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Abstract 
Affine quantization, a parallel procedure to canonical quantization, needs 
to use its principal quantum operators, specifically ( ) 2D PQ QP= +  and 

0Q ≠ , to represent appropriate kinetic factors, such as 2P , which involves 
only one canonical quantum operator. The need for this requirement stems 
from path integral quantizations of selected problems that affine quantization 
can solve but canonical quantization fails to solve. This task is resolved for 
simple examples, as well as examples that involve scalar, and vector, quantum 
field theories. 
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1. Elements of Basic Affine Quantization 

Affine quantization (AQ) has been created from canonical quantization (CQ) in 
the sense that from P and Q, which obey [ ], 1lQ P i=  , we build the dilation op-
erator ( )† 2D P Q QP≡ +  along with 0Q ≠ , stated otherwise as 2 0Q > , which 
leads to [ ],Q D i Q=  . The reason that 0Q ≠  is that if 0Q =  then 0D =  and 
P cannot help. Because Q is “incomplete”, then †P P≠ . However, †P Q PQ= , 
thanks to 0Q ≠ . And so ( ) 2D PQ QP= +  as well. 

The dilation operator can be chosen in different ways that help formulate and 

solve various problems. In particular, if ( ) ( ) 2D PF Q F Q P= +    along with 

( ) 0F Q ≠ , it follows, that ( ) ( )( )2, 2F Q D i F Q ′
=    , wherein the prime sig-

nals a differentiation with respect to Q. 
An interesting way in which AQ can lead to CQ arises in the partial-harmonic 

oscillator story. Using Schrödinger’s representation, the Hamiltonian operator is 
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given by ( ) ( )22 2 2 2 2d 3 4 2d x x b x − + + +    in which 0b ≥  and x b> − , 
with 0b =  representing the half-harmonic oscillator. While the eigenvalues of 
the full harmonic oscillator are ( )0,1,2, 1 2+    , the eigenvalues of the 
half-harmonic oscillator are ( )2 0,1,2, 1+    , and both sets of these eigenva-
lues are equally spaced, as are the eigenvalues, with different separations for dif-
ferent values of b. While this model belongs to AQ for all finite b, AQ passes to 
CQ when b →∞  [1] [2] [3]. 

Recently, the affine version of the kinetic operator 2P , which is ( )2DG Q D , 
with ( ) ( )1G Q F Q= , was analyzed. It was shown that it led to a different 
correction term which is proportional to 2

 . While the classical Hamiltonian 
for the harmonic oscillator is ( )2 2 2p q+ , with ,p q−∞ < < ∞ , the half-har- 
monic oscillator requires that 0q > . The quantization of the half-harmonic os-
cillator fails using CQ, but succeeds using AQ. The additional factor provided by 

2DG D  led to the correct quantization of the half-harmonic oscillator [1] [2]. 
While the classical Hamiltonian for a single harmonic oscillator can be given by 

( )2 2 2p q+ , where p represents momentum and q represents position, it can 
also represent several classical harmonic oscillators. All that is necessary is to let 

2 2 2 2
1 2p p p p⇒ + + =



  and 2 2 2 2
1 2q q q q⇒ + + =



 . The same story applies CQ 
to the quantum Hamiltonian of a single harmonic oscillator ( )2 2 2P Q+ , and 
it becomes many oscillators, ( ) ( )2 2 2 22 2P Q P Q+ ⇒ +



. Now, for the half-har- 
monic oscillator, the classical Hamiltonian is ( )2 2 2p q+  with 0q > , and the 
quantum Hamiltonian is given by ( )2 2 2 23 4 2P Q Q = + +  , with 0Q > . 
The vector version, which can retain rotational symmetry of this quantum Ha-
miltonian, would be ( )2 2 2 23 4 2P Q Q = + + 

 

 , with 2 0Q >


. In addition, 
this expression can also require that every oscillator has only positive coordi-
nates. For a two-component vector, we can imagine that accepted vectors re-
semble a clock’s minute hand which only points between 12 noon and 3 pm. 

2. Scalar Field Models That Lead to Vector Field Models 
2.1. A Scalar Model That Is Familiar 

Our first model has a classical Hamiltonian given by  

( ) ( )( ) ( ) ( )
22 221 d ,

2
p sH x x m x g x xπ ϕ ϕ ϕ  = + ∇ + +    ∫



       (1) 

where 4,6,8,p =   is the interaction power, and 1n s= +  is the number of 
spacetime coordinates. The affine dilation variable is ( ) ( ) ( )x x xκ π ϕ=  with 
( ) 0xϕ ≠ . It follows that the classical Hamiltonian in affine variables is given by 

( ) ( ) ( )( ) ( ) ( )
22 2 221 d ,

2
p sH x x x m x g x xκ ϕ ϕ ϕ ϕ  = + ∇ + +    ∫



    (2) 

in which ( ) 20 xϕ −< < ∞  now to protect ( )xκ , and it all leads to require that 
( )0

p
xϕ< < ∞ . By just using AQ variables, instead of CQ variables, it is note-

worthy that Equation (2) has absolutely eliminated any non-renormalizability! 
Using AQ and Schrödinger’s representation, the quantum Hamiltonian for 
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this model is  

( ) ( ) ( ) ( )( ) ( ) ( )
22 221 ˆ ˆ d ,

2
p sx x x x m x g x xκ ϕ κ ϕ ϕ ϕ−  = + ∇ + +    ∫



    (3) 

which, following Section 1, leads to a formal version of the affine quantum Ha-
miltonian,  

( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 22 2

2 22

1 ˆ 3 4 0
2

d .

s

p s

x x

x m x g x x

π δ ϕ

ϕ ϕ ϕ

 = + 
+ ∇ + +  

∫ 




             (4) 

At this point we introduce a paragraph from [4] that shows how to eliminate 
( )2 0sδ . 

“The origin of ( )0sδ = ∞  is simply due to the fact that  
( ) ( ) ( )ˆ ˆ, 0 1lsx x iϕ π δ=    . In a sense, this result is unusual. For example, for a 

single classical variable ( )2pq < ∞  and 2 2 1lQP PQ− =  . However, for a clas-
sical field ( ) ( )( )2

x xπ ϕ < ∞  while ( ) ( ) ( ) ( ) 2 2ˆ ˆˆ ˆ 1lx x x xϕ π π ϕ− = ∞ . When 
approximated, as for an integration, then ( )ˆ ˆkxϕ ϕ→  and ( )ˆ ˆkxπ π→ , where 
instead of the continuum that x represents, k identifies different points on a dis-
crete lattice. This leads to [ ]ˆ ˆ, 1ls

k k i aϕ π −=  , where a is a tiny spacial distance 
between neighboring lattice points. In preparation for an integration, just as 
every integral involves a continuum limit of an appropriate summation, these 
expressions are used in Monte Carlo (MC) calculations which involve proper 
sums for their ‘integrals’. All of this is designed to provide a path integral quan-
tization, and, when necessary, their sums need to be regularized. In our case, the 
regularized version becomes appropriately ‘scaled’: specifically 2s

k kaϕ ϕ−→ , 
2s

k kaπ π−→ , s
k kaκ κ−→ , ( )2 2s pg a g−→ , and the regularized s sd x a→  

may also be scaled as 2s sa a→ . After all, classical expressions do not admit 
( )0δ  terms and path integration requires only classical expressions for their 

integrands.” 
In this paper, there will be other models that introduce ( )2 0sδ  type diver-

gences. The kind of procedures outlined in the foregoing paragraph can tackle 
any one of them. 

2.2. An Example in Which AQ Passes to CQ 

To illustrate this example with CQ, we first choose 1 3n s= + =  and 4
3ϕ  and 

8
3ϕ  models, because the first model succeeds using CQ, while the second model 

fails using CQ. We start with AQ and a modified and regularized version of the 
quantum Hamiltonian, with Schrödinger’s representation and 0kϕ ≠ , so long 
as 0 b≤ < ∞ , and given by1 

( ) ( )( ) ( )
( ) ( )

*

22 2 2 2
*,

8 4 12 2 2

1 ˆ 3 4 1
2

,

k k kk k k k

b b
k k

b a

m g a

π ϕ ϕ ϕ

ϕ ϕ + +

 = + + + − 
+ +  

∑ ∑

     (5) 

 

 

1The regularized sum in (5) has been scaled in which the factor 4a−  was removed from the “3/4” 
term. 
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which, with 0b = , starts as the AQ model of 8
3ϕ , and when b →∞ , it finally 

becomes the CQ model of 4
3ϕ . In this example, the absence of non-renormali- 

zability, for any value of b, holds true. 

3. Two Valid Affine Quantizations of Vector Models 

Our first task will be to turn a scalar field model into a vector field model. The 
classical Hamiltonian in (1) is our first target. All that is necessary is to let 
( ) ( ) ( ) ( )2 2 2 2

1 2x x x xπ π π π⇒ + + =


  and  
( ) ( ) ( ) ( )2 2 2

1 2x x x xϕ ϕ ϕ ϕ⇒ + + =


  for two of the scalar terms, and ( )( )2
xϕ∇



 
becomes ( )( )2

xϕ∇ ⋅




.  

3.1. A Vector Model That Is Common 

The classical Hamiltonian for this vector model is 

( ) ( )( ) ( ) ( )( )22 2 221 d .
2

r
sH x x m x g x xπ ϕ ϕ ϕ  = + ∇ ⋅ + +    ∫



         (6) 

The term 1n s= +  represents the number of spacetime dimensions as before, 
while now 2,3,4,r =  , is the interaction power. Such models can also fail with 
CQ, and we will focus on AQ. The classical dilation variable now is  
( ) ( ) ( )x x xκ π ϕ= ⋅

 , with ( )xϕ ≠
 0 , or stated differently, ( )2 0xϕ >



. The quan-
tum Hamiltonian, expressed in affine variables and in Schrödinger’s representa-
tion, is given by  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 22 2 221 ˆ ˆ d .
2

r
sx x x x m x g x xκ ϕ κ ϕ ϕ ϕ

−  = + ∇ ⋅ + +    ∫


   

  (7) 

In this case the kinetic factor, again with Schrödinger’s representation, be-
comes  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )12 2 22 2ˆˆ ˆ 3 4 0 ,sx x x x xκ ϕ κ π δ ϕ
−

= +
 

         (8) 

and once again a scaled version to eliminate ( )2 0sδ  is readily obtained. By choice, 
this vector model exhibits full rotational symmetry. 

3.2. A Vector Model That Is Less Common 

The classical Hamiltonian, expressed in canonical variables, is given by  

( ) ( )( ) ( ) ( )( )22 2 22 21 d ,
2

r
sH x x m x g x xπ ϕ ϕ ϕ  = + ∇ ⋅ + + −Φ    ∫



       (9) 

where now 2,4,6,r =  . The dilation variable is ( ) ( ) ( )( )2 2x x xκ π ϕ= −Φ
 , 

where ( ) ( )2 2x xπ π=  , and with ( )( )2 2 0xϕ −Φ ≠


. This leads to the classical 
Hamiltonian, now expressed in affine variables, which is given by  

( ) ( )( ) ( )( ) ( )

( )( )

2 22 2 22 2

2 2

1
2

d ,
r

s

H x x x m x

g x x

κ ϕ ϕ ϕ

ϕ

  = −Φ + ∇ ⋅ +   
+ −Φ 


∫


  



     (10) 
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and, as before, this expression has no non-renormalization. While  
( )( )2 2 0xϕ −Φ ≠


 divides the field ( )xϕ , the presence of the gradient term en-
forces continuity of ( )xϕ  between regions. 

Adopting Schrödinger’s representation, the affine quantum Hamiltonian is 
given by  

( ) ( )( ) ( ) ( )( ) ( )

( )( )

2 22 22 2

2 2

1 ˆ ˆ
2

d ,
r

s

x x x x m x

g x x

κ ϕ κ ϕ ϕ

ϕ

−  = −Φ + ∇ ⋅ +   
+ −Φ 


∫


  




   (11) 

and guided by the analysis leading to Equation (10) in [4], it would show that the 
kinematic variable becomes  

( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

22 2

22 2 22 2 2 2

ˆ ˆ

ˆ 0 2 .s

x x x

x x x

κ ϕ κ

π δ ϕ ϕ

−
−Φ

= + +Φ −Φ



 



         (12) 

Once again, scaled regularization can remove the factor ( )2 0sδ  from this 
expression. Another story of passing from AQ to CQ could be devised for this 
model along the same lines as in Section 2.2, but that would not add to any 
physical understanding. 

4. Summary 

The application of CQ to quantum field theory has had successful results along 
with its share of unsolved issues. This paper is focused on the use of AQ in 
quantizing several typical quantum field models for which CQ has either not yet 
solved or has solved but with unsatisfactory results. The AQ examples discussed 
in this paper may be able to offer valuable assistance to the challenges that face 
quantum field theory. 

It is important to understand that AQ does not replace CQ, but instead, AQ 
joins together with CQ in what this author has declared it to be, namely, En-
hanced Quantization, or EQ for short [5]! 
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