H

H

θ = θ− =

θ < θ− <
 

If 0H  holds, then the series is non-stationary, if 1H  holds, then the series is 
stationary. 

2) Augmented Dickey Fuller (ADF) Test 
The ADF is an augmented version of the Dickey-Fuller test for a larger and 

more complicated set of time series models. The ADF statistic used in the test is 
a negative number. The more negative it is, the stronger the rejection of the hy-
pothesis that there is a unit root at some level of confidence.  

Accredited to Said and Dickey (1984), this test relies on the parametric trans-
formation of the model. It can be represented as in Equation (11). Let; 

1 1 1 2t t t t t p t p ty y y y∗ ∗ ∗ ∗
− − − −∆ = θ + θ ∆ + θ ∆ + + θ ∆ +            (11) 

Comparing DF test and ADF test, ADF whitens the errors more.  
3) Philips-Perron test This test is accredited to Perron (1988). He suggested a 

non-parametric correction to ADF to account for autocorrelation associated 
with breaks/regime shifts in the data. 

While ADF test is a parametric model, PP test uses a non-parametric statistic-
al method to cater for the error term’s serial correlation. In this study, the ADF 
is used to test for stationarity because it can be used with serial correlation and is 
more powerful than DF test. 

The hypothesis is: 

0

1

: 1: Nonstationary
: 1: Stationary

H
H

θ =

θ <
 

We reject the null hypothesis when the test statistic is less than 0.5 and accept 
when it is greater than 0.5. A data series is said to be stationary if its mean and 
variance are constant over time and the value of covariance between two time 
periods doesn’t depend on time.  

3.5. Normality Test 

Jarque-Bera test is a goodness-of-fit measure of departure from normality, based 
on the sample kurtosis and skewness. The test is named after Carlos M. Jarque 
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and Anil K. Bera. According to Jarque and Bera (1980), the test statistic JB is de-
fined as in Equation (12): 

( )2
2 3

JB
6 4

kn s
 −
 = +
 
 

                     (12) 

where n is the number of observations, s is the sample skewness while k is the 
sample kurtosis. 

The statistic JB tests the null hypothesis that the data is from a normal distri-
bution. The null hypothesis is a joint hypothesis of the skewness being zero and 
the excess kurtosis being zero, since samples from a normal distribution have an 
expected skewness of zero and an expected excess kurtosis of zero (which is the 
same as a kurtosis of 3). As the definition of JB shows, any deviation from this 
increases the JB statistic.  

3.6. The Models Explained 

The Box Jenkins’ ARIMA methodology had dominated time-series forecasting 
for long. However, the need for modelling volatile data gave way to development 
of other models. The ARCH model introduced by Engle (1982) describes the 
variance of the current error term as a function of the previous period’s actual 
sizes of the error terms. Engle (1982) also finds that the variance is also related 
to the squares of the previous error terms. The model is commonly employed 
in modeling financial time series that exhibit time-varying volatility and vola-
tility clustering. The ARCH model is used when the error variance in a time 
series follows an AR model; if an ARMA model is assumed, the model becomes 
a GARCH model which was introduced by Bollerslev (1986). Upon analysis of 
our data, ARMA (2, 4) is found to be the best mean model to use among the se-
lected lags. The study uses symmetric and asymmetric models for comparative 
analysis.  

3.6.1. GARCH Model 
The ARCH (autoregressive integrated moving-average) model and its genera-
lized form GARCH models can capture stylized facts such as long and short 
memory, clustering effects and asymmetric leverage effects. 

ARCH models assume that tomorrow’s return variance is an equally weighted 
average of the squared residuals of the last available data. This assumption may 
not meet the goal of the model as more recent events/data are viewed to be more 
relevant and should be allocated higher weights. The model also gives zero 
weights to events that are more than one month old which should not be the 
case because the events hold some information which could be important/ 
instrumental in forecasting future volatility. The ARCH model estimates the 
weights of the parameters and allows the data to determine the best weights to 
use in forecasting the variance. The ARCH(q) model for the series t  is deter-
mined by specifying the conditional distribution of t  given news/information 
available upto time (t − 1). Let 1t−ψ  denote this new. ARCH(q) model for the 
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series t  is given by Equation (13); 

( )1

2
0 1

1

~ 0,t t t

q

t i t
i

N v

v a a

−

−
=

ψ

= +∑




                      (13) 

where 0 0a > , 0ia ≥  for all i and 1 1q
ii a

=
<∑  are the requirements to ensure 

non-negative and finite unconditional variance of stationary t  series. The 
weights are equal to unity. 

Generalized ARCH (GARCH) model was developed to overcome ARCH 
models challenges. Just like ARCH model, GARCH model is a weighted average 
of past squared residuals. However, its weights reduce but never become zero. 
The model argues that the best predictor of next period’s variance is a weighted 
average of the long run average variance, the variance predicted for this period 
and the new information in this period i.e. the most recent squared residual. The 
model has the form as shown in Equation (14); 

2
0 1

2

1 1

1
t t

q p

t i t j t j
i j

v

v a a b v− −
= =

= ξ

= + +∑ ∑




                   (14) 

where ( )~ 0,1IIDξ . For the conditional variance to be positive; 0 0a > , 0ia ≥ , 
1,2,3, ,i q=  . 0jb ≥ , 1, 2, ,j p=   is sufficient. 

Let 2
t t thη = − , GARCH model can be expressed in terms of ARMA model as 

in Equation (15); 

( )
( )max ,

2 2
0

1 1

p q p

t i i t i t j t j
i j

a a b b− −
= =

= + + + η + η∑ ∑              (15) 

A GARCH model is therefore an extension of ARMA approach to squared se-
ries 2

t . Using ARMA model as our mean model is as in Equation (16); 

( )
( )( )

2 0
max ,

11
t p q

i ii

a
E

a b
=

=
− +∑

                    (16) 

3.6.2. Exponential GARCH (EGARCH) Model 
GARCH models assume that only the magnitude and not the positivity or nega-
tivity of unanticipated excess returns determine the future volatility. Accredited 
to Nelson (1991), the EGARCH model was developed to cater for the shortcom-
ings of the GARCH models. The model allows for asymmetric effects between 
positive and negative shocks and has no restrictions on the parameters. The 
conditional variance th  is an asymmetric function of lagged distributions. In 
financial time-series, it has been stated that volatility behaves differently de-
pending on if a positive or negative shock occurs( leverage effect) and describes 
how a negative shock causes volatility to rise more than, if a positive shock with 
the same magnitude had occurred. The model is as shown in Equation (17); 

( ) ( )

1 2

1
1 1

0 1
1

1
ln

1

t t t
q

q
t tp

p

v

b B b B
v a g

a B a B

−
−

−

≡ ξ

+ + +
≡ +

− + +








            (17) 
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where: 

( )
( ) ( )
( ) ( )

, if 0,

, if 0,
t t t

t
t t t

E
g

E

 θ+ γ − γ ≥≡ 
θ− γ − γ <

  


  
 

B is the lag operator such that; 

( ) ( )1g t tB g −≡   

Lama et al. (2015) specify the logarithm of conditional variance and states that 
the model can also be represented as in Equation (18);  

( ) ( ) 1 1
0 1

1 1

ln ln t t
t t

t t

v a v
v v
− −

−
− −

≡ +β + α + γ
 

             (18) 

From the equation above, we can deduce that the leverage effect is exponential 
not quadratic. The forecasts of the conditional variance are also seen to be 
non-negative.  

3.6.3. Integrated GARCH (IGARCH) Model 
For the GARCH model, GARCH (p, q) process is weakly stationary if  

1 1 1q p
ji ja b

= =
+ <∑ ∑ . Stationarity however does not require such a stringent re-

striction. The unconditional variance does not depend on time. The covariance 
is not stationary. Thus; 1 1 1q p

ji ja b
= =

+ ≡∑ ∑  
Developed by Engle and Bollerslev (1986), the model takes the form as in Eq-

uation (19); 

( ) 2 2
0 1 1 2 11t t th a b b− −≡ + − + σ                    (19) 

The model can also be viewed as a product of omitted structural breaks rather 
than the result of true IGARCH behaviour.  

3.6.4. Threshold Garch (TGARCH) Model 
TGARCH model proposed by Zakoian (1994) is another model that can be used 
to handle leverage effects. It was designed to divide the distribution of the inno-
vations into disjoint intervals and then approximate a piece-wise linear function 
for the conditional standard deviation and the conditional variance. If there are 
only two intervals, the division is normally at zero, i.e., the influence of positive 
and negative innovations on the volatility is differentiated. The TGARCH model 
of order can be written as in Equation (20);  

0 1
2 2 2
t t t

t j t j i t i k t k t k

y X

I− − − −

= β +β +

σ = ω+ β σ + α + γ∑ ∑ ∑


 
            (20) 

where; 
1t kI − =  if 0t k− <  
0t kI − =  otherwise 

If 0t k− > , then it indicates good news. If 0t k− ≤ , it represent bad news. 
If 0t k− ≤ , then 1t kI − =  
Therefore; 
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k t k t k t kI− − −γ = γ∑ ∑   where; 
If 0kγ > , then bad news increase volatility 
If 0kγ < , then bad news reduce volatility. 
If 0t k− >  then 0t kI − = , 
Given the information above, impact on volatility can be summarised as be-

low; 
For good news = iα  
For bad news = i kα + γ . 

3.6.5. Glosten-Jagannathan-Runkle GARCH (GJR GARCH) Model 
Glosten, Jagannathan and Runkle (1993) proposed a modification of the original 
GARCH model using a dummy variable to capture asymmetric effects in finan-
cial time series. Equation (21) shows the general formula of the model: 

( )
2 2 2 2

0
1 1 1

1

~ 0wher ,1

1 if 0
0 if 0

et t t t

p q p

i t j t j i t i t i
i j i

t
t i

t i

y iid

y I

I

− − −
= = =

−
−

−

= σ

σ = α + α + β σ + γ α

α <
≡  α ≥

∑ ∑ ∑

 

             (21) 

t iI −  is a dummy variable that has a value of 1 when the yield is negative and 0 
otherwise. The impact of the news, or shocks to the yield on the volatility de-
pends on the sign of the parameter estimated by this dummy variable. In any 
case, this model, which allows for different responses of the volatility to positive 
or negative shocks and supposes that the minimum volatility is observed when 
there, is no news.  

3.7. Backtesting Var 

VaR can be viewed as a gauge that summarizes the worst loss over a target pe-
riod that will not be exceeded for a given confidence level (Wipplinger, 2007). 
More formally, VaR is expressed as in Equation (22); 

( )VaRPr L > = α                      (22) 

where L is the loss on a given day and is the significance level. VaR is therefore a 
quantile in the distribution of profit and loss that is expected to be exceeded only 
with a certain probability, formally expressed as in Equation (23); 

( )( )VaR
d

p
qp f X X

−

∞
= ∫                    (23) 

In this paper; the VaR figures are given using a 1% significance level. VaR is 
computed using the conditional volatility of returns multiplied by the quantile of 
a given probability distribution. In our study, normal distribution is assumed 
thus the quantile is −2.33. 

The VaR estimates in this paper will be evaluated using two tests: an uncondi-
tional and a conditional test of coverage originally developed by Kupiec (1995) 
and Christoffersen (1998) respectively. 

Kupiec’s test 
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Kupiec’s test was developed to test whether the empirical proportion of viola-
tions congregate with the nominal proportion specified by the VaR significance 
level. According to Kupiec (1995), a likelihood ratio test can be constructed as 
shown in Equation (24); 

( )2ln 1 2ln 1
T F F

T F F
uc

E FLR p p
T T

−
−    = − − −    

     
        (24) 

where T is the number of out-of-sample estimates and F the observed number of 

violations. Hence, 
E
T

 is the empirical VaR size which follows the binominal 

distribution so ( )~ ,F B T p . ucLR  follows the chi-square distribution with one 

degree of freedom, i.e. ( )
2
1ucLR χ  under the null hypothesis; 

E p
T
= . Rejection 

of the null hypothesis implies that the empirical VaR size is significantly differ-
ent from the stated VaR significance level, i.e. the nominal size. 

Christoffersen’s test of independence 
Ideally, a violation today does not reveal any information about the likelihood 

of a violation tomorrow, i.e. the violations occur independently of each other. A 
disadvantage with Kupiec’s test is its ability detect whether the violations occur 
independently or clustered in a sequence. Christoffersen (1998) developed a test 
to detect clusters of violations. The advantage with the Christoffersen test of in-
dependence is its deference to the conditionality in the volatility forecasts. Good 
volatility forecasts ought to respond to periods of high and low volatility and 
subsequently adjust its predictions accordingly after the volatility clusters. 

The probability of two subsequent violations are therefore defined as in Equa-
tion (25); 

( )1|ij t tp P i j−= η = η =                      (25) 

Independence of violations is therefore defined as violations that do not occur 
in two subsequent days. A drawback with this test is arguably the definition of 
independence as a violation today followed by a violation the day after tomor-
row is not detected in this test. Christoffersen (1998), suggests a likelihood ratio 
test of conditional coverage as in Equation (26); 

( ) ( ) ( )00 1001 11
01 01 11 112 ln 1 2ln 1 1T F F

indLR p p η− ηη η = − − + − π π − π π      (26) 

where ijη  is the number of observations with the value i followed by j for 

, 0,1i j =  and ij
ij

ijj

η
π =

η∑
 are the corresponding probabilities. ( )

2
ind iLR χ   

under the null hypothesis which states that the violations are independently dis-
tributed. Hence, a rejection of the null hypothesis infers that the violations are 
clustered and consequently not independent.  

3.8. Model Selection Criteria 

This section explains the model selection criteria used to select the model com-
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bination to use. 
The Akaike Information Criterion (AIC) introduced by Akaike (1973) is 

used to select the mean model to be used. AIC, which is a penalized-likelihood 
criteria, is an estimate of a constant plus the relative distance between the un-
known true likelihood function of the data and the fitted likelihood function of 
the model. A lower AIC means a model is considered to be closer to the true 
model.  

The loglikelihood is used to select the best model for VaR estimation. The 
higher the loglikelihood, the better the model. Besides this, the information cri-
teria are also used to pick the model. A good model had the highest loglikelihood 
or the lowest information criteria. Therefore, a higher log likelihood translates to 
a low information criteria. The information criteria used in this study are the 
Akaike, Bayes, Shibata and Hannan-Quinn.  

Forecasting performance of the five models is analysed by comparing the er-
rors i.e. comparing the forecasted returns with realized returns. This is done by 
comparing the mean error (ME), mean absolute error (MAE) and root mean 
square error (RMSE). The lesser the errors the better the more accurate the 
model is in forecasting correct return for Brent Crude Oil. ME, MAE and RMSE 
are calculated using the formulae in Equation (27)  

( )

( )

1

1

2

1

1ME

1MAE

1RMSE

n

i j
j

n

i j
j

n

i j
j

y y
n

y y
n

y y
n

∗

=

∗

=

∗

=

= −

= −

= −

∑

∑

∑

                    (27) 

where; y∗  are the forecasted values and y the realized values. 

4. Data Analysis 

This study involves analysis the volatility of Brent Crude oil spot prices and VaR 
estimation using five models. Brent crude oil spot prices from the year 2011 to 
2020 were used in the analysis. The data was sourced from  
https://www.macrotrends.net/2480/brent-crude-oil-prices-10-year-daily-chartM
acrotrends. Part of the data was used for model building (in-samples)and the 
rest for out of sample forecasting.  

4.1. Data Exploration 
4.1.1. Spot Prices 
The analysis is done by use of time series plots and descriptive analysis .The plot 
for Brent Crude Oil Prices for the period between 2011 and 2020 is as in Figure 
1. 

From Figure 1, it can be seen that the spot prices are highly volatile and have 
had a downward trend from the year 2011 to 2020. It is important to note the 
high drop in oil prices earlier in the year 2020 specifically between March 2020 
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and April 2021 which was fueled by the Covid-19 pandemic. This was a time 
when Corona Virus had spread to most countries and governments were starting 
to impose lockdown and restricting movement. This is a good example of how 
oil prices are affected by other factors in the world. Volatility clustering is also 
evident from the figure above i.e. prices will rise continuously for a period of 
time and drop continuously for a period of time throughout the entire study pe-
riod from the year 2011 to 2020. 

Figure 2 below is a QQ-plot for the spot prices which shows that the spot 
prices for the period are not normally distributed. 

 
Table 1. Returns characteristics. 

sample size 2530 

mean −0.0002295898 

standard deviation 0.02912715 

skewness −3.324808 

kurtosis 126.2278 

 

 
Figure 1. Daily Brent Crude Oil closing price. 

 

 
Figure 2. QQ-plot for Brent Crude Oil spot prices. 
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4.1.2. Returns 
To analyse the volatility of crude oil prices, we use oil returns for the same pe-
riod. Returns can be comparable with each other while prices on the other hand 
always depend on the previous price. Returns are preferred when modelling vo-
latility because prices are bounded to be non-negative and usually have a unit 
root, while log-returns can have any value, which makes them easier to model 
and one can achieve stationarity using log returns.  

Time plots are used to determine the observable characteristics of the returns 
as presented in Figure 3 and Figure 4 which show the log returns and squared 
logreturns respectively. 

From the plots it is evident that the financial time series exhibit common fea-
tures. Variance is not constant throughout the figures, which is evidence of he-
teroscedasticity/mean reversion property. Volatility clustering can also be seen 
from the plots. 

 

 
Figure 3. Daily brent crude oil log returns. 

 

 

Figure 4. Daily brent crude oil squared log returns. 
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The ARCH Langrangian Multiplier Test further confirms these findings that 
there is presence of heretoscedasticity in the crude oil data. 

aarch.test(logreturns,arch="box",alpha=0.05,lag.max = 2) 
Box-Ljung test data: y^2 X-squared = 367.14, df = 2, p-value < 2.2e-16 
alternative hypothesis: y is heteroscedastic  

The descriptive statistics which includes; mean, standard deviation, kurtosis, 
skewness are utilized so as to describe the returns characteristics as shown in 
Table 1. 

The kurtosis is greater than three and indicates that the returns have fat tails 
heavier than a normal distribution. The skewness is not equal to zero which in-
dicates that the returns are not symmetric.  

Figure 5 further helps us understand how the returns compare with the nor-
mal distribution of the same mean and standard deviation. Brent crude oil log 
returns plot have the same shape as normal returns curve but have a steaper 
curve than that of a normal distribution This shows presence of heavier tails 
than normal distribution. 

4.2. Testing for Normality 

The normal QQ-plot is used to analyze the distributional properties, that is, to 
check whether the return series is normally distributed. The normal QQ-plot 
represents a scatter plot of a given distribution. The greater the departure from 
this line the greater the evidence against the null hypothesis of being a normal 
distribution. 

Figure 6 shows that the returns are relatively normally distributed with some 
outliers (appear further from the normal line) which can be taken to be the 
heavier tails seen in Figure 5 above. This plot show that normal distribution can 
be used to model the returns in this study but would not take care of the heavy 
tails.  

The presence of heavy tails prompts us to consider the student t distribution 
which is known to have the ability to capture heavy tails. Figure 7 below shows 
QQ-plot for Brent Crude Oil prices fitted using t-distribution. 

 

 
Figure 5. Comparison with normal distribution. 
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Figure 6. Returns QQ-plot. 

 

 
Figure 7. Returns student t QQ-plot. 

 
The Jarque Bera (JB) test is applied so as to strengthen these results. The hy-

pothesis is: 
H0 The data is normally distributed. 
H1 The data is not normally distributed. 

jarque.bera.test(logreturns) 
Jarque Bera Test 
data: logreturns X-squared = 1607358, df = 2, p-value < 2.2e-16  

The Jarque-Bera statistics high value shows that the null hypothesis of nor-
mality can be rejected at the 1% level of significance. The high excess kurtosis 
and negative skewness also supports this finding. The student t distribution is 
symmetric and bell-shaped, like the normal distribution. However, the t-distri- 
bution has heavier tails thus more prone to producing values that fall far from its 
mean. Since we cannot fully discredit normal distribution in this study, we chose 
to fit the volatility models using the normal distribution and t-distribution. 
T-distribution was added due to its ability to capture heavier tails which are evi-
dent from our analysis above.  

4.3. Testing for Stationarity 

To investigate whether the return series are stationary, the Augmented Dick-
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ey-Fuller (ADF) test was applied. The hypothesis was such that: 
H0: Non stationary. 
H1: Stationary. 
The results for the test are as shown in Table 2.  
The p-value is <0.05. This allows the rejection of the null hypothesis.  
To confirm the results above, we use the Philips Perron (PP) test which is a 

non-parametric correction to ADF to account for autocorrelation associated with 
breaks/regime shifts in the data. 

The results for the PP test are as shown in Table 3.  
The p value for the PP test is less than 0.05 and is same as the p value for the 

ADF test. We therefore conclude that that the return series is stationary.  

4.4. Determining the Mean Equation 

The first step in the selection of the mean equation is to plot the sample Auto-
correlation function (ACF) and Partial autocorrelation function (PACF). If the 
sample ACF dies off and the PACF cuts off at lag p that would indicate an AR (p) 
process. Similarly if the sample PACF dies off and the ACF cuts off at lag q the 
process would be an MA (q) process.  

Figure 8 and Figure 9 below show the ACF and PACF plots.  
Table 4 shows the AIC values for the selection of the mean equation. 
From Table 4, ARMA (2, 0, 4) has the least AIC and is thus selected as the 

mean equation. This is in line with the finding that our series is stationary. No 
differencing or detrending was done to make the series stationary. Therefore, we 
will use ARMA mean equation and not ARIMA.  

4.5. Modelling and Forecasting Volatility 

This section aims at fitting the models that are being used to compare the vola-
tility. This is done by; 

1) Checking for the ARCH effects. 
2) Fitting volatility models. 
3) Back-testing. 
4) Forecasting.  

 
Table 2. ADF Test. 

Dickey-Fuller −11.324 

Lag order 13 

p-value 0.01 

 
Table 3. PP Test. 

Dickey-Fuller −52.403 

Truncation lag parameter 8 

p-value 0.01 
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Table 4. Mean model selection. 

Models Order AIC Models Order AIC 

AR 4 −10,307.51 MA 4 −10,307.46 

AR 5 −10,305.60 MA 5 −10,305.49 

ARMA (4, 3) −10,307.95 ARIMA (4, 1, 3) −10,294.97 

ARMA (4, 4) −10,306.46 ARIMA (4, 1, 4) −10,288.58 

ARMA (4, 2) −10,303.52 ARIMA (4, 1, 2) −10,291.86 

ARMA (3, 3) −10,309.97 ARIMA (2, 1, 3) −10,298.55 

ARMA (3, 4) −10,307.99 ARIMA (5, 1, 3) −10,288.80 

ARMA (2, 4) −10,319.42 ARMA (2, 3) −10,310.00 

ARMA (5, 3) −10,305.98 ARMA (0, 0) −10,312.58 

ARMA (5, 5) −10,302.66 . . . 
 

 
Figure 8. Returns ACF. 

 

 

Figure 9. Series squared logreturns PACF. 

4.5.1. Testing for ARCH Effects 
The Lagrange multiplier (LM) test by Engle (1982) was applied to the residuals 
of simple time series models. The hypothesis is as follows: 

0 1 2

1 1 2

: 0
: 0

m

m

H
H

α = α = = α =

α = α = = α ≠





 

The ARCH-LM tests results provide strong evidence for rejecting the null hy-
pothesis as shown in Table 5 below. This confirms that ARCH effects exist; 
hence, an ARCH or GARCH model should be employed in modeling the return 
time series. 

4.5.2. Fitting Volatility Models 
Although it can be difficult to estimate the order (p, q) to use while modelling, 
different studies have shown that the predictive effect of models does not neces-
sarily improve with the increase in order (Hansen, P. R., Lunde, A., 2005 and 
Bollerslev, T., Chou, R.Y., Kroner, K.F 1992). We thus chose order (p, q) = (1, 1) 
in this study. GARCH, EGARCH, IGARCH, TGARCH AND GJR GARCH 
models were fitted. 

The parameters for GARCH normal distribution are as shown in Table 6;  
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The parameter for GARCH student t distribution is as shown in Table 7;  
The loglikelihood and information criteria values for the five models fitted 

with normal distribution are as shown in Table 8;  
The loglikelihood and information criteria values for the five models fitted 

with student t distribution are as shown in Table 9. 
 
Table 5. ARCH-LM Test. 

. Brent 

Chi-squared 233.24 

df 10 

p-value 162.2 −  
 
Table 6. Models’ parameters—normal distribution. 

. GARCH . EGARCH . IGARCH . TGARCH . GJR 

μ −0.000251 μ 1.04682 μ −0.000255 μ −0.000720 μ −0.000576 

ar1 −0.323653 ar1 0.11040 ar1 −0.323667 ar1 −0.351039 ar1 −0.350779 

ar2 −0.987638 ar2 0.10861 ar2 −0.987639 ar2 −0.989692 ar2 −0.991159 

ma1 0.349572 ma1 0.40827 ma1 0.349564 ma1 0.369471 ma1 0.373420 

ma2 1.017209 ma2 0.05510 ma2 1.017128 ma2 1.006488 ma2 1.007623 

ma3 0.029357 ma3 0.50047 ma3 0.029320 ma3 0.023553 ma3 0.026635 

ma4 0.008236 ma4 0.03617 ma4 0.008168 ma4 0.001602 ma4 0.000316 

omega 0.000001 omega 0.66694 omega 0.000001 omega 0.000072 omega 0.000001 

alpha1 0.055658 alpha1 0.29317 alpha1 0.057194 alpha1 0.039121 alpha1 0.000000 

beta1 0.942370 beta1 0.73588 beta1 0.942806 beta1 0.966937 beta1 0.967021 

. . γ1 0.13412 γ1 . etal1 0.815349 γ1 0.063959 

 
Table 7. Models’ parameters—student’s t distribution. 

. GARCH . EGARCH . IGARCH . TGARCH . GJR 

μ −0.000074 μ −0.000378 μ −0.000074 μ −0.000322 μ −0.000287 

ar1 −1.152015 ar1 −1.475760 ar1 −1.149651 ar1 −1.475475 ar1 −1.414132 

ar2 −0.328867 ar2 −0.990453 ar2 −0.327741 ar2 −0.990406 ar2 −0.935428 

ma1 1.151574 ma1 1.475957 ma1 1.149044 ma1 1.473940 ma1 1.414838 

ma2 0.343494 ma2 1.002337 ma2 0.342293 ma2 1.000491 ma2 0.946654 

ma3 0.029833 ma3 0.016494 ma3 0.029902 ma3 0.016033 ma3 0.021115 

ma4 0.024049 ma4 0.014478 ma4 0.024163 ma4 0.015380 ma4 0.021447 

omega 0.000001 omega −0.023329 omega 0.000001 omega 0.000053 omega 0.000001 

alpha1 0.048755 alpha1 −0.055690 alpha1 0.050463 alpha1 0.036867 alpha1 0.003159 

beta1 0.948916 beta1 0.997140 beta1 0.949537 beta1 0.969347 beta1 0.968482 

. . γ1 0.064968 γ1 . etal1 0.775855 γ1 0.053914 

shape 6.546236 shape 7.645430 shape 6.337109 shape 7.255139 shape 7.638457 
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Table 8. Loglikelihood and Information Criteria values—normal dist. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 
loglikelihood 5398.784 5423.502 5398.583 5414.006 5422.328 

Akaike −5.3249 −5.3483 −5.3257 −5.3389 −5.3472 

Bayes −5.2972 −5.3178 −5.3007 −5.3084 −5.3167 

Shibata −5.3249 −5.3484 −5.3257 −5.3390 −5.3472 

Hannan-Quinn −5.3147 −5.3371 −5.3165 −5.3277 −5.3360 
 

Table 9. Loglikelihood and Information Criteria values—student’s t dist. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 
loglikelihood 5430.455 5446.416 5430.239 5443.052 5442.635 

Akaike −5.3552 −5.3700 −5.3560 −5.3667 −5.3662 

Bayes −5.3247 −5.3367 −5.3282 −5.3334 −5.3330 

Shibata −5.3553 −5.3700 −5.3560 −5.3667 −5.3663 

Hannan-Quinn −5.3440 −5.3578 −5.3458 −5.3544 −5.3540 
 

A model that has the highest logarithm maximum likelihood function value is 
picked as the best model. The less the information criteria values, the better the 
model. From the two tables above, The EGARCH model has the highest log like-
lihood value and the lowest Information criteria values for both normal distribu-
tion and t-distribution. However, the t-distribution fits the data better as it has 
higher log likelihood value and less information criteria compared to normal 
distribution. This show that the EGARCH-t distribution is the best fitted model 
among the models tested. 

News impact curves, introduced by Pagan and Schwert (1990), are useful tools 
to visualize the magnitude of volatility changes in response to shocks. The name 
comes from the interpretation of shocks as news influencing the market move-
ments. News impact curves show the change in volatility against shocks in dif-
ferent size. The can be used to show asymmetric effects in volatility. 

Figure 10 and Figure 11 are some examples of what news impact curves look 
like; 

Having fitted the models, we now perform back-testing tests to see whether 
the models were fitted correctly.  

4.6. VaR Backtesting 

Calculation of the number of VaR exceptions (days when actual losses exceed 
VaR predictive results) is commonly used to estimate VaR in financial series. If 
the ratio of VaR exceptions is lower than the selected confidence level, the risk is 
overestimated and vice versa. It is important to note that the exact exceptions as 
per the confidence level are hardly observed. Statistical analysis is thus necessary 
to study whether exceptions is reasonable or not. VaR is usually calculated at the 
99% or 95% confidence level. This is the loss that is expected to be exceeded only 
1% or 5% of the time respectively. 
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Figure 10. GARCH.  

 

 

Figure 11. EGARCH.  
 

In this study, we do a historical backtest in checking the model performance 
where estimated VaR is compared with the actual return over the period. If the 
return is more negative than the VaR, we have a VaR exceedance. In our case, a 
VaR exceedance should only occur in 1% of the cases (since we specified a 99% 
confidence level). 

According to Li et al. (2016), the unconditional coverage test critical value is 
3.841459; and the conditional coverage test critical value is 5.991465.  

For Christoffersen test, the null hypothesis is: Correct Exceedances and Inde-
pendence of Failures  

From Tables 10-13, it can be informed that both unconditional and condi-
tional L.R. statistics are smaller than critical value, which show that both Kupiec 
test and Christoffersen test don’t reject null hypothesis on 1%.These results also 
indicate that the models can produce accurate VaR forecasts and handle the ev-
er-changing fluctuations in the return rate of Brent Crude Oil. The backtesting 
results for the five models for normal distribution and t-distribution are sum-
marised as in Tables 10-13. All GARCH models passed both LRuc and LRcc 
tests. This is seen from the fact that the four tests results failed to reject the null 
hypothesis that the observed failure rate is equal to the failure rate suggested by  
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Table 10. Kupiec test—normal dist. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 

alpha 1% 1% 1% 1% 1% 

Backtest Length 224 224 224 224 224 

Expected Exceed 2.2 2.2 2.2 2.2 2.2 

Actual VaR Exceed 5 7 5 7 5 

Actual % 2.2 % 3.1% 2.2% 3.1% 2.2% 

Null-Hypothesis: . . . . . 

LR.uc Statistic: 2.544 6.535 2.544 6.535 2.544 

LR.uc Critical: 6.635 6.635 6.635 6.635 6.635 

LR.uc p-value: 0.111 0.011 0.111 0.011 0.111 

Reject Null: NO NO NO NO NO 

 
Table 11. Christoffersen test—normal dist. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 

alpha 1% 1% 1% 1% 1% 

Backtest Length 224 224 224 224 224 

Expected Exceed 2.2 2.2 2.2 2.2 2.2 

Actual VaR Exceed 5 7 5 7 5 

Actual % 2.2 % 3.1% 2.2% 3.1% 2.2% 

Null-Hypothesis: . . . . . 

LR.cc Statistic: 2.773 6.989 2.773 6.989 2.773 

LR.cc Critical: 9.21 9.21 9.21 9.21 9.21 

LR.cc p-value: 0.25 0.03 0.25 0.03 0.25 

Reject Null: NO NO NO NO NO 

 
Table 12. Kupiec test—T dist. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 

alpha 1% 1% 1% 1% 1% 

Backtest Length 224 224 224 224 224 

Expected Exceed 2.2 2.2 2.2 2.2 2.2 

Actual VaR Exceed 4 5 3 5 4 

Actual % 1.8 % 2.2% 1.3% 2.2% 1.8% 

Null-Hypothesis: . . . . . 

LR.uc Statistic: 1.133 2.544 0.235 2.544 1.133 

LR.uc Critical: 6.635 6.635 6.635 6.635 6.635 

LR.uc p-value: 0.287 0.111 0.628 0.111 0.287 

Reject Null: NO NO NO NO NO 
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Table 13. Christoffersen test—T dist. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 

alpha 1% 1% 1% 1% 1% 

Backtest Length 224 224 224 224 224 

Expected Exceed 2.2 2.2 2.2 2.2 2.2 

Actual VaR Exceed 4 5 3 5 4 

Actual % 1.8 % 2.2% 1.3% 2.2% 1.8% 

Null-Hypothesis: . . . . . 

LR.cc Statistic: 1.279 2.773 0.317 2.773 1.279 

LR.cc Critical: 9.21 9.21 9.21 9.21 9.21 

LR.cc p-value: 0.528 0.25 0.853 0.25 0.528 

Reject Null: NO NO NO NO NO 

 
the confidence interval. This shows that the VaR models produced the correct 
number of exceedances at the 1% level. The simple GARCH, IGARCH and GJR 
models outperform the rest fof the normal dostribution. The IGARCH model is 
the best for t-distribution with the GARCH and GJR models following closely. 
The LR.uc Statistic and LR.cc Statistic for the IGARCH T distribution are the 
least. We therefore conclude that the IGARCH T distribution model is the best 
for VaR estimations. 

The plots showing the backtesting results are as shown in Figure 12; 
The plots show that the VaR results are lower than returns from the five 

GARCH models. This is a clear indication that the models were fitted correctly.  

4.7. Forecasting 

Since we have now confirmed that our risk models works reasonably well, we 
proceed to produce returns forecasts. Our data has 2530 log returns. Out of these, 
2024 were used for model fitting. We now use the remaining 506 for comparison 
with forecasted values. We will therefore forecast 506 values using the five 
GARCH models. To compare the accuracy of the models we get the difference 
between the realized values and forecasted values to get the errors. The results 
are as shown in Table 14 and Table 15; 

From Table 14 and Table 15, all the five models produce relatively good re-
sults. This shows that we cannot discredit the importance of any of the models in 
forecasting crude oil prices. However, IGARCH model outperforms all models 
with the simple GARCH model following closely. This shows that even with the 
development of new GARCH extension models, simple GARCH model is still 
relevant in modelling crude oil prices. The IGARCH—T distribution model has 
less errors than IGARCH—normal distribution. We threfore conclude that the 
IGARCH—T distribution is the best for Brent Crude Oil spot prices forecasting.  
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Figure 12. VaR backtesting.  
 
Table 14. Errors summary—normal distribution. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 
ME 0.0002444267 0.0007117248 0.0002477164 0.0006844439 0.0005410619 

RMSE 0.05350485 0.05335824 0.05350445 0.05337032 0.053378 
MAE 0.0256712 0.02540721 0.02567104 0.02542058 0.02539998 
MPE NaN NaN NaN NaN NaN 

MAPE Inf Inf Inf Inf Inf 
 

Table 15. Errors summary—student T distribution. 

. GARCH EGARCH IGARCH TGARCH GJR GARCH 
ME 0.00009929977522 0.0003638584 0.00009635908396 0.0003084351 0.0002731613 

RMSE 0.05304368 0.0532057 0.05304335 0.05319495 0.0533035 
MAE 0.02505944 0.02527749 0.0250589 0.02526921 0.0252244 
MPE NaN NaN NaN NaN NaN 

MAPE Inf Inf Inf Inf Inf 
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5. Discussion, Conclusion and Recommendations 
5.1. Discussion 

We set out to analyse different volatility models and their ability to forecast 
crude oil price volatility. The study considered five volatility models due to their 
ability to capture various properties of data series. The models analysed in this 
study are; GARCH, EGARCH, IGARCH, TGARCH AND GJR GARCH models. 
Brent Crude Oil spot prices data was used in our study. 

First, analysis of the logreturns was done. We found that the returns almost fit 
a normally distribution but have heavy tails. This led us to fitting the T-distri- 
bution in addition to the normal distribution. The T-distribution outperformed 
the normal distribution. This is a clear indication that T-distribution is better 
than normal distribution when the data in question has heavy tails/outliers. 
Presence of mean reversion and heteroscedasticity was also verified through 
plots and ARCH Langrangian Multplier test. These properties indicated that 
GARCH models were the best to be used for our study.  

Fitting of the GARCH models was done to get the parameters. The higher the 
logarithm maximum likelihood value, the better the fitting of the model and the 
lower the information criteria, the better the model. The EGARCH model is the 
best fitted model based on the loglikelihood value of 5446.416 and AIC value of 
−5.3700 out of the fitted models. We then proceeded to do backtesting VaR test 
which indicated that all the five models were fitted correctly. However, of the 
five models, IGARCH—T distribution model was the best for VaR estimations 
based on the LR.uc Statistic of 0.235 and LR.cc Statistic of 0.317. We therefore 
concluded that the IGARCH T distribution is the best for VaR estimations for 
Brent Crude Oil prices. 

After verifying that all the models work correctly, we proceeded and fore-
casted Brent crude oil daily prices. The forecasted log-returns were compared 
with the realized log-returns for the same period. All the GARCH model give 
relatively the same results for the error reports. However, the IGARCH mod-
el outperformed the other GARCH models across. The IGARCH T distribu-
tion gave the best estimates in all the tests done based on the low ME value 
of 0.0000963591 and RMSE of 0.05304335. We therefore conclude that the 
IGARCH-T distribution model is the best for forecasting Brent Crude Oil Spot 
prices. 

5.2. Conclusion 

From our study, we find that the fact that the EGARCH model is the best fitted 
model based on the highest log-likelihood value of 5446.416 and least AIC 
value of −5.3700 in this study does not translate to the model being the best for 
VaR estimation and volatility forecasting. The IGARCH model is the best for 
both VaR estimation based on the lowest LR.uc Statistic of 0.235 and lowest 
LR.cc Statistic of 0.317 and volatility forecasting based on the low ME value of 
0.0000963591 and RMSE of 0.05304335 for Brent Crude Oil prices. This shows 
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the importance of testing the models performance in all stages i.e. best fitted 
model, backtesting, forecasting performance so as to pick the best model. 

From the above findings, we can conclude that; The VaR is still a useful tool in 
risk management. There is hardly any model that fits a commodity forever. 
Therefore, it is always better to compare all of the models and choose an appro-
priate one to forecast the VaR for a commodity in a long-term horizon. 

Even for the same commodity of same country/companies, in different time 
periods, the appropriate model to predict its future VaR may vary too. It is 
therefore important for companies to consider the statistical properties of the 
time series in specified time periods when choosing risk management models. 

The distribution used in modelling matters. From our study, we used the nor-
mal distribution and T-distribution. The T-distribution performed better across 
all the five models fitted. This was mainly attributed to the presence of heavy tail 
in the data. Therefore, the choice of the distribution is important in ensuring 
that we reduce forecasting errors. 

5.3. Recommendation 

The recommendations for practitioners are that investors should use both VaR 
estimation and forecasting performance of volatility models when evaluating in-
vestment risk. VaR almost always overestimates the risk. From the forecasting 
results, all models give almost similar errors indicating that all the models can be 
relied upon to give a close estimate of future prices. However, the study shows 
that IGARCH model gives better results for VaR estimations and volatility fore-
casting. 

We lacked enough tools to include different volatility models in our study. 
The R-packages used in the study could only accommodate GARCH models 
leaving a gap for other types of models such as multifractal models. Further re-
search is recommended to expand the type of volatility models used to models 
such as Markov Switching Multifractal Models. This would require development 
of R packages that can accommodate these models. The number of distributions 
used can also be increased to include distributions such as skewed Student-t and 
reparameterised Johnson distributions. We also recommend tests to be done 
with 5% level of significance.  
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