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Abstract 
A half-harmonic oscillator, which gets its name because the position coordi-
nate is strictly positive, has been quantized and determined that it was a 
physically correct quantization. This positive result was found using affine 
quantization (AQ). The main purpose of this paper is to compare results of this 
new quantization procedure with those of canonical quantization (CQ). Using 
Ashtekar-like classical variables and CQ, we quantize the same toy model. 
While these two quantizations lead to different results, they both would reduce 
to the same classical Hamiltonian if 0→� . Since these two quantizations 
have differing results, only one of the quantizations can be physically correct. 
Two brief sections also illustrate how AQ can correctly help quantum gravity 
and the quantization of most field theory problems. 
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1. A Simple Model Problem 

A frequent toy model to study, using ,p q−∞ < < ∞ , with the Poisson bracket 
{ }, 1q p = , is defined by its classical Hamiltonian, ( )2 2 2H p q= + , i.e., the 
harmonic oscillator. Using canonical quantization (CQ), the quantum Hamilto-
nian becomes ( )2 2 2P Q+ , and its eigenfunctions and eigenvalues are well 
known [1]. For example, the eigenvalues are ( )1 2n +� , where 0,1,2,n = � . It 
is safe to say that this quantization is valid. 

The basic classical affine variables are the dilation d pq=  and 0q ≠  be-
cause if 0q = , then 0d =  and p cannot help. This leads to the quantum affine 
variables for an affine quantization (AQ) which are the dilation operator 

( ) 2D PQ QP= +  and 0Q ≠ , because if 0Q =  is allowed, then, just like the 
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classical case, 0D =  and P cannot help.1 The half-harmonic oscillator has the 
same classical Hamiltonian, ( ) ( )2 2 2 2 22 2p q d q q+ = +  with 0q > , and the 
quantum Hamiltonian becomes ( )2 2 2DQ D Q− + . That model has now been 
solved using affine quantization (AQ), and its eigenvalues are ( )2 1n +� , with 

0,1,2,n = �  [2] [3]. Beyond that, the coordinate stopping point can be moved 
from 0q >  to q b> − , with 0b > , which, through computer calculations, has 
found that the (b-dependent) eigenvalues continue to be equally spaced for all 

0b > , and effectively found them to be the original eigenvalues (along with the 
original eigenfunctions) for the full harmonic oscillator when b →∞  [4]. It is 
recognized that all of this is part of a valid quantization. 

A brief summary of the quantum formulation of the half-harmonic oscillator 
is presented here. First, for the full harmonic oscillator, where q−∞ < < ∞ , the 
quantum Hamiltonian is ( )2 2 2P Q+ , while for the half-harmonic oscillator, 
where 0q > , the quantum Hamiltonian is  

( ) ( )2 2 2 2 2 23 4 2 2P Q Q DQ D Q− + + = + � , which, as noted, also has equally 
spaced eigenvalues. A partial-harmonic oscillator, where q b> −  with 0b > , 
and the quantum Hamiltonian is ( ) ( )22 2 23 4 2P Q b Q + + + � , also has 
equally spaced (and b-dependent) eigenvalues for all b. This is beautifully illu-
strated in Fig. 1, page 15, in [4].2 

We now turn our attention to a different procedure of quantizing the 
half-harmonic oscillator which uses CQ. 

2. A Different Quantization Procedure for the Half-Harmonic 
Oscillator 

2.1. A Change of Classical Variables 

We start again with the classical Hamiltonian for the half-harmonic oscillator 
which is still ( )2 2 2H p q= +  and 0q > , but this time we will use different 
coordinates. To let our new coordinate variables span the whole real line, which 
makes them “Ashtekar-like” [5] [6] [7], we choose 2q s= , where s−∞ < < ∞ . 
Thus, s is the new coordinate. For the new momentum we choose 2r p q=  
because the Poisson bracket { } { }, , 2 1s r q p q= = .3 The classical Hamiltonian 
now becomes ( ) ( )2 2 2 2 42 4 2H p q r s s= + = + . 

2.2. Quantization with the New Quantum Operators 

For quantization, the new variables use canonical quantum operators, r R→  
and s S→ , with [ ], 1lS R i= � . Following the CQ rules, this leads to  

 

 

1If 0Q ≠  then †P P≠ . However, †P Q PQ= . In Sec. 2.2 we observe that  

( ) ( )† 2 2 2 2 2 2 23 4 3 4P P Q Q P Q Q+ + = + +� �  since every eigenfunction requires that for very tiny 

0x >  then ( ) 3 2x xψ ∝  [3]. 
2The author of Fig. 1 used a shifted equation to simplify the analysis. This shift changed the eigen-
functions from ( )xψ  to ( )x bψ − , but that had no influence on the eigenvalues. 
3It may be noticed that 20 q s< = , hence 0s ≠ , but instead we ignore this single point issue for 
now. Do not miss Sec. 2.3 where “single points” are examined further. 

https://doi.org/10.4236/jhepgc.2022.82024


J. R. Klauder 
 

 

DOI: 10.4236/jhepgc.2022.82024 305 Journal of High Energy Physics, Gravitation and Cosmology 
 

2 4 2CQ RS R S− = +  . This quantum operator, using canonical operators 
where [ ], 1lS R i= � , is quite different from the valid affine expression  

2 2 2AQ DQ D Q− = +  , rearranged into canonical operators with [ ], 1lQ P i= � , 
that becomes ( )2 2 2 23 4 2AQ P Q Q = + + � . It is evident that these two ca-
nonical quantum Hamiltonian operators, CQ  and AQ , have different ei-
genfunctions and eigenvalues. While the CQ and AQ stories lead to different 
results, only one of them can be physically correct. 

This example joins many others for which two classical Hamiltonians, ex-
pressed in suitably different classical variables, are equal in their values, but that 
the two quantum Hamiltonians lead to different results. 

2.3. A Missing Point 

An issue that arose in Sec. 2.1 asked if 2 0q s= >  or 2 0q s= ≥  should be 
adopted for the half-harmonic oscillator in order to achieve a valid half-harmonic 
oscillator quantization. 

Should we care if a single point in a whole space is missing, i.e., does 0s ≠  
really matter? In classical mechanics it might only be nothing but a nuisance. 
However, as we will find out, in quantum mechanics it really can matter. We 
start by using many half-harmonic oscillators, leading to ( )2 2

1 2N
n nnH p q

=
= +∑ , 

with 0nq >  for all n. This equation can be interpreted differently as an 
N-dimensional vector, such as p�  for which 2 2 2

1 2p p p= + +
�

�  and q�  for 
which 2 2 2

1 2q q q= + +
�

� , with 0nq >  for all n. This implies that 2 0q >
� , in 

which a single point in an N dimensional space has been removed (imagine that 
for N = 10,000!). How could that matter? It matters because the quantum 
theory of this “toy model” is ( )2 2 2 23 4 2P Q Q = + + 

� ��
� , which is dra-

matically sensitive to a single missing point where 2 0Q =
�

. 
By missing just one point in the entire coordinate region can lead to an incor-

rect quantization, as was shown by our toy model. Could that be likely to have 
any influence on the quantization of gravity? 

A possible reply to that question may be found in the next section. 

3. A Valid Quantum Gravity in a Nutshell 

Before trying to solve a problem you should correctly formulate it! 
Physics says that the distance between two different, but very close, points in 

space is given by ( ) ( )2d d d 0a b
abs x g x x x= > . This requirement ensures that 

( ) ( )det 0abg x g x≡ >   . Likewise, from a purely mathematical view, and in 
preparation for an AQ quantization, the proper configuration space comes from 
( ) ( ) ( ) ( )a b

abJ x C x g x C x= , and all non-identically zero “vectors” with com-
ponents ( )aC x . While mathematically ( )J x  could be positive, zero, or nega-
tive, we choose only those metrics ( )abg x  for which ( ) 0J x > . That leads to 
the desired physically correct configuration space. 

Instead of choosing the classical functions ( )ab xπ  and ( )cdg x , we choose 
the dilation field (also known as the momentric field) ( ) ( ) ( )a ac

b bcx x g xπ π≡  
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along with the metric field ( )abg x . The classical Hamiltonian function (ignor-
ing the cosmological constant) is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 31 31, d ,
2

a b a b
b a a bH g g x x x x x g x R x xπ π π π π−  = − +    

∫  (1) 

where ( ) ( )3 R x  is the 3-dimensional spatial coordinate Ricci scalar [8]. 
For an AQ quantization, which uses Schrödinger’s representation, the basic 

quantum operators are the metric quantum operator ( ) ( )ˆab abg x g x=  and the 
dilation quantum operator ( ) ( ) ( ) ( ) ( )†ˆ ˆ ˆ 2a ac ac

b bc bcx x g x g x xκ π π = +  , in 
which ( ) ( ) ( ) ( )†ˆ ˆac ac

bc bcx g x x g xπ π= . These operators lead to the commuta-
tion rules 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

3

3

1ˆ ˆ ˆ ˆ, ,
2
1ˆ, ,
2

, 0,

a c a c c a
b d d b b d

c c c
ab d a bd b ad

ab cd

x x i x x x x

g x x i x x g x g x

g x g x

π π δ δ π δ π

π δ δ δ

   ′ ′= − −   

   ′ ′= − +   

′ =  

�

�        (2) 

and the quantum Hamiltonian operator is 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 2 3

1 2

3

2 1ˆ ˆ ˆ ˆ ˆ,
2

d .

a b a b
b a a bg x g x x x g x x

g x R x x

π π π π π− − = −  
+ 


∫
     (3) 

While the quantum Hamiltonian of gravity is only part of the overall task, an 
incorrect version of that aspect is unlikely to use any further elements, like con-
straints, etc., to render a correct final quantization. Several articles pertaining to 
gravity by the author are [2] [9] [10] [11]. 

4. Multiple Valid Quantum Field Theories in a Nutshell 

Let us consider a scalar field ( )xϕ , where x refers to an s-dimensional spatial 
field, as well as a momentum field ( )xπ . These two classical fields lead to the 
dilation field ( ) ( ) ( )x x xκ π ϕ= , which is used instead of ( )xπ , along with 
( )xϕ . Since ( )xκ  would vanish if ( ) 0xϕ = , it is essential to require that 
( ) 0xϕ ≠ . Moreover, if ( )xπ  or ( )xϕ  were infinite, they could not properly 

render ( )xκ , and therefore we require that ( ) ( )x xπ ϕ+ < ∞ , which then 
implies that ( )xκ < ∞  as well. The presence of ( )( )2

xϕ∇
�

 as part of the Ha-
miltonian density allows us to accept both positive and negative signs of 
( ) 0xϕ ≠ , as if the field was still continuous. Using affine variables, the classical 

Hamiltonian density is given by 

( ) ( ) ( ) ( )( ) ( ) ( )
22 2 221 .

2
pH x x x x m x g xκ ϕ ϕ ϕ ϕ = + ∇ + +  

�
      (4) 

Now we find that if ( )21 0xϕ = , then ( )xκ  cannot register a suitable value. 
To prevent that from happening, we require that ( )xϕ < ∞ , which reinforces 
that it has already been adopted. So not only must ( ) 20 xϕ −< < ∞ , it automati-
cally implies that ( )0

p
xϕ< < ∞ . Hence, it is fair to claim that the classical 
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Hamiltonian density, ( )H x , obeys ( )0 H x≤ < ∞  for all x. Finally, the classic-
al Hamiltonian becomes 

( ) ( ) ( ) ( )( ) ( ) ( )
22 2 221, d ,

2
r sH x x x m x g x xκ ϕ κ ϕ ϕ ϕ ϕ  = + ∇ + +    ∫

�
  (5) 

which still must require that ( ), dsH xκ ϕ < ∞∫  in order to eliminate fields like 
( ) 1xϕ =  over any infinite space. 
Using AQ and Schrödinger’s representation for the dilation operator, 

( ) ( ) ( ) ( ) ( )†ˆ ˆ ˆ 2,x x x x xκ π ϕ ϕ π = +                 (6) 

the quantum Hamiltonian becomes 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
22 221ˆ ˆ ˆ, d .

2
p sx x x x m x g x xκ ϕ κ ϕ κ ϕ ϕ ϕ

−  = + ∇ + +    ∫
�

  (7) 

Using Monte Carlo, this last expression has already given positive results for 
the models 12

3ϕ  and 4
4ϕ , where p

nϕ  refers to the interaction power p and the 
spacetime number 1n s= +  [12] [13]. 

5. Summary 

This paper has largely been devoted to seeing if “Ashtekar-like” coordinates can 
lead to physically correct quantizations by examining a toy model in order to 
find whether or not such variables might also lead to a physically correct quan-
tization of gravity. It appears that a canonical quantization of the toy model, 
made possible by using Ashtekar-like variables, leads to a different quantum 
Hamiltonian from the known correct affine equation. Thus, using canonical 
quantization and Ashtekar-like coordinates, has failed to lead to the physically 
correct quantization of the toy model. 

In addition, using affine quantization procedures, and with various coordinate 
space removals, we have also given a highly realistic quantum version of quan-
tum gravity, as well as for many realistic quantum examples of conventual 
quantum field theory. 

If you use the right tools, you may solve a problem fairly easily. But if you use 
the wrong tools, you may never solve the problem.  
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