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Abstract 
In this paper, we have used the static spherical symmetric metric. The para-
meter of the nonlinearity fields is included in the arbitrary function characte-
rizing the interaction between the electromagnetic and scalar fields. Taking 
into account the own gravitational field of elementary particles, we have ob-
tained exact static spherical symmetric solutions to the electromagnetic and 
scalar field equations of nonlinear induction. Considering all forms of the so-
lution of Liouville equation, we proved that the metric functions are regular 
with localized energy density. Moreover, the total energy of the nonlinear in-
duction fields is bounded and the total charge of the elementary particles has 
a finite value (soliton-like). In the flat space-time, soliton-like solutions exist.  
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1. Introduction 

In classical physics, elementary particles are considered as material points. 
Moreover, in the Standard Model (SM), the Grand Unification Theories (GUT), 
the Super Symmetry Super Strings (SUSY), the theory of gravitation is absent [1]. 
From experimental results and in [2], elementary particles are extended objects 
with a complex spatial configuration. The theories or models (SM, GUT, SUSY) 
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do not therefore solve the problem of the description of the configuration of 
elementary particles. This description, with all their physical characteristics is 
only possible in the framework of field interaction theory and in quantum me-
chanics [3]. In particle physics, soliton-like solutions to nonlinear differential 
field equations are used as models to describe the complex spatial configuration 
of elementary particles [4] [5]. 

The soliton is a particular solution of nonlinear differential equations, spatial-
ly localized and of exceptional stability [6] [7]. The notion of soliton has given 
the opening to a series of scientific works. For example, the basis of soliton was 
elaborated in [8] [9]. The resolution of the KdV equation in [10] leads to the 
theoretical interpretation of J. S. Russell observation [11]. The work of [12] [13] 
[14] and the Carter-Penrose diagram, are references for studying the singularity 
of static spherical and symmetric solutions. In [15], the authors generalized the 
solutions to the Born-Infeld nonlinear electrodynamics equation based on the 
results of [16]. In [17], the resolution to the equation of scalar, electromagnetic 
and gravitational fields leads to the obtaining of static spherical symmetry solu-
tions. The authors affirmed the existence of a system of particle-antiparticle pairs. 
In [18], exact Kink-Like static plane symmetric solutions to the self-consistent 
system of electromagnetic, scalar and gravitational field equations are obtained. 
It was shown that under certain choice of the interaction Lagrangian, the solu-
tions are regular and have localized energy (like-soliton). In [19], the authors 
determined, soliton-like solutions to the nonlinear electromagnetic field equa-
tion interacting with the scalar field in the spherical and/or cylindrical symme-
tric metric in the presence of the own gravitational field of elementary particle 
by studying only the special case where ( ),S k ξ ξ= . The authors found that 
with the calibrated invariance function ( ) ( )2

0P I P I Nλ= −  and under the 
condition I Nλ > , the component of metric tensor 00g  is regular and the to-
tal energy of the nonlinear induction fields is finite in the configuration where 
the mass and charge are zero. The solution obtained describes a massive system  

( )0 mA
q

 
= 

 
 but the total charge of elementary particles Q has not been  

examined. In [20] [21] [22] [23] static spherical symmetric soliton-like solutions 
to the spinoriel and gravitational field equations were established using several 
bilinear invariants. 

The objective of this research work is to determine the exact static spherical 
symmetric soliton-like solutions to the electromagnetic and scalar nonlinear in-
duction field equations taking into account the own gravitational field of ele-
mentary particles, describing a massless system, considering all forms of the 
function ( ),S k ξ , using the calibrated invariance function ( ) ( )2

0P I P N Iλ= − , 
under the condition I Nλ < . To achieve this, Section 2 of this work gives a 
brief overview of the basic equations. In Section 3, the established solutions are 
presented. A discussion and a comparative study are made in Section 4. The role 
of the own gravitational field of elementary particles is studied in Section 5. Sec-
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tion 6 is dedicated to the conclusion and future work. 

2. Basic Equations 

In general relativity, Einstein’s equation is: 

,G Tν ν
µ µχ= −                            (1) 

where ( Gν
µ ) is the Einstein tensor, ( χ ) is the Einstein gravitational constant and 

( Tν
µ ) is the energy-momentum metric tensor. The static spherical symmetric 

metric is defined by:  

( )2 2 2 2 2 2 2 2 2d e d e d e d sin d ,s tγ α βξ θ θ ϕ = − − +             (2) 

where the functions α , β  and γ  depend only on the radial component 
1
r

ξ =  and obey the coordinate relation [24]:  
2 .α β γ= +                           (3) 

From (1), (2) and (3), the non-zero components of Einstein’s tensor equation 
are [24]: 

( )0 2 2 2 0
0 0e 2 2 eG Tα ββ γ β β χ− −′′ ′ ′ ′= − − − = −              (4) 

( )1 2 2 2 1
1 1e 2 eG Tα βγ β β χ− −′ ′ ′= + − = −                 (5) 

( )2 2 2 2
2 2e 2G Tα β γ γ β β χ− ′′ ′′ ′ ′ ′= + − − = −               (6) 

2 3
2 3G G=                            (7) 
2 3

2 3T T=                            (8) 

where (‘) denotes the first derivative with respect to ξ .  
The Lagrangian of the electromagnetic and scalar nonlinear fields in interac-

tion, taking into account the own gravitational field of the elementary particles 
has considered in the form:  

( ),
,

1 1 ,
2 4 2

ij i
ij i

RL F F Iϕ ϕ ψ
χ

= − +                  (9) 

where i
iI A A=  is the chronometric invariant; ( )( ),0,0,0iA A ξ  is the 4-vector 

potential; ( ) ( )1I Iψ λφ= +  is an arbitrary function characterizing the interac-
tion between the electromagnetic and scalar nonlinear fields, λ  represents the 
parameter of the nonlinearity  

In the absence of a current source, the scalar and electromagnetic field equa-
tions corresponding to the Lagrangian (9) take the form [19]:  

( ),
1 0,g g I

g
νµ

µν ϕ ψ
ξ
∂  − = ∂−

               (10) 

( ),
,

1 0.i
i IgF I A

g
νµ ν

µ ϕ ϕ ψ
ξ
∂  − − = ∂−

            (11) 

The energy-momentum metric tensor is defined by:  

( ) ( )

( ) ( )

, ,
, ,

,
,

1 1 .
4 2

i i
i i I

ij i
ij i

T I F F I A A

F F I

ν ν ν ν
µ µ µ µ

ν
µ

ϕ ϕ ψ ϕ ϕ ψ

δ ϕ ϕ ψ

= − +

 − − +  

           (12) 
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From (12), its non-zero components are:  

( ) ( ) ( )( )2 20 2 2 2 2 2
0

1 e e 2e
2 IT A C P I C P I Aα γ γ− − − ′= + +          (13) 

( ) ( )21 2 2 2
1

1 e e ;
2

T C P I Aα γ− − ′= − +                  (14) 

1 2 3
1 2 3 .T T T= − = −                        (15) 

The relation (10) has a solution:  

( ) ( )d .
d

C CP I
I

ϕ
ξ ψ
= =                       (16) 

The electromagnetic field (11) becomes:  

( ) ( )2 2 2e e 0.IA C P I Aγ γ− −′′ − =                    (17) 

The sum of (5) and (6), reduce to the Liouville equation [24]:  

( ) ( )2e ,β γβ γ +′′+ =                        (18) 

which is integrated giving: 

( ) ( )

sinh , 0

e , , 0
sin , 0

k k
k

S k k
k k

k

β γ

ξ

ξ ξ
ξ

− +

 >


= = =

 <


                (19) 

The sum of (4) and (5), leads to:  

( ) ( ) ( )22 2 2 2e e e .
2

C P I Aβ γ γ γχβ + − − ′′ ′− = − − +              (20) 

From (17), (18) and (20), we draw:  

( )21 e .
2

AA γγ χ − ′′′ ′=                       (21) 

The first integration of (21) gives:  

( ) ( )21 e , const.
2

AA Y Yγγ ξ χ −′ ′= + =                (22) 

For = 0Y , the solution of (22) is:  
2

2e , const.
2
A H Hγ χ

= + =                    (23) 

The relation (23) introduced in (17) gives:  

( )
( )

0 2
2

0

d ,

2
const, const.

A
A H C P I K

K

ξ ξ
χ

ξ

± + =
 

+ + 
 

= =

∫
             (24) 

From the regularity conditions established in [19] and [25], we fix 1H = , 
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0K =  and assume 0 0ξ = . Thus, the relations (23) and (24) become:  
2

2e 1
2
Aγ χ

= +                           (25) 

and 

( )
2

d .
1

2

AC
A P I

ξ
χ

± =
 

+ 
 

∫                     (26) 

Using the explicit form of the calibrated invariance function ( )P I , we will 
determine respectively the expressions of scalar potential ( )A ξ  and of the com-
ponent ( )00g ξ  of the metric tensor from the relations (26) and (25). Exploiting 
(19), we will express the other metric functions ( )11g ξ , ( )22g ξ , ( )33g ξ  and 
rewrite the analytical expression of the energy density ( )0

0T ξ . From the pre-
vious expressions, we will establish those of the energy density per unit invariant 
volume ( )T ξ  and the total energy of the nonlinear induction interaction fields 

fE  defined by the relations:  

( ) ( )0 3
0T T gξ ξ −=                       (27) 

0 3
00

d .c
fE T g

ξ
ξ−= ∫                       (28) 

In generally from (11) one gets [18]:  

( ),
, .i
i Ij I Aν νϕ ϕ ψ= −                      (29) 

It allows to express the non-zero components of the 4-vector current density 
jν  opposite:  

( ) ( )20 2e  ,Ij C P I Aγ α− += −                    (30) 

1 2 3 0.j j j= = =                       (31) 

The charge density ( )eρ ξ , the charge density per unit invariant volume 
( )ρ ξ  and the total charge of elementary particles Q verify the relations:  

( ) ( ) ( )22e  ,e IC P I Aα γρ ξ − += −                  (32) 

( ) ( )2 2e sin ,IC AP Iγρ ξ θ−= −                  (33) 

and 

( )2 2
0

d
e  sin d .

d
c P I

Q C A
I

ξ γ θ ξ−= − ∫                 (34) 

In Section 3, we will determine the exact static spherical symmetric solutions 
to the Einstein equation, the electromagnetic and scalar nonlinear induction 
field equations using the calibrated invariance function:  

( ) ( )2
0 ,P I P N Iλ= −                      (35) 

where 0 ,P N  are dimensionless constants satisfying the conditions N Iλ>  and 
( ) 1P I =  in the spatial infinity. 

https://doi.org/10.4236/jhepgc.2022.81011


A. E. Yamadjako et al. 
 

 

DOI: 10.4236/jhepgc.2022.81011 152 Journal of High Energy Physics, Gravitation and Cosmology 
 

3. Exact Static Spherical Symmetric Solutions of the Einstein  
Equation, the Electromagnetic and Scalar Nonlinear  
Induction Field Equations 

Putting (35) into (26), the electric scalar potential is:  

( ) ( ) ( )2
tanh ,

1
NA bξ ξ

λ σ
=

−
                    (36) 

where ( )2
0 1b C NP λ σ= − , 2

2
Nχσ
λ

= .  

From (3), (19), (25) and (36), we establish the solutions of Einstein’s equation:  

( ) ( )
( ) ( )

2 2

00 2 2

cosh
,

1 cosh
b

g
b

ξ σ
ξ

σ ξ

−
=

−
                    (37) 

( ) ( )
( )

22

11 4 2 2

cosh1 ,
cosh

b
g

S b
ξσξ

ξ σ
−

= −
−

                  (38) 

( ) ( ) ( )
( )

22
33

22 2 2 2 2

cosh1
sin cosh
g b

g
S b

ξ ξσξ
θ ξ σ

−
= = −

−
              (39) 

where ( ),S S k ξ= .  
From (13), (19), (27), (28), (36), (37), (38) and (39), the chronometric inva-

riant ( )I ξ , the energy density ( )0
0T ξ , the energy density per unit invariant 

volume ( )T ξ  and the total energy of nonlinear induction fields fE  verify:  

( ) ( )
( )

2

2 2

sinh
,

cosh
N b

I
b

ξ
ξ

λ ξ σ
=

 − 
                   (40) 

( )
( ) ( ) ( )

( )
( )

24 2 2 2
0 0

0 2 2 2 2 2 2

4sinh1 1 ,
2cosh cosh cosh cosh

bS N P C
T

b b b b
ξσξ

ξ ξ σ ξ ξ σ
 −

= + − 
− −  

  (41) 

( )
( ) ( )

( )
( )

( )

( ) ( )
( )

2 1

1 5 2 5 22 2 2 2

2

5 22 2

1 cosh cosh

cosh cosh

4sinh cosh
,

cosh

b b
T R

b b

b b

b

σ ξ ξ
ξ

ξ σ ξ σ

ξ ξ

ξ σ

− −= +
    − −   


−
 −  

        (42) 

( ) 1 2 3

2
1 1 4 ,f f f fE R E E Eσ = − + −   

where 

( )
2

1

3 22
20 1 sin ,

2
N P C

R σ θ= −  

( )
( )1 5 20 2 2

cosh
d ,

cosh
c

f

b
E

b

ξ ξ
ξ

ξ σ
=

 − 
∫  

( ) ( )2 0 2 2 3 2

1 d ,
cosh cosh

c
fE

b b

ξ
ξ

ξ ξ σ
=

 − 
∫  
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( ) ( )
( )3

2

5 20 2 2

sinh cosh
d

cosh
c

f

b b
E

b

ξ ξ ξ
ξ

ξ σ
=

 − 
∫  

After a series of mathematical transformations, we obtain 
1f

E  and 
2f

E :  

( )
( )

( )
( )1

2 3

2 22 2 3 2

sinh 2 sinh
;

coshcosh
c c

f

cc

R b R b
E

bb

ξ ξ

ξ σξ σ
= +

− − 
 

( )
( )

( ) ( )
( ) ( )2

2 2

4 2 2 2 2 2

sinh coshsinh2 ln ,
1 cosh sinh cosh

c cc
f

c c c

b bb
E R

b b b

σ ξ ξ σξσ
σ ξ σ σ ξ ξ σ

 − − = +
 − − + − 

 

where  

( )2 2

1 ,
3 1

R
b σ

=
−

 

( )3 22

1 ,
3 1

R
b σ

=
−

 

4 3

1 .
2

R
bσ

= −  

The relation 
3f

E  being difficult to integrate, we will deduce its location on 
[ ]0, cξ  after its extension on [ ]0,+∞ . To do this, we will use the formula of the 
standard table of integrals [26]:  

( )
1 1

0 2

sinh cosh d
cosh

2 ,1 ,1 ;1 , ;
2 2 2 2

x x x
x

B F

µ ν

ρ
β

µ µ ν µ ν νρ ρ ρ ρ β

− −
∞

−

+ +   = + − × + − + −   
   

∫
 

( )1,β ∉ ∞ , ( ) 0Re µ > , ( ) ( )2 1Re Reρ ν µ+ > + . In this expression, ( ),B a b  
is the Bêta function and ( ), ; ,F a b c m  is the Gauss hyper-geometric function. So, 
we obtain:  

( ) ( )
( )3

2

5 20 2 2

sinh cosh
d ,

cosh
f

b b
E

b

ξ ξ
ξ

ξ σ

∞
<

 − 
∫  

3

25 5 3;1; ; 2 ,1 ,
2 2 2fE F Bσ   < ×   

   
 

( )3 2

4 .
3 1fE

σ
<

−
 

Thus, 

.fE < ∞                           (43) 

Also, the expressions (32), (33) and (34) are transformed into:  

( ) ( )
( ) ( )

3 22 4
0

2 2 2

2 sinh
,

cosh cosh
e

P C S N b

b b

λ ξ
ρ ξ

ξ ξ σ
=

−
              (44) 
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( ) ( ) ( ) ( )
( )

2 3 22
0 22 2

cosh sinh
2 1 sin ,

cosh

b b
C P N

b

ξ ξ
ρ ξ λ σ θ

ξ σ
 = −   − 

        (45) 

( ) ( )
1 2 2

0 2 2 2

1 11 sin .
cosh 1c

Q CNP
b

σ θ
ξ σ σ

 
= − − − 

− −  
         (46) 

In Section 4, we will discuss the influence of the function ( ),S k ξ  on the ob-
tained solutions. 

4. Discussion 

The electric scalar potential ( )A ξ , the component ( )00g ξ  of the metric tensor, 
the energy and the charge densities per unit invariant volume ( ) ( )( ),T ξ ρ ξ  
are regular functions, independent of the concrete form of the function ( ),S k ξ . 
Figure 1 below gives a graphical illustration: 

In Figure 1(a), the solution of the equation to the electromagnetic and scalar 
fields of nonlinear induction and taking into account the own gravitational field 
of elementary particles describes a massless system contrary to the massive sys-
tem obtained by [19].  

In Figure 1(c), the energy density per unit invariant volume is an asymptotic 
and localized function. Its depth and width of localization depend on the value 
of the integration constants.  

In Figure 1(d), the charge density per unit invariant volume is also an asymp-
totic and localized function, with depth and width of localization varying with 
the values of the constants integration.  

Let us point out from (43) and (46) that, the total charge of elementary par-
ticles is a finite quantity and the total energy of fields is limited.  

On the other hand, the components ( )11g ξ , ( )22g ξ , ( )33g ξ  of the metric 
tensor, the energy and charge densities ( ) ( )( )0

0 , eT ξ ρ ξ  depend on the concrete 
form of the function ( ),S k ξ .  

In order to respect the regularity conditions [19] and [25], the obvious and 
trivial form ( ),S k ξ ξ=  is often used. Let us analyze the solutions of the field 
and Einstein equations of Sect 0, using all concrete forms of the function  
( ),S k ξ  because it also respects the boundary conditions. 

4.1. Case 1: k 0>  

The concrete form of ( ),S k ξ  is:  

( ) ( )sinh
, .

k
S k

k
ξ

ξ =                       (47) 

The relations (47) (38), (39), (41) and (44) lead respectively to:  

( )
( )

( )
( )

22
4

11 4 2 2

cosh1 ,
sinh cosh

b
g k

k b
ξσξ

ξ ξ σ
−

= −
−

              (48) 

( ) ( )
( )

( )
( )

22
33 2

22 2 2 2 2

cosh1 ,
sin sinh cosh
g b

g k
k b

ξ ξσξ
θ ξ ξ σ

−
= = −

−
          (49) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. (a)-Electric scalar potential ( )A ξ , (b)-Component ( )00g ξ  of the metric ten-

sor, (c)-Energy density per unit invariant volume ( )T ξ , (d)-Density of charge per unit 

invariant volume ( )ρ ξ . The values of the parameters used for this simulation are: 

39λ = ; 2C N= = ; 8χ = π  and 2θ = π . 
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( ) ( )
( ) ( ) ( )

( )
( )

2 2 4 2
00

0 4 2 2 2 2

2

2 2

sinh 1 1
2 cosh cosh cosh

4sinh
,

cosh

N P C k
T

k b b b

b
b

ξ σξ
ξ ξ σ ξ

ξ
ξ σ

 −
= +

−


− 
− 

       (50) 

( ) ( )
( )

( )
( )

32 4
0

4 2 2 2

22 sinh sinh
.

cosh cosh
e

P C N k b
k b b

λ ξ ξ
ρ ξ

ξ ξ σ
=

−
          (51) 

4.2. Case 2: k 0<  

( ) ( )sin
, .

k
S k

k
ξ

ξ =                        (52) 

The relation (52) in those (38), (39), (41) and (44) verify the equalities:  

( )
( )

( )
( )

22
4

11 4 2 2

cosh1 ,
sin cosh

b
g k

k b
ξσξ

ξ ξ σ
−

= −
−

              (53) 

( ) ( )
( )

( )
( )

22
33 2

22 2 2 2 2

cosh1= ,
sin sin cosh
g b

g k
k b

ξ ξσξ
θ ξ ξ σ

−
= −

−
          (54) 

( ) ( )
( ) ( ) ( )
( )

( )

2 2 2 2
00

0 4 2 2 2 2

2

2 2

sin 1 1
2 cosh cosh cosh

4sinh
,

cosh

N P C k
T

k b b b

b
b

ξ σξ
ξ ξ σ ξ

ξ
ξ σ

 −
= +

−


− 
− 

       (55) 

( ) ( )
( )

( )
( )

2 4
0

2

4 2

3

2 2

2 sin sinh
.

cosh cosh
e

P C N k b
k b b

λ ξ ξ
ρ ξ

ξ ξ σ
=

−
         (56) 

4.3. Case 3: k 0=  

( ), .S k ξ ξ=  

The relations (38), (39), (41), (44) give:  

( ) ( )
( )

22

11 4 2 2

cosh1 ,
cosh

b
g

b
ξσξ

ξ ξ σ
−

= −
−

                (57) 

( ) ( ) ( )
( )

22
33

22 2 2 2 2

cosh1 ,
sin cosh
g b

g
b

ξ ξσξ
θ ξ ξ σ

−
= = −

−
            (58) 

( )
( ) ( ) ( )

( )
( )

22 2 4 2
0 0

0 2 2 2 2 2 2

4sinh1 1 ,
2cosh cosh cosh cosh

bN P C
T

b b b b
ξξ σξ

ξ ξ σ ξ ξ σ
 −

= + − 
− −  

 (59) 

( )
( )

( )
( )

2 4
0

2

3 2

2 2

sinh2
.

cosh cosh
e

bP C N
b b

ξλξ
ρ ξ

ξ ξ σ
=

−
             (60) 

Figures 2-4 give a summary illustration of the properties of all solutions ob-
tained in each of the Sections 4.1, 4.2 and 4.3. 

In Figure 2(a), Figure 2(b), Figure 3(a), Figure 3(b), Figure 4(a) and Figure 
4(b), all components of the metric tensor ( )11g ξ , ( )22g ξ  and ( )33g ξ , exhibit  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a)-Component ( )11g ξ  of the metric tensor, (b)-Components ( )22g ξ  of the 

metric tensor, (c)-Energy densities ( )0
0T ξ , (d)-Charge densities ( )eρ ξ  using  

0, 2k b= ± , 2θ = π . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a)-Component ( )11g ξ  of the metric tensor, (b)-Components ( )22g ξ  of the 

metric tensor, (c)-Energy densities ( )0
0T ξ , (d)-Charge densities ( )eρ ξ  using  

0, 5k b= ± , 2θ = π .  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a)-Component ( )11g ξ  of the metric tensor, (b)-Components ( )22g ξ  of the 

metric tensor, (c)-Energy densities ( )0
0T ξ , (d)-Charge densities ( )eρ ξ  with 0, 15k b= ± , 

2θ = π . 
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a gravitational singularity ( )eβ = ∞  that is uncontrollable by change of variable 
in infinite space whatever the form of the function ( ),S k ξ  as stated in [27].  

In Figure 2(c), Figure 3(c) and Figure 4(c), the energy densities ( )0
0T ξ  are 

asymptotic, localized functions, all canceling in infinite space. The width of the 
localization and the depth vary with the values of the integration constants, in 
particular that of k. 

In Figure 2(d), Figure 3(d) and Figure 4(d), the charge densities ( )eρ ξ  
have the same properties as the energy densities of Figures 2(c)-4(c) but are 
positive definite.  

We will focus in Section 5 on the role of the own gravitational field of ele-
mentary particles on the soliton-like solutions. 

5. Solution in Flat Space-Time 

In the absence of the own gravitational field of elementary particles, the metric 
(2) becomes:  

( )2 2 2 2 2 2d d d d sin d .s t ξ θ θ ϕ = − − +               (61) 

The electromagnetic field Equation (17) takes the form:  

( )2 0,IA C P I A′′ − =                     (62) 

which has the solution:  

( )
d .AC
P I

ξ± = ∫                       (63) 

Using (35), the relation (63) gives the expression of electric scalar potential:  

( ) ( )tanh ,NA uξ ξ
λ

=                    (64) 

where 0u C NP λ= . 
The energy and charge densities per unit invariant volume ( ) ( )( ),T ξ ρ ξ  ve-

rify the following expressions:  

( ) ( )
( )

( )
2 2

0 20
0 4 1 2sinh ,

sin cosh
T P N C

T u
u

ξ
ξ ξ

θ ξ
 = = −            (65) 

( ) ( ) ( )
( )

3 2
0 3

3 2 sinh
2 sin .

coshe

u
g C P N

u
ξ

ρ ξ ρ ξ λ θ
ξ−= =         (66) 

Figure 5 below, shows the role of the own gravitational field of elementary 
particles on the solutions established in Section 4.  

In Figure 5(a), we see that in the absence of the own gravitational field of the 
elementary particles, the electric scalar potential (64) remains a regular but of 
smaller amplitude than the one obtained in Figure 1(a). 

In Figure 5(b), the energy density per unit invariant volume has the same 
properties as those obtained by taking into account the own gravitational field of 
the elementary particles but with almost equal depth. 
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(a) 

 
(b) 

 
(c) 

Figure 5. (a)-Electric scalar potential ( )A ξ , (b)-Density of energy per unit invariant 

volume ( )T ξ  and (c)-Density of charge per unit invariant volume ( )ρ ξ . 

 
In Figure 5(c), the charge density per unit invariant volume has a more ex-

tensive depth in the absence of the elementary particle gravitational field, is 
asymptotic and localized in an interval whose width depends on the integration 
constants.  

The total energy of fields fE  and the total charge Q of elementary particles 
are given by the expressions: 

( ) ( )30
3 2 1 2

1 2 tanh tanh sin ,f c c
CN P

E u uξ ξ θ
λ

 = −              (67) 

( )
1

3

2
02 1 1 sin .

3 cosh c

CNP
Q

u
θ

ξ

 
= − − 

  
               (68) 
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6. Conclusion 

It has been proved that with all forms of the function ( ),S k ξ , the electromag-
netic and scalar nonlinear induction field equations, taking into account the own 
gravitational field of the elementary particles, are solvable. The obtained results 
show that, the component ( )00g ξ  of the metric tensor is a regular function. 
However, the other metric functions present a gravitational singularity in infi-
nite space. All energy densities are localized and have a localization depth and 
width whose interval varies according to the values of the integration constants. 
The total energy of the nonlinear induction fields and the total charge of ele-
mentary particles are finite. These solutions are soliton-like and constitute a 
model able to describe the complex internal configuration of the elementary par-
ticles. In the near future, we will discuss the stability as well as the observability 
of the localized configurations obtained. 
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