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Abstract 
Affine quantization is a parallel procedure to canonical quantization, which is 
ideally suited to deal with special problems. Vector affine quantization intro-
duces multiple degrees of freedom which find that working together creates 
novel tools suitable to eliminate typical difficulties encountered in more con-
ventional approaches. 
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1. An Introduction to Affine Quantization 
1.1. Basics of Canonical and Affine Quantization 

The usual variables of classical physics are p and q, and a common Hamiltonian  

is ( ) ( )21,
2

H p q p V q= + . If, for some reasons 2 0q > , which is an example of  

our interest, then we prefer to use the dilation d pq=  and q. For them, the 
classical Hamiltonian becomes ( ) ( )2 21,

2
H d q d q V q′ = + . However, canonical 

quantization (CQ) requires that &p q−∞ < < ∞ , and promotes its proper va-
riables to operators, ( )†p P P→ =  and ( )†q Q Q→ =  with [ ], 1lQ P i=  . Af-
fine quantization (AQ) chooses to promote proper variables to operators,  

( ) ( )† †2d pq D P Q QP D= → = + = , 0q Q→ ≠ , and [ ],Q D i Q=  . The rea-
son that 0Q ≠  is because if 0Q =  then 0D =  and P cannot help. The fact 
that 0Q ≠  leads to either 0Q > , 0Q < , or simply both, 0Q ≠ . Because Q is 
“incomplete”, the operator †P P≠ , and so †P  was used for D so that †D D= . 
However, since †P Q PQ= , we find that ( ) 2D PQ QP= +  as well. 

1.2. An Example Where Affine Quantization Succeeds 

As an example of why affine variables are useful consider the well known har-
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monic operator Hamiltonian, ( ) ( )2 2 2 2 2 22 d d 2cq P Q x x = + = − +  , which 
successfully uses CQ. However the half-harmonic oscillator, for which 0Q > , 
requires AQ. Since †P P≠ , the former Hamiltonian operator fails. Using CQ, 
we are led to ( )† 2

0 2PP Q= +  AND ( )† 2
1 2P P Q= + .1 These are TWO 

different, unequal, solutions, both of which came from the same classical Ha-
miltonian, ( )2 2 2p q+ . This is not acceptable quantization! 

Instead, if the problem uses AQ, and we insist that 0q > , the classical Ha-
miltonian is ( ) ( )2 2 2 2 22 2p q d q q+ = + , and the new, and different, quan-
tum Hamiltonian becomes  

( )
( ) ( ) ( ) ( ){ }

( ) ( )

2 2

2 2 2

2 2 2 2 2 2

2

d d d d d d d d 4 2

d d 3 4 2,

aq DQ D Q

x x x x x x x x x x

x x x

−

−

= +

 = − + + +       
 = − + + 



 



   (1) 

which has the very same classical Hamiltonian [1], Section 1.5. While the full 
harmonic oscillator has equally spaced eigenvalues ( )0,1,2, 1 2+    , the ei-
genvalues of the half-harmonic oscillator are ( )2 0,1,2, 1+    , which shows a 
close physical connection between these two systems [2]. 

It should be clear that the mathematics of this example would permit us to not 
only solve the case for 0x > , but also for 0x < , and therefore, for this example, 
we could even display two different solutions at the same time! 

This story is an example of how AQ has solved a problem that CQ cannot 
solve. The full harmonic oscillator is solved by CQ, and it fails using AQ. Evi-
dently, each of these procedures can solve two different sets of problems. 

Let us now introduce vector affine quantization (VAQ) as a lead-up to an illu-
stration of a really difficult problem that VAQ can tackle. 

2. A First Look at Vector Affine Quantization 
Individual vectors have multiple similar elements such as P  and Q  for CQ 

systems. For AQ systems there is ( )( )† †1
2

D D≡ ⋅ + ⋅ =P Q Q P  and ( )† 0= ≠Q Q . 

For the same reason as before, ( )1
2

D = ⋅ + ⋅P Q Q P  is also correct. This particular  

set of basic operators is designed to force 0≠Q , or stated otherwise as 2 0>Q . 
This requirement forces every component of 0jQ = , for { }1,2,3, ,j N=   for 
a vector with N components. But suppose we choose a different restriction such 
as ( )1 0⋅ − ≠Q Q , which targets an N-dimensional sphere. This requires a dif-
ferent version of D. Since D terms can be different, let us agree that a d-item 
pertains to a classical issue, and a D-item pertains to a quantum issue. So far we 
have only introduced D-items. 

We now introduce the general scalar D-item to use that aspect along with 

 

 

1Additional wrong candidate operators include ( )2† 24 2P P Q + +  , ( )( )† † 22 2 2P P P P Q − − +  , 

( )4 2 4 2 22 2P P P P Q + + 
† † , etc., all having the same classical Hamiltonian!  
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some ( ) 0≠Q , a scalar partner, such as ( ) ( )( )221 4 0⋅ − ⋅ − ≠Q Q Q Q . Such 
examples need to be part of a D-item leading to 

( ) ( )( ) ( )( ) ( )
2 22 21 1 4 4 1 ,

2
D  = ⋅ − ⋅ − + ⋅ − ⋅ −  

P Q Q Q Q Q Q Q Q P     (2) 

where 2 †= ⋅P P P . This example offers two spheres that have a common cen-
ter with one sphere inside the other one. For this example, there are three dis-
tinct regions of interest: 1) outside of the largest sphere, 2) the region between 
the two spheres, and 3) inside the smallest sphere. As there were different op-
tions in Section 1.1, we can choose any one region, or any two regions, or all 
three regions to use as contributions to the quantization. If more than one re-
gion is accepted, continuity of coordinates between regions could be required. 

We now turn to vector field theory models that can handle even bizarre vector 
affine quantization of such examples. 

3. Vector Affine Quantization of Complicated Field Theory  
Models 

An absurd vector model field theory, which is ripe for non-renormalizability 
using CQ, will be found formally soluble using VAQ. The purpose of studying 
this model is to show that if this “toy model” can be correctly formulated, then 
surely, less complex problems that are more physically relevant, can expect to 
have a proper formulation. 

At first we introduce classical vector fields ( )xπ  and ( )xϕ  and propose an 
unusual classical Hamiltonian model. To make things more simple let us agree 
that ( ) ( ) ( )2x x x≡ ⋅π π π  and ( ) ( ) ( )2x x x≡ ⋅ϕ ϕ ϕ . Just to be crazy, let us 
choose p, the power of the interaction term as 10 p< < ∞ , the number of spatial 
dimensions s as 7 s< < ∞ , and the coupling constant 0g ≥ , all as part of the 
classical Hamiltonian,  

( ) ( ) ( )( ) ( )

( )( ) ( )( )

2 2 22

2 4

1,
2

1 16 d .
p

s

H x x m x

g x x x

  = + ∇ +   
+ − − 


∫π ϕ π ϕ ϕ

ϕ ϕ
           (3) 

While CQ could solve this problem if 0g = , it could not solve it when 
0g > . Let us embark on our procedures using VAQ. 

First we note an important feature about quantization of all such field theory 
problems that divergences do not arise because ( )x = ∞ϕ . Instead, the field 
( )xϕ  appears in some denominators that briefly vanish, and with large enough 

power, i.e., large p, integrations—think path-integration quantization—can yield 
divergencies. Our first job is to introduce a d-item, using ( ) ( )2 2x x=π π , and 
given by 

( ) ( ) ( )( ) ( )( )2 41 16 ,d x x x x= − −π ϕ ϕ                (4) 

which is a well-designed d-item. To protect ( )d x  this process requires that both 
( )( )2 1 0x − ≠ϕ  and ( )( )4 16 0x − ≠ϕ . These two equations define two spheres 
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with the same center, and, in the present case, physics tells us to adopt all three 
sections of open regions. 

Next, we modify the classical Hamiltonian to become  

( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

22 2 4

2 2 2 42

1, 1 16
2

1 16 d ,
p

s

H d d x x x

x m x g x x x

−  ′ = − −   
+ ∇ + + − − 


∫
















ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
  (5) 

which now requires that the interaction term ( )( ) ( )( )2 41 16 0
p

x x− − ≠ϕ ϕ . So 

far, this discussion has focused on the classical story. Now we turn to the quan-
tum story. 

The basic operators involved, again with ( ) ( ) ( )2ˆ ˆ ˆx x x= ⋅π π π , are  

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ){ }2 4 4 21ˆ ˆ ˆ ˆ ˆˆ ˆ1 16 16 1
2

D x x x x x x x= − − + − −π ϕ ϕ ϕ ϕ π  (6) 

and ( )ˆ xϕ  has its several restrictions, namely ( )2ˆ 1x ≠ϕ  and ( )2ˆ 4x ≠ϕ . Note 
that ( )D̂ x  can be zero thanks to ( )ˆ 0x =π . 

The quantum Hamiltonian is given by  

( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( )

22 4

2 2 2 42

1ˆ ˆ ˆˆ ˆ ˆ, 1 16
2

ˆ ˆ ˆ ˆ1 16 d .
p

s

D D x x x D x

x m x g x x x

−  ′ = − −   

+ ∇ + + − −

∫
















 ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
  (7) 

First, it follows that  

( )( ) ( )( ){ } 2
2 4ˆ ˆ0 1 16 ,x x

−

< − × − < ∞ϕ ϕ               (8) 

and, for 1 p< < ∞ , then it also follows that  

( )( ) ( )( ){ }2 4ˆ ˆ0 1 16 ,
p

x x< − × − < ∞ϕ ϕ               (9) 

a fact which guarantees that the quantization, although naturally quite compli-
cated, would lead to a valid result, as it did for the half-harmonic oscillator. 

4. Why These Procedures Have Affine Roots 

Equation (4) can be reexamined as 

( ) ( ) ( )( ) ( )( ) ( ) ( )2 41 16 ,d x x x x x w x= − − ≡π ϕ ϕ π        (10) 

in which ( ) 0w x =  implies that ( )( ) ( )( )2 41 16 0x x− − =ϕ ϕ .2 The pair of clas-
sical variables, ( ) ( ) ( )ˆd x x w x= π  and ( )w x , for each x, are simply like  
d pq=  and q. 

While classical variables for CQ, namely p & q, are promoted to quantum op-
erators, it is required that they be Cartesian variables, specifically that  

2 1 2 2d d dA p A qσ −= + , in order to get physically correct operators [3]. On the 

 

 

2It is somewhat extraordinary to imagine that removing a single point in one continuous function it 
automatically removes two whole spheres in another continuous function.  
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other hand, to get physically correct quantum operators, the classical variables 
for AQ, namely d pq=  and 0q ≠ , are required to be from a constant nega-
tive curvature, such as 2 1 2 2 2 2d d dB q p Bq qσ − −= + , where the positive constant B 
determines the magnitude of the curvature [1], Section 1.4. This relation re-
quires that 2 0q > , which then applies to either 0q > , 0q < , or both, 0q ≠ . 

For our principal topic, the classical variables, ( ) ( ) ( )d x x w x= π  and  
( ) 0w x ≠  must belong to constant negative curvatures to promote physically 

correct quantum operators, which arises from the metric  

( ) ( ) ( ) ( ) ( ) ( ){ }21 2 2 22d d d d ,sC x w x x C x w x w x xσ − −= +∫ π      (11) 

in which ( ) 0C x >  determines the magnitude of the constant negative curva-
tures for each x, and all of ( ) 0w x >  and ( ) 0w x <  are included in this specific 
analysis. The fact that our model has ( )( )2ˆ x∇ϕ  forces an effective continuity of 
( )w x  along spheres. 

5. Summary 

Canonical quantization tackles many field theory problems with a fixed proce-
dure. On the other hand, this version of vector affine quantization allows for a 
carefully-designed operator retooling in order to tackle a large variety of Hamil-
tonians to ensure quantization succeeds as already was the case in properly quan-
tizing the half-harmonic oscillator. Additional articles featuring affine quantiza-
tion can be found in [4] [5] [6]. 

Having seen what procedures were used, the reader is welcome to carry out a 
VAQ of their own favorite, unsolved, quantum field theory problem. 
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