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Abstract 
Today's quantum field theory (QFT) relies heavenly on canonical quantiza-
tion (CQ), which fails for 4

4ϕ  leading only to a “free” result. Affine quantiza-
tion (AQ), an alternative quantization procedure, leads to a “non-free” result 
for the same model. Perhaps adding AQ to CQ can improve the quantization 
of a wide class of problems in QFT. 
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1. What is AQ? 

The simplest way to understand AQ is to derive it from CQ. The classical va-
riables, p & q, lead to self-adjoint quantum operators, P & Q, that cover the real 
line, i.e., &P Q−∞ < < ∞ , and obey [ ], 1lQ P QP PQ i≡ − = � . Next we intro-
duce several versions of [ ],Q Q P i Q= � , specifically 

[ ] [ ]{ } { }
( ) ( ){ } [ ]

2 2, , 2 2

2 , 2.

Q Q P Q P Q Q P QPQ QPQ PQ

Q QP PQ QP PQ Q Q QP PQ

+ = − + −

= + − + = +
        (1) 

This equation serves to introduce the “dilation” operator ( ) 2D QP PQ≡ + 1 
which leads to [ ],Q D i Q= � . While ( ) ( )† †&P P Q Q= =  are the foundation of 
CQ, ( ) ( )† †&D D Q Q= =  are the foundation of AQ. Another way to examine 
this story is to let , ,p q P Q→ , while , ,d pq q D Q≡ → . 

Observe, for CQ, that while q & Q range over the whole real line, that is not 
possible for AQ. If 0q ≠  then d covers the real line, but if 0q =  then 0d =  
and p is helpless. To eliminate this possibility we require 0 & 0q Q≠ ≠ . While 

 

 

1Even if Q does not cover the whole real line, which means that †P P≠ , yet †P Q PQ= . This leads 

to ( )† †2D QP P Q D= + = . 
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this may seem to be a problem, it can be very useful to limit such variables, like 
0 &q Q< < ∞ , or & 0q Q−∞ < < , or even both.2 

2. A Look at Quantum Field Theory 
2.1. Selected Poor and Good Results 

Classical field theory normally deals with a field ( )xϕ  and a momentum 
( )xπ , where x denotes a spatial point in an underlying space.3 
A common model for the Hamiltonian is given by 

( ) ( ) ( )( ) ( ) ( )
22 221, d ,

2
r sH x x m x g x xπ ϕ π ϕ ϕ  = + ∇ + +    ∫

�
      (2) 

where 2r ≥  is the power of the interaction term, 2s ≥  is the dimension of 
the spatial field, and 1n s= + , which adds the time dimension. Using CQ, such 
a model is nonrenormalizable when ( )2 2r n n> − , which leads to “free” model 
results [2]. Such results are similar for 4r =  and 4n = , which is a case where 

( )2 2r n n= −  [3] [4] [5]. When using AQ, the same models lead to “non-free” 
results [2] [6]. 

Solubility of classical models involves only a single path, while quantization 
involves a vast number of paths, a fact well illustrated by path-integral quantiza-
tion. The set of acceptable paths can shrink significantly when a nonrenorma-
lizable term is introduced. Divergent paths of integration are like those for which 
( ) ( ), 1 ,x t z x tϕ =  when ( ), 0z x t = . A procedure that forbids possibly diver-

gent paths would eliminate nonrenormalizable behavior. As we note below, AQ 
provides such a procedure. 

2.2. The Classical and Quantum Affine Story 

Classical affine field variables are ( ) ( ) ( )x x xκ π ϕ≡  and ( ) 0xϕ ≠ . The quan-
tum versions are ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ 2x x x x xκ ϕ π π ϕ≡ +    and ( )ˆ 0xϕ ≠ , with  

( ) ( ) ( ) ( )ˆ ˆ ˆ, sx y i x y xϕ κ δ ϕ= −   � . The affine quantum version of (2) becomes 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
22 221ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, d .

2
r sx x x x m x g x xκ ϕ κ ϕ κ ϕ ϕ ϕ−  = + ∇ + +    ∫

�
   (3) 

The spacial differential term restricts ( )ˆ xϕ  to continuous operator func-
tions, maintaining ( )ˆ 0xϕ ≠ . In that case, it follows that ( ) 2ˆ0 xϕ −< < ∞  which 
implies that ( )ˆ0

r
xϕ< < ∞  for all r < ∞ , a most remarkable feature because 

it forbids nonrenormalizability!4 
Adopting a Schrödinger representation, where ( ) ( )ˆ x xϕ ϕ→ , simplifies  
( ) ( ) 1 2ˆ 0x xκ ϕ − = , which also implies that ( ) ( ) 1 2ˆ 0yx yκ ϕ −Π = . This relation 

 

 

2For example, affine quantization of gravity can restrict operator metrics to positivity, i.e.,  
( )ˆ 0a b

abg x dx dx > , straight away [1]. 
3In order to avoid problems with spacial infinity we restrict our space to the surface of a large, 
( )1s + -dimensional sphere. 

4For Monte Carlo studies, concern for the term ( ) 2ˆ 0xϕ −
≠  has been resolved by successful usage of 

( )
12ˆ xϕ ε
−

 +  , where 1010ε −=  [2] [6]. 
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suggests that a general wave function is like ( ) ( ) ( ) 1 2
yW yϕ ϕ ϕ −Ψ = Π , as if 

( ) 1 2
y yϕ −Π  acts as the representation of a family of similar wave functions. 
We now take a Fourier transformation of the absolute square of a regularized 

wave function that looks like5 

( ) ( ) ( ) ( ){ }2 1 2e d .
sbaif sF f w baϕ ϕ ϕ ϕ− −= Π ∫ k k

k k k k           (4) 

Normalization ensures that if all 0f =k , then ( )0 1F = , which leads to 

( ) ( ) ( ) ( ) ( ){ }2 1 21 1 e d .
sbaif sF f w baϕ ϕ ϕ ϕ −= Π − −∫ ∫ k k

k k k k       (5) 

Finally, we let 0a →  to secure a complete Fourier transformation6 

( ) ( ) ( )( ) ( )( ) ( ) ( ){ }2
exp d 1 e d .if x xsF f b x w x x xϕ ϕ ϕ ϕ= − −∫       (6) 

This particular process side-steps any divergences that may normally arise in 
( )( )w xϕ  when using more traditional procedures. 

3. The Absence of Nonrenormalizablity,  
and the Next Fourier Transformation 

Observe the factor ( )1 2 sbaϕ − −
k  in (4) which is prepared to insert a zero diver-

gence for each and every ϕk  when 0a → . However, the factor sba  in (4) 
turns that possibility into a very different story given in (6). 

Another Fourier transformation can take us back to a suitable function of the 
field, ( )xϕ . That task involves pure mathematics, and it deserves a separate 
analysis of its own. 
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