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Abstract 
If there exists a null gradient field in 3 + 1 dimensional space-time, we can set 
up a kind of light-cone coordinate system in the space-time. In such coordi-
nate system, the metric takes a simple form, which is helpful for simplifying 
and solving the Einstein’s field equation. This light-cone coordinate system 
has wonderful properties and has been used widely in astrophysics to calcu-
late parameters. We discuss the structure of space-time with light-cone coor-
dinate system in detail. We show how to construct the light-cone coordinate 
system and obtain the conditions of its existence, and then explain their geo-
metrical and physical meanings.  
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1. Introduction 

A good choice of coordinate system for the space-time is important to discuss 
the property of space-time and to solve the Einstein’s equation. The usual choic-
es are the Gaussian normal coordinates and the harmonic coordinates [1]. These 
coordinate systems bring about some convenience for theoretical analysis. 
However, such coordinate systems are no help to solve the Einstein’s field equa-
tion. The conventional method to get the exact solution of Einstein’s equation is 
based on the symmetry of the space-time. Many well-known solutions such as 
the Friedmann-Lemaitre-Robertson-Walker metric, Bianchi universe, Lemai-
tre-de Sitter universe, Schwarzschild metric and Kerr metric, Taub-NUT solu-
tion [2] [3] [4] [5] [6], are all related with some special symmetry of the 
space-time. 
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In this paper, we study the structure of light-cone coordinate system (LCS). In 
such LCS, some partial differentials in Einstein’s tensor Gµν  can be converted 
into ordinary derivatives. This property is very helpful to solve the exact vacuum 
solutions of Einstein’s field equation [7] and to simplify the dynamics of an 
evolving star [8]. This coordinate system can be constructed from a set of null 
geodesics. There were some coordinate systems related to light-cone used in the 
previous study. In Minkowski space-time we have “light-cone coordinate”. In 
Schwarzschild space-time, we have “Eddington-Finklestein coordinates”. The 
Newman-Penrose formalism is also based on null tetrad [9]. However it is a little 
different from LCS and the practical calculation in this formalism is not easy. 

In recent years, the geodesic light-cone coordinates (GLC) is introduced to 
derive explicit expressions for averaging the redshift to luminosity-distance rela-
tion in a generic inhomogeneous universe [10]. It is also related to the light-cone 
coordinates and shares many common properties of LCS. The advantages and 
wonderful properties of GLC were recognized by many researchers. Some peda-
gogical introduction to GLC and brief review on its applications are provided in 
[11] [12] [13]. The GLC is exploited to perform light cone averages in a per-
turbed Friedmann-Lemaitre-Robertson-Walker space-time, in order to deter-
mine the effect of inhomogeneities on the distance-redshift relation [13]-[19], 
and therefore on the interpretation of the Hubble diagram [18] [20] [21]. GLC is 
also applied to gravitational lensing in general [22] [23], to galaxy number 
counts [24], and to the propagation of ultra-relativistic particles [25]. The pres-
ence of additional degrees of freedom in the GLC was considered later [26] [27]. In 
[28], the correct prediction of GLC approach in the conformal Newtonian gauge is 
compared with other approaches. After the correction suggested in [26], the GLC 
approach has been successfully used to calculate the expressions of the light-cone 
observables up to second order in perturbation theory in the Poisson gauge [19] 
[23] [24] [29]. The consistency of GLC approach with the previous results in an 
inhomogeneous universe is considered [30]. 

In this paper, we discuss the structure of space-time with light-cone coordi-
nate system in detail. We establish the relationship between LCS with ordinary 
coordinate system. This paper is a modification of the early version ar-
Xiv:0708.2962v1. The conditions for an LCS are derived, and the differential eq-
uations to construct an LCS from usual coordinate system are obtained. Some 
typical examples to set up an LCS are given. 

2. Construction of Light-Cone Coordinate System 

Under some conditions, the metric in an LCS has the following simple form 

0 0 0
.

0 0
0 0

u v p q
v

g
p a
q b

µν

 
 
 =
 −
 

− 

                   (2.1) 

At first, we give some general analysis for the coordinate transformation to get 
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this canonical metric (2.1). The line element of space-time is generally given by 

( )2 0 1 2 3d d d d d , d d ,d ,d ,d ,s g Z G Z Zµ ν
µν ξ ξ ξ ξ ξ ξ

++= = =      (2.2) 

where ( )G gµν=  is matrix form of metric, and index “+” represents transpose. 
In this paper, we use Greek characters such as { }, 0,1, 2,3µ ν ∈  to denote 
4-dimensional indices, and Latin characters { }, 1, 2,3k l∈  for spatial indices. 
Making transformation ( )xµ µ νξ ξ=  and denoting 

( )
0 1 2 3

0 1 2 3, , , , , , , ,Y J Y Y Y Y
x x x xµ µ µ µ µ

ξ ξ ξ ξ
+

 ∂ ∂ ∂ ∂
= = 

∂ ∂ ∂ ∂ 
         (2.3) 

where J is the Jacobian matrix of transformation, we get 

( )2 0 1 2 3d d d , d d ,d ,d ,d .s X J GJ X X x x x x
++ += =           (2.4) 

If xµ  forms light-cone coordinate system, by (2.1) and (2.4) we have 

( )1 2 3 1, , 0,Y Y Y GY+ =                      (2.5) 

2 3 0.Y GY+ =                         (2.6) 

Let 0 1 0Y GY K+ = ≠ , then by (2.5) we get 

( ) ( )1 *
1 11,0,0,0 , 1,0,0,0 ,J GY K Y KG J+ ++ −= =          (2.7) 

where ( )* 1J J
+−= . 

Noticing the unidirectionality of time, we assume 

( )0
0, 0.x T Tµξ= ∂ >                     (2.8) 

In component form, (2.7) becomes 
0

1 .xKg Kg T
x

µ
µν µν

νν

ξ
ξ

∂ ∂
= = ∂

∂ ∂
                 (2.9) 

Since 0x  and 1x  are two independent variables in new coordinate system 
xµ , we have 

0

1 10 .x T Kg T T
x x

µ
µν

µ µ ν
ξ∂ ∂

= = ∂ = ∂ ∂
∂ ∂

              (2.10) 

This means the time coordinate transformation ( )T µξ  is a null gradient field. 
(2.10) is a necessary condition for LCS. 

Let V Tµ µ= ∂ , if 0 0V ≠ , by (2.9) as 0µ = , and then using (2.10) we have 
0

0 1 0 1
0

1 .
k

kV
K

V x V V x
ξ ξ∂ ∂

= = −
∂ ∂

                 (2.11) 

Substituting (2.11) into (2.9) we get a homogeneous linear equation for 1
kξ∂  

( )0
0 1 0.

n
k k
n nV V V V

x
ξδ ∂

+ =
∂

                  (2.12) 

The determinant of the coefficient matrix is given by 

( ) ( )20 0
0 0det 0.k k

n nV V V V V V V V µ
µδ + = =             (2.13) 
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The solution to (2.12) reads 

( )1 .k kf V
x

µξ ξ∂
=

∂
                    (2.14) 

(2.14) is also in the form of (2.9), but in (2.14) 0f ≠  is an arbitrary function 
which can be selected according to requirement. Solving 0ξ  from (2.8), we 
have ( )0 0 , kt xξ ξ= . Substituting it into (2.14), we get an ordinary differential 
equation system of ( )1k xξ  for any given f. We have a unique solution for ini-
tial problem 

( )0 1, , ,k k lF x x Xξ =                     (2.15) 

where kX  is the initial values of kξ . Making any differentiable and invertible 
transformation 

( )0 2 3, , ,k kX X x x x=                     (2.16) 

substituting it into (2.15), and then substituting the results into ( )0 0 , kt xξ ξ= , 
we get a transformation 

( )0 1 2 3, , , .x x x xµ µξ ξ=                    (2.17) 

In new coordinate system ( )0 1 2 3, , ,x x x x , Equation (2.5) holds. However, we 
still have two problems. First, does the null gradient field 0g T Tµν

µ ν∂ ∂ =  has 
nontrivial solution 0Tµ∂ ≡/ , and what condition is satisfied to have nontrivial 
solution? The second is under what conditions (2.6) holds. In what follows, by 
means of light cone we discuss the problem in detail. The analysis shows, the ex-
istence of nontrivial solution of ( )T µξ  is equivalent to the existence of a series 
of global null geodesics ( )µξ τ  in the space-time, and we have 

d .
d

T
µ

µ ξ
τ

∂ ∝                        (2.18) 

It is difficult to solve the null gradient field ( )T µξ  from (2.10) directly. 
However, ( )T µξ  can be equivalently derived from null geodesics and the LCS 
can be constructed as follows. 

Theorem 1. There is an LCS in a space-time, i.e., the metric can be trans-
formed into the following form 

0 0 0
,

0
0

u v p q
v

g
p a s
q s b

µν

 
 
 =
 −
 

− 

                  (2.19) 

if and only if there exists a null vector field V µ  in the space-time satisfying 
0V V µ

µ = , and the 1-form 

dg V µ ν
µνω ξ=                       (2.20) 

is integrable. 
Proof. For necessary part, since ( ), , ,t z x y  is the light-cone coordinate sys-

tem, solving the null geodesics along the z axis in the space-time with metric 
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(2.19), we get 
22

2

d d d d d, 0.
d d d dd

zvz z t x y
v τ τ τ ττ
∂  = − = = = 

 
            (2.21) 

The solution of the null vector field is given by 

d 0, , 0, 0 ,
d

V x
v

µ µ κ
τ

 ≡ =  
 

                  (2.22) 

where κ  is a constant. The 1-form (2.20) becomes 

d d ,z
tzg V t tω κ= =                     (2.23) 

which is an exact differential form. 
For the sufficient part, assume 0dξ  to be time-like. Define 

d d ,t Kg V µ ν
µν ξ= �                      (2.24) 

where K�  is a factor to make the 1-form (2.24) become an exact differential 
form, it satisfies 

( )0
00 0, .t Kg V µ

µ ξ
ξ
∂

= > ∀
∂

�                  (2.25) 

Then we have a regular coordinate transformation for t 

( ) 1, .t T V K Tµ
µ µξ −= = ∂�                  (2.26) 

Along any null geodesic with tangent vector ( )d
d

V µ µξ τ
τ

= , where τ  is the 

parameter of the geodesic, we have 

( ) ( )d
d d d 0.

d
t T KV V

µ
µ

µ µ

ξ τ
τ τ τ

τ
= ∂ = =�             (2.27) 

So for any given constant 0t , the hypersurface ( ) 0T tµξ =  is a propagating 
light wave front orthogonal to V µ . That is to say, the geometrical meaning of 
hypersurface ( ) 0T tµξ =  is a light wave front scanning the space. 

Now we construct the coordinate ( )z z µξ= , which describes the distance of 
the light wave front ( ) 0T tµξ =  moving through 

d d .zz µ
µ ξ

ξ
∂

=
∂

                      (2.28) 

Taking the trajectories of the null geodesic, namely the light rays, as the z axes, 

then along these z axes we have ( )d
d

V µ µξ τ
τ

= , Substituting it into (2.28) we 

get 

d ,
d

zV z Kµ
µ τ

∂ = ≡                      (2.29) 

where 0K ≠  is a smooth function to be determined, which acts as the scale of 
z axis. If 0K < , make an inversion transformation z z= −� , we get 
V z Kµ

µ∂ =� . So not lose generality, we always assume 0K > . 
If we choose K, such that the 2-dimensional surface ( ) 0.z const

t tµξ
=

=  is al-
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ways a fixed light wave front. We denote it by ( )0 ,S t z . The initial surface is 
( )0 0 0,S S t z= , where ( )0 0,t z  are given constants. By the definition, S is or-

thogonal to null vector V µ , that is, S is always orthogonal to the light rays---z 
axes. Solving (2.29) with boundary condition 

0 0Sz z=  on surface 0S , we ob-
tain the coordinate transformation ( )z z µξ= . The moving distance of the 
propagating light wave front ( ) ( )0 0 0, ,S t z S t z→  defines the new coordinate z. 

For the 2-dimensional surface ( )0 0,S t z , not loss generality, we can assume 
the parameter coordinates ( ),x y  are orthogonal grid. Otherwise, we can take 
the 2 principal curves of the surface as coordinate grid of ( ),x y  to get ortho-
gonal coordinates. If we set each null geodesic with unique parameter coordinate 
( ),x y , then the coordinates ( ),x y  become global coordinates. The metric in 
new coordinate system ( ), , ,t z x y  takes the following form 

0 0
.

0
0

u v p q
v w

g
p a s
q s b

µν

 
 − =
 −
 

− 

                 (2.30) 

For light travels along the z lines, we have d d 0x y= = , and the line element 
becomes 

2 2 20 d d d 2 d d .s u t w z v t z= = − +                 (2.31) 

By the definition of t in (2.27), we have d 0t =  for the same propagating light 
wave front ( ) ( )0 0 0, ,S t z S t z→ . In this case d 0z ≠ , so we get 0w =  from 
(2.31). Considering the arbitrary of ( ), , ,t z x y , we have 0w ≡ , and then we get 
the metric (2.19). The proof is finished. 

The selection of K in (2.29) is quite arbitrary. For convenience of solving 
(2.29), we can usually take 1K =  or K z=  or some factors of vector V µ  to 
make the equation simpler. 

Theorem 2. Assuming in LCS ( ), , ,t z x y� �  the metric takes the form (2.19), 
then we have 

1˚ Let 1 1,A sa B sb− −= = , If 0z A∂ =  or 0z B∂ = , there exists a regular 
coordinate transformation, such that (2.19) can be converted into canonical 
form (1). 

2˚ In the general case with 0za∂ ≠ , 0zb∂ ≠  and 0z s∂ ≠ , metric (2.19) can 
be converted into canonical form (2.1) if and only if there exist ( ),A B  inde-
pendent of z, such that s satisfies 

, 0,
1 z z
Aa Bbs A B

AB
+

= ∂ = ∂ =
+

                (2.32) 

and the following partial differential equation system for transformation 
( ), ,x t x y� , ( ), ,y t x y�  has regular solution, 

, .y y x xx A y y B x∂ = ∂ ∂ = ∂� � � �                  (2.33) 

Proof. In the case 0z B∂ = , substituting transformation x x=� ,  
( ), ,y y t x y=� �  into the line element 2ds , we get metric (2.1) by 
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( ), , .y B t x y
x
∂

=
∂
�

�                       (2.34) 

Taking t as an independent parameter, (2.34) becomes an ordinary differential 
equation for ( )y x� . Solving it we get a unique solution for initial value problem 

( )0, ,y f t x y=� . Making any regular transformation 0y y↔ , or concretely 
( )0 ,y f t y= , we get the total transformation ( ), ,y y t x y=� � . Similarly we can 

check the case 0z A∂ =  by transformation ( ), ,x x t x y=� � , y y=� . 
For the case in 2˚, since z axes are the light rays which have been selected, the 

coordinates transformation ( ) ( ), ,x y x y↔� �  must be independent of z. Under 
some transformation ( ), ,x x t x y=� � , ( ), ,y y t x y=� � , the metric should be con-
verted into (2.1). By straightforward calculation, we find s should take the form 
of (2.32), and the solution of (2.33) gives the transformation to convert metric 
(2.19) into (2.1). The proof is finished. 

The condition (2.32) is similar to a conformal condition for the 2-dimensional 
surface ( ),S t z  for different z. Since ( ) ( )0 0 0, ,S t z S t z→  is an equidistant 
translation of grid ( ),x y  along geodesics, (2.32) is a natural requirement for 
the space-time with LCS. Whether (2.32) can be proved by geometry or derived 
from vacuum Einstein’s equation 0Gµν =  is still a problem. If the metric satis-
fies the conditions in Theorem 2, all space-like coordinates can be orthogona-
lized, and then the spatial coordinates ( ), ,z x y  form a global orthogonal coor-
dinate grid. The new metric (2.19) becomes the canonical form (2.1). 

Theorem 3. Assuming the coordinate system ( ), , ,t z x y  is LCS and the me-
tric takes the canonical form (2.1), under the following coordinate transforma-
tion, 

( ) ( ) ( ) ( )0 1 2 3,  , ,  , ,  , ,t f t z f t z x f t x y f t y′ ′ ′ ′ ′ ′ ′= = = =        (2.35) 

where fµ  are any given smooth functions, the metric also takes the canonical 
form (2.1) in new coordinate system ( ), , ,t z x y′ ′ ′ ′ . 

Theorem 3 can be directly checked. 
From the above proof, we find that the new coordinate system ( ), , ,t z x y  is 

induced from a global null geodesic series, so it is worthy of the name “light-cone 
coordinate system”. In such LCS, the structure of the space-time becomes simp-
ler, and the exact solutions to the Einstein’s field equation can be more easily 
obtained [7] [8]. For an evolving star with spherical symmetry, in LCS the Eins-
tein’s field equation can be reduced to some ordinary differential equations [8]. 

The GLC introduced in [10] [11] [12] [13] has a little difference from (2.19). 
In GLC the signature of metric is chosen as ( ), , ,− + + +  and the line element is 
given by 

( )( ) ( ) { }2 2 2
GLCd 2 d d d d d d d , , 1, 2 .k k l l

kls w w U w U w k lτ γ θ θ= − ϒ + ϒ + − − ∈  (2.36) 

The LCS version is inclined to theoretical discussion but GLC is inclined to ap-
plications in astrophysics. The basic properties of LCS and GLC are quite similar 
and can refer to each other. However, one constraint of coordinate condition in 
GLC is given by 2 k l

ww klg U Uγ= ϒ + . The specific relations between two kinds 
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light-cone coordinate system need to be clarified in details. 
Theorem 4. If there is a null gradient field 0V V µ

µ =  in space-time µξ , 
( ), , ,t z x y  is an LCS. Then the coordinate transformation functions  

( ), , ,t z x yµξ ↔  satisfy the following linear partial differential equations 

( ) ( ), , , 0, ,0,0 ,V t z x y fµ
µ∂ =                  (2.37) 

in which ( ), 0f t z >  is any given function with suitable smoothness. 
Proof. For the function ( )t µξ , by t Vµ µ∂ ∝  we have 

( ) 0.V t V Vµ ν µ
µ µξ∂ ∝ =                    (2.38) 

So ( )t t µξ=  satisfies (2.37). 
The coordinate ( )z µξ  is defined by (2.29), so it also satisfies (2.37). 
For the coordinate function x, along z axes we have 

10 d d d ,x x K V xµ µ
µ µξ τ−= = ∂ = ∂�                (2.39) 

that is ( )x x µξ=  satisfies (2.37). Similarly, we can check ( )y y µξ=  also sa-
tisfies (2.37). The proof is finished. 

(2.37) forms the basic differential equation system to determine the light-cone 
coordinate system ( ), , ,t z x y . The above derivation shows the physical and 
geometrical meanings of LCS and the corresponding metric (2.19). It also pro-
vides a method to solve null gradient field equation 0T Tµµ∂ ∂ = . 

3. Examples and Applications 

At first, we take some simple cases in Minkowski space-time as examples to 
show concepts of LCS. We have line element 

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3d d d d d d d .s µ
µξ ξ ξ ξ ξ ξ= = − − −         (3.1) 

The simplest case corresponds to the plane wave moving along 1z ξ= , we have 

( ) ( )0 1 1 2 3, , , , , , ,t z x y ξ ξ ξ ξ ξ= −                 (3.2) 

2 2 2 2d d 2d d d d .s t t z x y= + − −                  (3.3) 

d 0t =  means 0 1
0tξ ξ= + , which stands for a propagating wave front ( )0 ,S t z . 

d d 0t z= =  corresponds to a fixed wave front  
( ) { }0 1

0 0 0 0 0, | ,S t z t z zµξ ξ ξ= = + = . 

( ) ( )1, 1,0,0 , 1,1,0,0 , 0.V K t K V K V Vµ µ
µ µ µ= ∂ = − = =      (3.4) 

Let 0
0 1V V =  we get 1K = . 

The second case corresponds to cylindrical wave moving along ρ , we have 

( ) ( ) ( ) ( )2 20 1 2 1 2 3, , , , , arctan , ,t zρ φ ξ ρ ξ ξ ξ ξ ξ = − + 
 

      (3.5) 

2 2 2 2 2d d 2d d d d .s t t zρ ρ φ= + − −                 (3.6) 

The third case corresponds to the spherical wave moving along r, we have 

( )0 2 2 2 2 2 2, d d 2d d d sin d .t r s t t r rξ θ θ ϕ= − = + − +         (3.7) 

In what follows, we take Schwarzschild space-time and Kerr-like one as exam-
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ples to explain the geometrical meaning of LCS and show how to construct the 
LCS. 

For the Schwarzschild metric 

( )
1

2 2 22 2diag 1 , 1 , , sin , 2m mg r r r m
r rµν θ

−  = − − − − − >  
   

    (3.8) 

with the coordinate system ( ), , ,t r θ ϕ , the radial null geodesic satisfies 
1

2 2 2 2
00 11

2 21 1 0,m mg t g r t r
r r

−
   − = − − − =   
   

� �� �           (3.9) 

where d
d

tt
τ

=�  and d
d

rr
τ

=� . Taking the null vector orthogonal to the  

2-dimensional surface ( ),θ φ  as follows 
121 , 1, 0, 0 ,mV

r
µ

−  = − ±     
                 (3.10) 

it is easy to check that the corresponding 1-form (2.20) is an exact differential 
form. The initial light wave front ( )0 0,S t r  is simply a sphere in the domain 

2r m> . 1rV =  corresponds to the outward light rays and 1rV = −  corres-
ponds to the inward light rays. In what follows we only calculate the case 

1rV = . 
By (2.24), we get the coordinate function t�  

( ) 0d 2 ln 2 .t g V t r m r m tµ ν
µν ξ= = − − − +∫�            (3.11) 

By (2.37), for ,x y  we have 
121 0.t r

mV F F F
r

µ
µ

−
 ∂ = − ∂ + ∂ = 
 

              (3.12) 

The general solution is given by ( ), ,F H t θ φ= � , where ( ), ,H t θ φ�  is arbitrary 
smooth function. By boundary condition, we get 

, .x yθ φ= =                       (3.13) 

By (2.29), we have 
1 12 21 1 .t r

m mV z z z f
r r

µ
µ

− −
   ∂ = − ∂ + ∂ = −   
   

          (3.14) 

For (3.14), we get typical solutions independent of ( ),x y  

( ) ( )
( )( )

( )

2

2 ln 2 , if 1,

2 e , if ,
2, if 1 ,

m r

r m r m Z t f

Z t r m f zz
mZ t r f
r

 + − + =

 − == 
  + = −   

�

�

�

        (3.15) 

where ( )Z t�  is an arbitrary function of t� , we can set 0Z z=  according to 
Theorem 3. In fact, we can choose any given monotone increasing function 
( )z r  in this case, 

( )21 .mf z r
r

  ′= − 
 

                    (3.16) 
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So the option of 0f >  is quite arbitrary. The Eddington-Finklestein coordi-
nates are similar to these coordinate system. 

In the case of the metric generated by rotating source similar to the Kerr ones 
[5], we cannot generally construct a null vector field V µ  satisfying the integra-
ble 1-form (2.20), so the corresponding metric cannot be generally converted 
into the canonical form (2.1). Now we examine the following metric in the coor-
dinate system ( ), , ,t r θ φ , 

2

2

0 0
0 0 0

,
0 0 0

0 0

u uw
a

g
b

uw w v

µν

 
 

− =  −
  − 

                (3.17) 

where , , , ,u v w a b  are smooth functions of ( ),r θ , but independent of ( ),t φ . 
For speed 

( ), , , ,V t rµ θ φ= � �� �                      (3.18) 

after some arrangement, the geodesic equation V V Vα α µ ν
µν= −Γ�  becomes 

( )

( ) ( )

2

2 2
2

d 1 d d2
d d d

1 d d d ,
d d d

u wt v w uw t
uv

u w vw v w u v w uw
u v

τ τ τ

φ
τ τ τ

 = − − + 
 
 − − + + − 
 

� �

�
      (3.19) 

2d 1 d d 1 d d d ,
d d d d d d

u w u w vw u t w uw u
v uv

φ φ
τ τ τ τ τ τ

   = − − − − +   
   

� ��      (3.20) 

( ) ( ) ( )( )2 2 2

2 2

d 2 2 2 2
d

,

r r r r r

r

ar u ut w u u w t w w v r

br arθ

φ φ
τ

θ θ

= − ∂ + ∂ + ∂ + ∂ − ∂

+ ∂ − ∂

� �� �� �

� �� �
  (3.21) 

( ) ( ) ( )( )2 2 2

2 2

d 2 2 2 2
d

.r

b u ut w u u w t w w v

br ar

θ θ θ θ θ

θ

θ φ φ θ
τ

θ θ

= − ∂ + ∂ + ∂ + ∂ − ∂

− ∂ + ∂

� � � �� �

� �� �
 (3.22) 

(3.19) and (3.20) are integrable due to the two Killing vectors ( ),t φ∂ ∂ . The first 
integrals of (3.19) and (3.20) are given by 

2

2

1, ,w v w wt m n m n
uv uv vvu

φ−
= − − = +��              (3.23) 

where ,m n  are constants. Substituting (3.23) into the line element equation, we 
have an equation for null geodesic 

( )22
2 2

2 2 .
nu mwmar b

u u v
θ

+
+ = −��                 (3.24) 

By (3.17) and (3.23), the covariant speed becomes 

( ), , , .V g V m ar b nν
µ µν θ= = − − −��               (3.25) 

tV  and Vφ  are constants related with the Killing vectors ( ),t φ∂ ∂ . According 
to Theorem 4, the metric can be converted into (2.19) if and only if there exists a 
function ( ), , ,T t r θ φ  such that V Tµ µ= ∂  is a null vector. Then by (3.25), we 
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have 

, ,tT m T nφ∂ = ∂ = −                     (3.26) 

, .rT ar T bθ θ∂ = − ∂ = − ��                   (3.27) 

Solving (3.26) we get 

( ), ,T mt k n h rθ φ θ= − − −                  (3.28) 

where k is a constant. kθ  is split from ( ),h r θ  for simplicity of following cal-
culation. Substituting (3.28) into (3.27) we get 

( )1 1, .rr h k h
a b θθ= ∂ = + ∂��                  (3.29) 

By (3.28) we find m is the scale of time, so we set 1m = . Substituting (3.29) 
into (3.21) and (3.22), we get 

( ) ( ) { }
2 2

2
2 2

1 , 0, 0,1 .r

nu w kh a h k
bu u v θ

 +
 ∂ = − − ∂ = ∈
 
 

      (3.30) 

By (3.30), we find ( )h h r= . 
(3.30) includes many cases of space-time with LCS. We only discuss the case 

0k =  in normal spherical coordinate system. By (3.30) and 0k = , we get 

( )
( )

22

2 .
u vh r

a
v nu w

′
=

− +
                     (3.31) 

(3.31) is a necessary condition that the metric (3.17) can be converted into (2.19) 
in the case 0k = . 

Comparing the Kerr metric in the Boyer-Lindquist form with (3.17) [2] [3] 
[5], we obtain 

2 2 2
2

2 2 2

cos 2 ,
cos

r mru
r
α θ

α θ
+ −

=
+

                 (3.32) 

( )
( )( ) ( )

2 2 2 2 4
2 2 2

2 2 2 2 2 2

2 cos 6 sin
sin ,

cos 2 cos

mr r mr
v r

r mr r

α α θ θ
α θ

α θ α θ

+ +
= + +

+ − +
    (3.33) 

( )( )
2

2 2 2 2 2 2

4 sin ,
cos 2 cos

mrw
r mr r

α θ

α θ α θ
=

+ − +
          (3.34) 

2 2 2
2 2 2

2 2

cos ,   cos ,
2

ra b r
r mr

α θ α θ
α

+
= = +

− +
            (3.35) 

where m is the mass of a star, and α  is a constant proportional to the angular 
momentum. Substituting (3.32)-(3.35) into (3.31), we find it contradicts 

0hθ∂ = , so the Kerr metric cannot be converted into (2.19). Or equivalently, we 
cannot construct a global light-cone coordinate system in the Kerr’s space-time. 

Now we transform the metric (3.17) with (3.31) into the canonical form (2.1). 
For (3.31), we make transformation ( )r h r=� , then we remove the function 
( )h r  from the metric in the new system ( ), , ,t r θ φ� . This process is equivalent 

to setting ( )h r r= . Substituting h r=  and 0k =  into (3.28), we get the new 
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time coordinate T t n rφ= − − . By symmetry of the boundary condition, we 
should have 

0, .n T t r= = −                      (3.36) 

By (3.29) and 0k = , the covariant speed V µ  defined in (3.18) becomes 
2

1 1
2, , 0, , .w u vV a a a

uv v w
µ − − = =  − 

              (3.37) 

For general functions ( ), ,u v w , (2.37) cannot be solved explicitly. If we set the 
scale function in (2.37) as 1rf V a−= = , we can solve the new coordinate 

( ), , ,z r Z t θ= + Φ�                      (3.38) 

where Z is an arbitrary function, we set 0Z =  for simplicity. 

2 d .uw r
v w

φΦ = −
−∫                     (3.39) 

Solving other equations in (2.37), we get ( ), ,F F t θ= Φ� . We can choose any 
two independent functions 

( ) ( ), , , , , ,x X t y Y tθ θ= Φ = Φ� �                (3.40) 

as the new coordinates. In the new coordinate system ( ), , ,t z x y�  defined by 
(3.36), (3.38) and (3.40), the metric (3.17) becomes ( ) ( )* 1g J g Jµν αβ

−=� . By 
calculation, we find that 

0.zz zx zyg g g= = =� � �                     (3.41) 

However, we have 0xyg ≠�  in general case. if 

( )2

d ,
d

uw r
rv w
ϕ=

−
                     (3.42) 

where ( )rϕ  is any smooth function independent of θ , we can get 0xyg =� . In 
this case, we have 

( ) ( ), , , , , , ,t z x y t r r θ φ ϕ= − −�                 (3.43) 

and the new metric becomes canonical form. 
Now we use the LCS to simplify the Einstein’s field equation of an evolving 

star with spherical symmetry [8]. In this case the line element is equivalent to 

( )2 2 2 2 2 2d d 2 d d d sin d ,s ab t b t r r θ θ ϕ= + − +          (3.44) 

where ( ),a b  are continuous functions of ( ),t r  with suitable smoothness un-
til the star becomes singular. Denote the 4-vector speed of the fluid by  

{ }, , 0, 0U U Vµ =  which satisfies the line element equation  

( )2 1g U U abU bV Uµ ν
µν = + = . For the perfect fluid model, the nonzero  

components of ( )T P U U Pgµν µ ν µνρ= + −  are given by 

( )( )2
,ttT b P a bU V abPρ= + + −               (3.45) 

( )( ) ,tr rtT b P a bU V U bP Tρ= + + − =            (3.46) 

( ) 2 2 2 2, , sin ,rrT b P U T Pr T Prθθ ϕϕρ θ= + = =         (3.47) 
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where ( )P P ρ=  is a given equation of state. 
The nonzero components of Einstein tensor are given by 

( ) ( )2

1 1 1 ,tt t rG b a ab a ab a
r r

= − ∂ − ∂ − −             (3.48) 

( )2

1 1 1 , ,r
tr r rt rr

bG b a b a G G
r rar

∂
= ∂ − − = = −         (3.49) 

2 2
2

1 , sin ,
2 2

r rb aa aG r G G
r b a rθθ ϕϕ θθ θ

 ∂ ∂ − = + − + =  
  

      (3.50) 

where the scalar curvature   depends on the second order derivatives of the 
metric functions ( ),b a . But it is not used in the following discussion, because 
the related equations are not independent, which can be derived from other eq-
uations. 

By detailed calculations, we find only the following 3 equations are indepen-
dent ones in the Einstein’s equation 8G GTµν µν= − π , 

( ) 2 28 ,rb Gr P b Uρ∂ = π +                   (3.51) 

( ) ( )28 ,t a G P rV b a Vρ∂ = π + +               (3.52) 

( ) ( )( )2 14 .r
aa Gr P P abU

r
ρ ρ −

∂ = − π − + + +           (3.53) 

The equations of metric become ordinary differential equations. 
The above equations have still a weakness, that is, the geometrical variables 

( ),a b  and mechanical variables ( ),Vρ  couple each other in a complicated 

manner. Besides, the physical meaning of ( ),U V  is unclear, which is quite dif-

ferent from the usual definition d
d
r
t

. 

To simplify the relations, we introduce the following transformation 

( ) 2

1 , ,
1 1

v avU V
ab v v

−
= =

+ −
               (3.54) 

where the speed 1v <  is approximately the usual definition. Define an aux-
iliary energy function by 

( ) ( )2 1 .
1

vF P abU P
v

ρ ρ −
≡ + = +

+
              (3.55) 

For a static star, we have F Pρ= + . Substituting (3.54) and (3.55) into 
(3.51)-(3.53), we get simplified relations 

18 .
1r

Pv aa Gr
v r

ρ − −
∂ = − π +

+
                 (3.56) 

( ) ( )
( )
1

8 ,
1r

b v
b Gr P

a v
ρ

−
∂ = π +

+
                 (3.57) 

( ) 28 ,
1t
a bva Gr P

v
ρ∂ = π +

−
                 (3.58) 

Obviously, the geometrical variables ( ),a b  are separated from mechanical ones 
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( ), ,P vρ  and integrable now. The solutions are given by 

( ) ( )2
20 0

81 d 0, exp 8 d ,
1 1

r tG Pv bvra r r a r G P t
r v v

ρ ρ
 π −

= − ≡ π +  + − 
∫ ∫   (3.59) 

( ) ( )
( )
1

exp 8 d .
1

R

r

v r
b G P r

v a
ρ

 −
= − π +  + 

∫              (3.60) 

By (3.59) and (3.60), for an evolving star, we have 

( )grav
1 .
2 1

PvP F
v

ρρ ρ −
= − + =

+
               (3.61) 

For any ( ) [ )( ), 0,r Lρ ∞⋅ ∈ ∞ , we have ( ) [ )( )0, 0,a r C⋅ ∈ ∞ , and it has a positive 
minimum min 0a > . ( ) [ ]( )1, 0,b r C R⋅ ∈  is a monotonic increasing function of 
r. For a normal star, the variables have the following range of value, 

0 1, 0 1, 0 .b a ρ< ≤ < ≤ ≤ < ∞                (3.62) 

4. Conclusion 

The above discussion shows that we can set up an LCS if and only if there is a 
null gradient field in the space-time. In such coordinate system, the metric takes 
a wonderful canonical form (2.19), and the Einstein’s field equation becomes 
simpler [7] [8]. This coordinate system might be also helpful to understand the 
propagation of the gravitational wave. However, LCS has some limitations in 
application, because it holds only in average or approximate sense in usual cases. 
Another kind of special coordinate system with unique realistic time is given in 
[31]. The physical requirement for space-time with LCS is that, there is a light at 
some point or on some 2-dimensional surface in the space-time, and its wave 
front is stable enough to act as coordinates. Therefore, the feature of light-cone 
coordinate system can be summarized in a powerful word: Beacon the whole 
world by one light. 
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