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Abstract 
In Part 1 of this work, we showed that our new model of cosmology can ac-
count for the origin of all cosmic structures ranging in size from stars up to 
superclusters. In this model, at the time of nucleosynthesis, an imprint em-
bedded in the vacuum regulated the creation of the protons (and electrons) 
that later made up the structures. Immediately after nucleosynthesis and for a 
considerable period afterward, the evolution was completely determined by 
the expansion of the universe. Gradually, however, gravitational influences 
became more important until finally, the expansion of the structures-to-be 
ceased at their zero velocity points. Stars, galaxies, and galaxy clusters all 
reached their zero velocity points more or less simultaneously at the usually 
accepted time of the beginning of galaxy formation. From that point onward, 
the evolution gravitation came to dominate the evolution although the ex-
pansion still exerted its influence. In this paper, we examine the subsequent 
cluster evolution in some detail. We establish the conditions required to pre-
vent a free-fall collapse of the clusters and then show that galaxies with qua-
sar-like active nuclei located within the cluster were the sources of the neces-
sary radiation. We also show that the required galactic supermassive black 
holes were a consequence of the initial free-fall collapse of all galaxies. 
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1. Introduction 

In Part 1 of this series of papers [1], we presented a model detailing the initial 
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evolution of all cosmic structures which covered the period between their initial 
definition at the time of nucleosynthesis through to the point at which the nas-
cent structures reached their zero-velocity point (ZVP) defined to be the point at 
which they ceased to expand. It was at this point that gravitational interactions 
began to dominate over the expansion of the universe. We found that all structures 
reached their ZVPs more or less simultaneously at the time 163.2 10 sGt = ×  and 
that they did so with more or less their final masses. We presented some pre-
liminary ideas about the subsequent evolution of galaxy clusters based on an 
equilibrium model solution and concluded that intense radiation heating must 
have occurred very soon after the ZVP was reached because otherwise, the clus-
ters would have undergone free-fall collapse. 

In this paper, we examine the post-ZVP evolution in more detail. We base our 
discussion on the equations of motion of a gas cloud and find that the solutions 
support our earlier contention. The determining factors include first, the initial 
density distribution set at the time of nucleosynthesis. Obviously, this encom-
passes the material particles but in addition, it includes a vacuum energy con-
tribution which is the reality of the dark matter of conventional models. The 
second factor was the intensity and temporal profile of the radiation and the 
third factor was the simultaneity of the ZVPs which we found was of critical 
importance for the formation of stable clusters. 

The two standard approaches for studying the dynamics of the gas are to treat 
it as an N-body problem based on Boltzmann’s equation or to treat it as a conti-
nuous fluid described by Euler’s equations [2] [3] [4] [5]. We have chosen to 
follow the Euler equation approach and will present some justifications in the 
first part of Section 3. 

Having established criteria necessary for the stability of the clusters, we then 
show that galaxies with quasar-like active nuclei located within the cluster itself 
were the sources of the radiation and that the necessary supermassive black holes 
at the center of the galaxies developed very early during the initial free-fall col-
lapse of the galaxies. 

2. Starting Point 

The proton gas making up the inter-cluster medium (ICM) came into existence 
during nucleosynthesis. Initially, this gas would have been in thermal equili-
brium with the CMB and would have remained so up until the time of recombi-
nation. By then, the temperature had dropped to a value on the order of 4000 K 
which was cool enough to allow the protons and electrons to combine into neu-
tral hydrogen. This resulted in their decoupling from the CMB and from that 
point on the kinetic energies of the particles decreased proportionally to ( ) 2a t − , 
where ( )a t  is the scaling of the expanding universe, and by Gt t= , their ener-
gies would have dropped to an equivalent temperature of less than 1 K. This low 
temperature, incidentally, was an essential condition for the formation of the 
first stars. Our model asserts that there was no bulk motion of the particles at the 
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time they were created so that, aside from their thermal motion, the particles 
were at rest. At the ZVP, with the effective temperature near absolute zero, the 
particles were very nearly motionless. Also, at the ZVP, the galaxy cluster to-be 
had reached its present-day size so the ICM particle density was then equal to its 
present-day value. In what follows, we will use the Virgo cluster as our example. 
Its particle density is 3 310 mavgρ −= . The total mass, initial size, temperature, 
and velocity profile of the cluster are thus all known. 

We now have two problems to solve. The first is to determine what combina-
tions of the initial density and radiation result in a cluster that neither collapses 
nor evaporates. The second problem is to justify our contention that quasars-like 
active galaxy nuclei were the sources of the radiation. 

3. Equations 

We will begin by reviewing a few basic parameters such as mean free paths 
(MFP) that characterized the dynamics of the cluster. Initially, the gas was com-
posed of neutral hydrogen (or H2 molecules) so, to estimate their MFP, it is rea-
sonable to assume a hard-sphere model with an effective diameter on the order 
of 1010 md −= . The MFP is then given by 

2

1
2 Hn d

λ
π

= .                      (3-1) 

With an ICM particle density of 103 m−3, the MFP is 162.3 10 mλ = ×  which is 
quite small compared to the radius of the cluster ( 226.8 10 mCR = × ). With a 
nominal temperature of 1 K, the corresponding kinetic particle velocity would 
have been 160 m∙s−1 so the average time between collisions would have been 1.5 
× 1014 s which is quite small compared with either Gt  or the free-fall time. As 
we will see when we examine the simulation results in Section 8, very soon after 
the ZVP, the temperature of the gas must have increased dramatically to prevent 
a collapse so the gas would have been rapidly ionized with a consequent change 
in the MFP. From [6], the MFP for an ionized gas is given by 

2 3
20

8

107.1 10 m
10 p

T
n

λ  ≈ ×  
 

.                 (3-2) 

(The previous hard-sphere MFP was defined in terms of any collision between 
particles. This latter MFT, on the other hand, is defined as the distance that a 
charged particle must travel for its accumulated scatterings to change its direc-
tion by 90˚. This explains why it increases with temperature.) With a tempera-
ture of 55.7 10 KT = × , we have the same MFP as for neutral hydrogen and for a 
value of 75 10 KT = × , we have 201.8 10 mλ = ×  so with temperatures high 
enough to prevent collapse, the MFP would have been on the order of galaxy 
dimensions. Although it doesn’t concern us in this paper, inside the galaxies 
where the interstellar gas density is on the order of 106 m−3, the MFP would be 
reduced by a factor of about 30 but it would still have been on the order of the 
radius of all but the largest galaxies. 
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Using these results, we can compute the Knudsen number, 

32.6 10n
C

K
R
λ −= ≤ × .                    (3-3) 

The rule of thumb is that a continuum model such as Euler’s equations is ap-
propriate whenever the Knudsen number for the flow is less than 0.1 which is 
the case here. 

Starting with this same result, it is shown in [2] that the time scale for equili-
bration from a non-equilibrium starting point is on the order of 1.9 × 1016 s 
which is smaller than but still comparable to both Gt  and free-fall time. At 
temperatures on the order of 5 × 107 K, the electrons would have been nearly re-
lativistic. 

We will next consider the escape velocity. The relevant equation is 

21 3
2 2

c p
p e b e

c

GM m
m v k T

R
= = .                  (3-4) 

After substituting values for the Virgo cluster, we find, 78.0 10 KeT = ×  which 
sets an upper limit on the possible temperatures in the outer regions of the ICM. 
For temperatures higher than this value, the cluster would begin to evaporate. 
For temperatures lower than this value, the cluster could still expand (positive 
collective motion) but it would not have evaporated. For comparison, we note 
that Jean’s critical temperature is given by 

23 3
5 2

c
p b c

c

GM
N k T

R
=                      (3-5) 

where pN  is the number of protons in the ICM. But c p pM N m=  so, aside 
from the factor of 3/5, this is the same result. 

We can add one more Jean’s metric. Jean’s length is the product of the sound 
speed and the free-fall time. We are getting ahead of ourselves a little but we will 
see shortly that 1.1ff st t≈  where 166.83 10 sst = ×  is a scale time introduced 
below. The sound velocity scale value, which is also introduced below, is 

6 11.3 10 m ssv −= × ⋅  so Jean’s length is 229 10 mff sL t v= = × . Jean’s rule is that a 
system will collapse if its size is greater than L so, according to this rule, a stable 
cluster is possible since L is larger than CR  but the margin isn’t large. 

We will now formulate the equations of motion of the system. One issue that 
we must address is that the proton gas makes up only a portion of the total mass 
of the cluster and the vacuum energy, which makes up the remainder, must be 
taken into account. The procedure we will follow will be to develop the equa-
tions pretending that only the gas exists and afterward, to point out the adjust-
ments needed to include the vacuum energy. 

Clusters are certainly not spherically symmetric and they don’t have a pre-
cisely defined center as does, for example, a star. Nevertheless, to finish with a 
set of equations that can be solved on a laptop, we will need to assume spherical 
symmetry. This simplifies the work because it reduces the problem to one with a 
single spatial dimension but at the same time, it introduces two significant, 
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non-physical, issues that complicate the analysis. The first problem is that such 
models tend to develop troublesome non-physical singularities at the origin. The 
second issue that the model exhibits even more troublesome, non-physical oscil-
latory behavior. This will be discussed further after we have developed the equa-
tions. 

We now imagine the cluster to consist of a series of concentric spherical shells 
of radius ( )r t , density ( ),t rρ , pressure ( ),p t r , and temperature ( ),T t r . 
We will make the additional assumption that we can adopt the Lagrangian 
viewpoint in which one follows the motion of a specific chunk of the gas as it 
moves about. We emphasize that this is an assumption because later when we 
consider the oscillations, we will find that this assumption cannot be satisfied 
because the mixing that must occur in the real ICM makes it impossible to iden-
tify a specific chunk of the gas. 

Conservation of momentum gives the usual Newton’s law equation, 

( ) ( )
( ) ( )

( ) ( ) 22

12 2 2
0

,1
,

r t Gm r p t r r t tc
t r r tt tr t

γ γ
ρ ∗ ∗

 ∂ ∂  
 = − − + − + +  ∂∂   

   (3-6) 

The last term, which is explained in [1], is the acceleration resulting from the 
expansion of the universe. This term is not considered in most simulations but 
the fact is that at the time of ZVP, its value, which is negative, is equal to that of 
the gravitational term and it can have a noticeable effect on the early phases of 
the evolution. The quantity ( )m r  is the total mass inside the shell with radius 
( )r t , 

( ) ( ) ( )2
0

4 d ,
r t

m r r r t rρ′= π ′ ′∫ .                 (3-7) 

With no mixing between the shells, this quantity will have a constant value for 
each initial choice of radius. 

The next equation expresses the conservation of the internal energy of each 
shell. This can vary as a result of a change in its temperature, of work done by the 
chunk of gas, and by the net addition or loss of energy due to radiation. The inter-
nal energy per unit mass of an ideal gas is given by ( ) ( ) ( ), ,3 2U p t r t rρ=  and 
the work done by the pressure is ( ) ( ) ( )( ), , 1 ,p r t V p r t t rδ δ ρ= , again per unit 
mass so the rate of change of the internal energy is 

( )
( ) ( ) ( ) ( ) ( )

,3 1, , ,
2 , , ext rad

p t r
p t r q t r q t r

t t r t t rρ ρ
   ∂ ∂

+ = −      ∂ ∂   
      (3-8) 

where ( ),extq t r  is the amount of external energy absorbed by the shell and 
( ),radq t r  is the amount of energy radiated away by the shell, both per unit 

mass. 
The LHS can be rearranged into a more convenient form. First, we expand the 

derivatives to find 

( )
( ) ( ) ( ) ( )

( ) ( )
( )

( ), , , ,3 1 3 5,
2 , , 2 , 3 ,

p t r p t r p t r t r
p t r

t t r t t r t r t t r t
ρ

ρ ρ ρ ρ
     ∂ ∂∂ ∂

+ = −          ∂ ∂ ∂ ∂     
(3-9) 
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We now define the entropy function, 

( ) ( )
( )5 3

,
,

,

p t r
t r

t r
ψ

ρ
≡                     (3-10) 

and note that 

( )
( )

( ) ( )
( )

( )
5 3

, , , ,1 5
3 ,,

t r p t r p t r t r
t t t r tt r

ψ ρ
ρρ

 ∂ ∂ ∂
= −  ∂ ∂ ∂ 

.       (3-11) 

After substituting, (3-9) becomes 

( )
( )

( )2 3

, 2 ,
3 ,

t r
q t r

t t r

ψ

ρ

∂
=

∂
                (3-12) 

where ( ) ( ) ( ), , ,ext radq t r q t r q t r≡ − . Under adiabatic conditions, ( ), 0q t r =  so 
ψ  is then constant. Eventually, we will remove the pressure dependence from 
(3-5) in favor of ψ  and the density but first, we will work out the rate of 
change of the density. 

In the Lagrangian viewpoint, the amount of matter in each shell is fixed (again 
by assumption) which means that the size and position of the sample can change 
but, because no matter flows in or out, the density can only vary because of 
changes in the volume of the shell. For a unit mass, we have 

( )
2

, 1 1t r V
t t V tV

ρ∂ ∂ ∂ = = − ∂ ∂ ∂ 
.               (3-13) 

The volume, V, is that of a shell with a thickness of δ  so 

( )3 3
2 1

4
3

V r rπ
= −                      (3-14) 

where 1r  and 2r  are the inner and outer radii of the shell. The rate of change 
is thus 

( )2 2 2 22 1
2 1 2 2 1 14 4

r rV r r r v r v
t t t

∂ ∂∂  = − = − ∂ ∂ ∂
π

 
π .          (3-15) 

We now write 2 1r r δ= + , ( )2 1v v v r δ= + ∂ ∂ , and expand to first order. The 
result is 

( )2 24V v vr
t r r

δ∂ ∂ = + ∂ ∂ 
π .                 (3-16) 

But ( )24 1 ,V r t rδ ρ=π=  so we have 

( ) ( ) ( ) ( ) ( )
( )

, , , ,
, 2

t r v t r t r v t r
t r

t r r t
ρ ρ

ρ
 ∂ ∂

= − +  ∂ ∂ 
.        (3-17) 

This is similar to the familiar conservation equation in the Euler formulation but 
it lacks the density gradient term. 

The final step is to assume the ideal gas law equation of state, 

2 3 B

p

k Tp
m

ψ ρ
ρ µ
= =                     (3-18) 
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where 1µ =  for neutral hydrogen and 1 2µ =  ionized protons and electrons. 
We now have the necessary number of equations. We will next perform sever-

al steps to further simplify these equations. The first involves the radial coordi-
nate. Each shell is characterized by its radius but the radius varies with time and 
is not unique to any particular shell because different shells can have the same 
radius at different times. The quantity ( )m r , on the other hand, is unique for 
each shell (again assuming no mixing) so it simplifies matters to choose ( )m r  
to be the independent spatial coordinate. From this perspective, the coordinate r 
becomes a dependent variable on the same footing as ψ  and the density. From 
(3-7), we have ( )24 ,m r r t rρπ∂ ∂ =  so we can replace the r derivatives with 

( ) ( )24 , ,m r t m t m
r r m m

ρπ
∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
.            (3-19) 

The next change is to replace the various parameters with dimensionless 
equivalents which are denoted by an overbar. The definitions are given in Table 
1. The numerical values shown were calculated using Virgo cluster values. The 
last entry is the sound speed, sv pγ ρ= . 

The total mass, cM , includes both the material masses and the effective mass 
of the vacuum energy density (the dark matter of the conventional model). 

 
Table 1. Definitions of dimensionless parameters. 

Parameter Virgo value  

cr R r=
 

226.8 10 mcR = ×  
24 r

r m
ρ∂ ∂

=
∂ ∂

π
 

cm M m=  
451 10 kgcM = ×   

3
c

c

M
R

ρ ρ=
 

24 3
3 3.2 10 kg mc

c

M
R

− −= × ⋅
 

 

2

4
c

c

GMp p
R

=
 

2
12 2

4 3.2 10 nt mc

c

GM
R

− −= × ⋅
 

 

1 3
c cGM Rψ ψ=  

1 3 27 4 2 3 24.5 10 m kg sc cGM R − −= × ⋅ ⋅   

3
c

c

Rt t
GM

=
 

3
166.8 10 sc

s
c

Rt
GM

= = ×
 

3
c

c

GM
t R t
∂ ∂
=

∂ ∂  

c

c

r GMv v
t R
∂

= =
∂  

5 19.9 10 m sc

c

GM
R

−= × ⋅
 

 

3 2
1c

c c

GMq q
R R

 
=  
   

3

5 1 1

2
1 1.4 10 j kg sc

c c

GM
R R

− − − 
= × ⋅ ⋅ 

   
 

proton c

B c

m GMT T
k R

µ=
 

81.2 10 Kproton c

B c

m GM
k R

= ×
 

2

1

1 H
2 H

H ,e2
µ

+ −

−
= −

−  

c
s s

c

GMv v
R

γ=
 

6 11.3 10 m sc

c

GM
R

γ −= × ⋅
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Next, because we will be starting our simulations at Gt t= , it will be conve-
nient to define a shifted time t  where ( )0.469st t t= + . With this definition, 
t  ranges from 0 to 5.91 as t ranges from Gt  to 0t . 

The final adjustment involves the density. There are two issues involved. First, 
in some cases, the equations develop a singularity at the origin which particular-
ly affects the density. The second problem is that we will need to specify the val-
ue of the density variable at the origin as a boundary condition and, in general, 
the value of the density is either unknown or is infinite. We can solve both 
problems by introducing a new dimensionless density parameter defined by 

2r
ρρ ≡
�

.                        (3-20) 

While we don’t know a priori the value of the density at the origin, any reasona-
ble solution will have ( ),0 0tρ =� . 

Putting this all together, the final set of equations become 

r v
t
∂

=
∂

                        (3-21a) 

25 3 2 3

12 4 3 7 3 2
0

5 104
3 3

v m r tc
t m m tr r r t

ρ ψ ψ ρ ρ ψ γ γ
ρ ∗ ∗

   ∂ ∂ ∂  = − − + + + − + +    ∂ ∂ ∂ 
π

   

� � �
�

 

(3-21b) 

24 v
t m
ρ ρπ∂ ∂
= −

∂ ∂
�

�                     (3-21c) 

2 322
3

r q
t
ψ

ρ
 ∂

=  ∂  �
.                   (3-21d) 

Notice that the redefinition of the density eliminates the second term in the den-
sity Equation (3-17). We also find that there is no cluster-specific dimensionless 
parameter remaining in the equations so the results will apply to any cluster. 

The pressure, temperature, and sound speed are given by 
5 3

2p
r
ρ ψ =  

 

� �                      (3-22a) 

2 32

2

prT
r
ρ ψ

ρ
 = =  
 

�
�

                  (3-22b) 

sv T= .                       (3-22c) 

Finally, (3-7) becomes 

( )
0

4 d ,
r

m r t rρ′ ′π= ∫ � .                   (3-23) 

At the outer boundary, we have the constraint that 

( )
0

4 d , 1
r

r t rρ′π ′ =∫ �                     (3-24) 

which provides a useful check on the accuracy of each solution. 
We will now consider the energy density of the vacuum. To do this properly, 
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we would need to reformulate the entire problem in terms of the full set of Eins-
tein’s equations with the vacuum energy included. This, however, is out of reach 
since we are restricted to what can be done on a laptop. Looking at the equa-
tions, in (3-6), the density in the pressure gradient term is the total density of the 
cluster and this is also true in both (3-7) and (3-17). The density in the internal 
energy and ideal gas law equations, (3-8) and (3-18), on the other hand, is the 
density of just the gas. The pressure is also a consequence of the gas dynamics. 
What we are lacking is a vacuum equivalent of those two equations. That being 
the case, we will just assume that the gas density is everywhere proportional to 
the total density, or ( )gas gas c totalM Mρ ρ= . Substituting into (3-18) gives 

( )
B

pgas c

k Tp
mM M µρ

=                    (3-25) 

If we redefine a “total” pressure by ( )total gas gas totalp p M M≡ , this becomes 

gastotal B

total gas p

pp k T
mρ ρ µ

= =                    (3-26) 

Equation (3-8) only depends on the same ratio of the pressure and density so it 
retains its original form but with the density and pressure replaced by the total 
values 

( )
( ) ( ) ( ) ( ) ( )

,3 1, , ,
2 , ,

total
total ext rad

total total

p t r
p t r q t r q t r

t t r t t rρ ρ
   ∂ ∂

+ = −      ∂ ∂   
. (3-27) 

The final step is to replace the gas pressure in (3-6) with the total pressure. 

( ) ( )
( ) ( )

( ) ( ) 22

12 2 2
0

,1
,

gas total

total c

Mr t Gm r p t r r t tc
t r M r tt tr t

γ γ
ρ ∗ ∗

 ∂ ∂    = − − + − + +    ∂∂     
. (3-28) 

After redefining ψ  by 

( ) ( )
( )5 3

,
,

,
total

total

p t r
t r

t r
ψ

ρ
≡                    (3-29) 

all the equations that follow (3-8) remain unchanged but with the understanding 
that the density and pressure refer to their total values rather than to just the gas 
values. 

The net result is that the only change is the presence of the mass ratio in 
(3-28). 

4. Dimensionless Initial and Boundary Conditions 

Certain conditions are fixed. Certainly ( ),0 0r t =  and because we are starting 
at the ZVP, ( )0, 0v m = . We also know that the origin doesn’t move so 
( ),0 0v t =  and we are assuming that for any reasonable solution, ( ),0 0tρ =� . 

The initial temperature is ( )0, 1 KT m =  and with the density known, ( )0, mψ  
is given by (3-22b). At the outer boundary, the density and everything else 
should vanish but trying to include the surface would require an extremely dense 
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mesh which, in our case, is not practical. Instead, we terminate the calculation 
slightly inside the surface to avoid having to deal with the large gradients. Be-
cause the equations are first order in the spatial derivatives, only a single boun-
dary condition is necessary and we have already specified values at the origin. 

We next need to specify the gas/total mass ratio. For the Virgo cluster, the total 
mass of the gas is thought to be on the order of 14 443 10 6 10 kgM× = ×� . The total 
mass is less certain but is estimated to be around 15 451.2 10 2.4 10 kgM× = ×�  
which would give a mass ratio of 4c gM M = . In Part 1, on the other hand, we 
argued that the total mass was likely to be about 1/2 that value which would give 
a mass ratio of 2 which is the value we will use in the simulations. 

Remaining to be specified are ( )0,mρ�  and ( ),q t m . If we assume that the 
radiation came from sources distributed more or less uniformly, it becomes rea-
sonable to assume that q varies with time but not position so ( ) ( ),q t m q t≡ . 
(Recall that q has the units of energy per unit mass rather than energy per unit 
volume.) In different words, we are assuming that the amount of radiation ab-
sorbed by a chunk of gas is dependent on the mass of the chunk but not its posi-
tion. It is by varying these two quantities that we can narrow down the possible 
choices that lead to a solution to the cluster evolution problem. 

5. Oscillations 

Referring to the Equation (3-21), there is a problem buried in these equations 
that leads to an endless amount of trouble. To see this, we first take the time de-
rivative of (3-21b) and ignore everything except the spatial derivative of the den-
sity term. We then take the spatial derivative of (3-21c) and substitute it into the 
first equation again ignoring everything except the term coming from the spatial 
derivative of the velocity. The result is 

( )
2 8 3 2

2
2 4 3 2

54
3

gas

c

Mv v
Mt r m

ρ ψ∂ ∂
π=

∂ ∂
�

.                (5-1) 

This is a wave equation with a velocity of 
4 3

2 3

54
3

gas

c

M
u

Mr
ρ ψπ=
�

.                   (5-2) 

After substituting for ψ  and using 2rρ ρ=� , this simplifies to 

( ) d4
d

gas gas
s

c c

M Mp mu v
M r M

ρ γ
ρ

 
 = =
 
 

π � .            (5-3) 

In Table 1, we defined the sound speed scaling in terms of the total mass. The 
sound speed that appears here is 

,
gas gas

s gas s s
c c

M GM
v v v

M R
γ= = .                (5-4) 

We can go one step further by replacing the m  derivative with the r  deriva-
tive. Again, ignoring everything but the second derivative, we find 
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2 2
2
,2 2s gas

v vv
t r
∂ ∂

=
∂ ∂

.                      (5-5) 

Going back to the first step, if we instead take the time derivative of (3-21c) and 
the spatial derivative of (3-21b), we end up with 

2 2
2
,2 2s gasv

t r
ρ ρ∂ ∂
=

∂ ∂
� �

.                      (5-6) 

If we consider solutions at or very close to equilibrium at all times, the time 
derivatives are small and the oscillations don’t become a problem. Generally, 
however, we will be considering situations that, at least initially, are far from 
equilibrium and in those cases, the time derivatives become large and oscilla-
tions are inevitable. The immediate numerical problem is that these oscillations 
destabilize the equations and the solution fails. This is particularly a problem 
when using m  as the spatial variable because the corresponding velocity u va-
nishes at the origin so oscillations with wavelengths approaching zero are possi-
ble. 

What we will now show is that, even though the potential of oscillations is 
contained within the equations, such oscillations are suppressed by the dynamics 
of the ICM. There are a couple of ways to see this. Consider a region of higher 
than average density with a radius of 2010 mBR =  and a mass excess of 20%. 
This radius was chosen because it approximates the proton MFP. Jean’s critical 
temperature for this bulge is given by 

2 50 K
5

B p
crit

b B

GM m
T

k R
= ≈                    (5-7) 

which is extremely small compared to the actual temperature of the gas. This in-
dicates that the self-gravitation is far too small to bind the bulge so it would ra-
pidly dissipate. 

Another approach is to consider the motion of a proton located at the center 
of the bulge. Because we have chosen a bulge radius on the order of the MFP, the 
proton will only be affected by the gravitation of the bulge. The equation of mo-
tion in scaled coordinates is 

2

2 2

r m
t r
∂

= −
∂

.                        (5-8) 

If we assume a constant density, ( ) 334 Bm r ρπ=  and at the outer boundary, 
1m r= =  so 3 4Bρ = π . The equation then becomes 

2

2 0r r
t
∂

+ =
∂

.                        (5-9) 

The initial (thermal) velocity of the proton is 3 158p b pv k T m T= =  which 
results in a scaled value of 0.16pv T= . The solution is ( ) ( )0.16 sinr t T t=  
so the scaled time for the proton to reach the edge of the bulge is 

1 1sin
0.16

t
T

−  
=  

 
.                   (5-10) 

https://doi.org/10.4236/jhepgc.2022.82028


J. C. Botke 
 

 

DOI: 10.4236/jhepgc.2022.82028 356 Journal of High Energy Physics, Gravitation and Cosmology 
 

With a temperature of 710 KT = , the actual time for the proton to exit the 
bulge is 142.0 10 st = ×  which is very small compared to any time characteristic 
of the cluster evolution so again we see that the bulge will dissipate. 

Even though we have shown that oscillations would be suppressed in the ac-
tual cluster, we are still left with the problem of numerical oscillations in the so-
lutions. One possibility we considered was to add a contribution to (3-21c) that 
takes into account the bulge dissipation just discussed. If we consider an imagi-
nary surface to the left of a volume of gas with a particle density of 3mn −

+ , the 
rate at which particles will cross a circle of radius r on the surface is 2r n v+π  
where v is the average particle velocity (refer to any source that discusses the ki-
netic theory of pressure). Similarly, particles from the other side of the surface 
will cross the surface at a rate of 2

0r n vπ  in the opposite direction. If we now 
consider a region of width δ between two such surfaces, the net rate of change of 
its density would be 

2

2

3
8

b

p

k T
t m r
ρ δ ρ∂ ∂
=

∂ ∂
.                   (5-11) 

We didn’t include this term, however, because first, it violates our assumption 
of no mixing, and second, and even worse, it becomes very singular at the origin 
when the density is replaced by ρ� . This suggests that a better approach to the 
entire problem would be to develop a 3-dimensional model in Cartesian coordi-
nates based on the Euler viewpoint which does allow for mixing. Such a model 
would, however, require far more computer capacity than we have available. 

To summarize the situation, we have shown that oscillations are inevitable 
given the non-linear hyperbolic nature of Euler’s equations. We then showed 
that the problem is purely a numerical issue because such oscillations cannot 
occur in actual clusters. 

6. Solution Method 

The numerical solution of the equations was accomplished by using the “method 
of lines.” In this case, the spatial dimension is divided up into a sequence of 
shells. To reduce the oscillation problem, central differences were used every-
where to approximate the spatial derivatives. At the ends, where forward or 
backward differences would have been required, we instead assumed that the 
end derivatives were the same as the derivatives evaluated at the first interior  

point, i.e. ( ) ( )1,0 ,t t m
m m

ρ ρ∂ ∂
≈

∂ ∂

� �
, etc. When the finite difference approximations  

are substituted into (3-21), the result is a set of coupled time-domain ordinary 
differential equations that we solve using the adaptive predictor-corrector ODE 
solver called “Lsoda.” This is available on the internet in both the Fortran and 
“C” languages. For our use, we ported the solver to vb.net. For the most part, 
lsoda was treated as a black box. As the solution proceeds, lsoda repeatedly calls 
a user-supplied “GetRates()” method with a vector of the predicted values of the 
unknowns. The time derivatives (LHS of (3-21)) are then computed and re-
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turned to lsoda. 
As discussed in the previous section, this scheme by itself doesn’t work be-

cause of the oscillations. Instead of modifying the equations, we tried to deal 
with the oscillations through the use of numerical filtering but the result was 
only moderately successful. Several filtering schemes were tried with the best 
results coming from cubic spline filtering which we applied to first, the predicted 
values, then to the derivatives, and finally to the rates. There are numerous ref-
erences to this method on the internet. The particular form we used is discussed 
in [7]. The basic idea of the filter is to find a smooth function ( )g x  that mini-
mizes the following cost function, 

( )( ) ( )
0

2
2

2
0

3
d

8
N

N xb
i i x

ip

k T
p g x f g x x

t m r
ρ δ ρ

=

∂ ∂ ′′= − +
∂ ∂ ∑ ∫ .        (6-1) 

The if  are the noisy values and p is a parameter that regulates the degree of 
filtering. When p is large, ( )g x  will duplicate the noisy values and when it is 
small, ( )g x  will correspond to a least-squares fit to the noisy values. The solu-
tion to the minimization problem is given by 

( ) 1T1
p

− 
= − + 
 

g I C A B C f .                (6-2) 

A  and C  are banded matrices that are dependent only on the spatial step siz-

es. The matrix T1
p

=B CC  is also banded but even though A  and B  are  

both banded, the inverse of their sum is not banded. Nevertheless, because the 
values of the elements of the inverse far from the diagonal are much smaller than 
those near the diagonal, we can turn the inverse into a banded matrix by setting 
to zero all the elements that are below a specified cutoff. Physically, the smallness 
of the far-off-diagonal elements is just a reflection of the fact that the averaging 
at any spatial location is primarily influenced by near neighbors rather than by 
distant points. An important point is that, because the various matrices are de-
pendent only on the spatial step sizes, the filter matrix can be pre-computed. The 
application of the filter then only requires a single multiplication between a 
banded matrix and a vector. 

The principal difficulty with this method is that, while it works well in the in-
terior of the spatial range, it is not optimal near the ends which is where the big-
gest problem lies. Another attempt was made using a Fourier-Butterworth 
low-pass filter scheme. This wasn’t successful for much the same reason because 
it introduces Gibbs-type oscillations at the ends of the spatial range. 

It might seem that we could avoid this problem by starting the solution in the 
interior or at the outer boundary but that isn’t possible because it is only at the 
origin that we know the values of the variables. In many cases the oscillations in-
itiate close to the origin where the velocity (5-3) approaches zero and given that 
the origin must be included, we found that jumping out of the origin with a few 
large steps is a scheme that works somewhat better than using filters. To avoid a 
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sudden transition at the point at which the large steps joined onto the smaller 
steps which covered the remainder of the range, we divided the jump span into 
several steps with graduated sizes, for example, 10 ,8 ,6 ,δ δ δ �  with the overall 
jump typically being on the order of 0.05m∆ = . This scheme doesn’t suppress 
the oscillations entirely but it does postpone the eventual crash. 

7. Radiation Model 

It will become clear that no matter what initial density profile is assumed; the 
cluster will collapse without a significant input of radiation. To model the 
source, we developed code that generates a smooth profile based on three ad-
justable parameters. A sample profile is shown in Figure 1. As noted earlier, we 
assume that the radiation varies with time but not location. 

The peak value of this scaled profile is always unity with the actual peak value 
given by the value in Table 1, namely 1.4 × 10−5 j∙kg−1∙s−1. To allow for an arbi-
trary magnitude, a multiplier is included in the model. 

8. Simulations 

Our goal is to determine what restrictions on the initial density profile and radi-
ation are required to prevent the cluster from collapsing. Because of the oscilla-
tions, our results will be limited but we will be able to establish some general 
guidelines. We will start by displaying the free fall solution since this sets the 
time frame within which the cluster must be stabilized. From Figure 2, we see 
that without radiation, the cluster would have collapsed by a time of 1.1t ≈  so 
to prevent this from happening, the radiation must have been in existence before 

0.5t ≤  or ( ) 163.4 10 sGt t− ≤ × . 
To better understand this point, recall that at the time of nucleosynthesis, the 

formation of the cluster was directed by a vacuum imprint. At that time, the 
outer boundary of the cluster had a velocity relative to the center given by the 
expansion rate of the universe. As time progressed, the expansion deceleration 
acted to slow the expansion until eventually, it ceased at the ZVP as a result of 
the combined action of cluster mass gravitation and the expansion deceleration. 
At a later time, 2.22t =  ( 171.83 10 st = × ), the expansion acceleration did  

 

 
Figure 1. Adjustable source profile. 
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become positive after which, the acceleration acted to increase the size of the clus-
ter. Its magnitude, however, varies as 2t −  so the effect diminished with time. 

We will now consider several initial density and source profiles which will al-
low us to narrow down the possible range of choices. First, we will consider a 
uniform density profile. From (3-7), we find that ( )3 4ρ = π  and 1 3r m= . 
Figure 3 shows the variation of the outer dimension of the cluster with time. In 
this case, the peak radiation multiplier was 3 and the source profile was the one 
shown in Figure 1. 

We see that the cluster undergoes collapse and we found that increasing the 
peak radiation multiplier does not change that result. In the next few figures, we 
show the calculated parameters. Figures 4-7 show ( )r m , ( )v m , ( )mρ� , and  

 

 
Figure 2. Free-fall with and without the expansion acceleration. 

 

 
Figure 3. Outer dimension of the cluster with uniform density and a peak radiation mul-
tiplier of 3. 

 

 
Figure 4. The radial coordinate profiles, ( )r m , for the solution with a uniform initial 

density. Notice the beginnings of the oscillations in the most recent line (the lowest one 
in the figure). 
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( )mρ  respectively. In these figures, each curve corresponds to a single value of 
t . The initialization is shown in dark red with the successive curves shown in a 
progressive lighter shade of red. The output time step was 0.04t∆ =  or 

162.73 10 st∆ = ×  in all cases. Figure 4 shows the radial coordinate. 
The kinks near the origin are a result of the origin jump discussed earlier. 

Figure 5 shows the velocity. 
The next, Figure 6, shows the density, ( )mρ� . 
Finally, Figure 7 shows the actual density. 
In all these figures, one can see the solution failing as the oscillations increase 

in magnitude. 
From these results, we find that the initial density could not have been uni-

form which makes sense because with uniform density, and, as always, a uni-
form initial temperature profile, the pressure from (3-18) will also be uniform 
which means that there was no pressure gradient in (3-6) to oppose the gravitational  

 

 
Figure 5. The velocities ( )v m  for the same solution. The oscillations are much more 

pronounced. 
 

 
Figure 6. The densities ( )mρ�  for the same solution. 

 

 
Figure 7. The densities ( )mρ  for the same solution. The density is not well-defined at 

the origin because of the 0/0 division in (3-20). 
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acceleration. 
Having established that a uniform (zero gradient) profile doesn’t work, we 

considered power-law profiles of the form ( ) 1r rσρ ∝  which generate large 
gradients. To satisfy our constraint that ( ),0 0tρ =�  and also because the pres-
sure gradient must be negative, σ  must lie in the range, 0 2σ< < . What we 
found was that, except for a very narrow range of values close to 0.9σ = , the 
cluster underwent collapse. The exception is shown in Figure 8. The peak radia-
tion multiplier was 5. 

In this case, the cluster undergoes an expansion instead of a collapse. Howev-
er, because of the very limited range σ  values that result in an expansion, it is 
very unlikely that the initial density profile was anything like a power-law pro-
file. 

In the next series of figures, we show the results for a straight-line profile with 
a slope equal to 0.58rρ∂ ∂ = −  that lies between the limits just discussed. The 
profile used was straight-line but a modestly curved profile would serve just as 
well. In Figure 9, we show the initialization curves. 

We found that with a peak radiation multiplier of 4 or more, an expansion 
occurs. Figure 10 shows the outer dimension of the cluster calculated with a 
peak radiation multiplier of 5. 

Figure 11 shows the radial coordinate. 
In Figure 12, we show the velocity. 

 

 
Figure 8. Outer dimension of the cluster with the density profile, ( ) 0.91r rρ ∝  and a 

peak radiation multiplier of 5. 
 

 
Figure 9. Straight-line density profile. The ( )rρ�  and ( )rψ  curves are also shown. 
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The density is shown in Figure 13. 
Finally, we show the temperature profiles in Figure 14. Notice that the temper-

ature rises very rapidly. It reached the bottom of the red band within 1.1 × 1016 s. 
Notice also that its maximum value is slightly greater than one ( 76 10 KT ≈ × )  

 

 
Figure 10. Solution with the density profile of Figure 9 and a peak radiation multiplier of 
5. 

 

 
Figure 11. The radial coordinate profiles, ( )r m  for the negative slope solution. 

 

 
Figure 12. The velocities ( )v m  for the same solution. 

 

 
Figure 13. The densities ( )mρ�  for the same solution. 
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and that it shows a slight increase towards the center of the cluster. 
The previous simulation was run without the expansion acceleration. Figure 

15 shows the result when it is included. 
We see that, while the difference is small, the expansion is slightly suppressed 

compared to the result without the expansion acceleration. 
We have found that a density profile with a modest negative gradient will result 

in an expansion of the cluster but with the radiation profile of Figure 1, we seem 
to have overdone it because the expansion shows no sign of slowing within the 
time range shown. The issue is that the radiation profile of Figure 1 is too broad. 

In the next example, we confined the radiation to the much narrower range 
shown in Figure 16. In this case, the width of the peak is on the order of 4.1 × 1016 s. 

 

 
Figure 14. The temperature profile curves. 

 

 
Figure 15. The same simulation as the previous but with the expansion acceleration in-
cluded. 

 

 
Figure 16. A narrow radiation profile. 
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The resulting outer boundary curve, including the expansion acceleration, is 
shown in Figure 17. The density profile was the same as in the previous exam-
ple. The peak radiation multiplier was 6. 

In Figure 18, we show the corresponding temperature profiles. 
Note that in this case, while the scaled temperature at the center is somewhat 

larger than unity, in the outer regions, it is well below unity and thus, is well 
within the escape velocity limit. 

In all the cases we have examined, the temperature profiles are nearly flat but 
always increase towards the center. This could mean that we just haven’t hit 
upon the right initial density profile but two other possibilities are more likely. 
First, we have not yet considered the actual distributions of the radiation 
sources. In the simulations, we assumed that the distribution was uniform but 
real sources would be randomly distributed which would affect the temperature 
profiles. A second possibility is that the cold centers arose later as a result of, for 
example, Bremsstrahlung radiation. 

We now have a result that looks realistic. We have a solution that neither un-
dergoes collapse nor exhibits undue expansion. To achieve this result, we found 
first, that it is necessary that the density profile has a modest negative slope and 
second, that the radiation profile must be narrow relative to the free-fall time 
and have a peak radiation multiplier on the order of 5 or 6. 

We could continue with further examples but given the limitations of this mod-
el, it would not serve any useful purpose. For many reasons which we will discuss 
in the next section, further progress will require a 3-dimensional simulation. 

 

 
Figure 17. Solution with the density profile of Figure 16 and a peak radiation multiplier 
of 6. 

 

 
Figure 18. The temperature profile curves. 
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With these simulations, we have also established important constraints on the 
radiation profile. From the simulations we find that a radiation energy density a 
few times larger than the scale value shown in Table 1 was required or 

5 1 11.4 10 j kg speakq f − − −= × ⋅ ⋅  where f is a multiplier on the order of 5 or 6. Mul-
tiplying by the mass of the cluster, we find that total on the order of 4010 wattsf ×  
or 22.5f M c�  per year. Of course, that is the absorbed total and the source 
emission total would undoubtedly have been considerably larger. The second 
constraint is the persistence of the source or sources. In the previous section, we 
discovered that the period during which the sources were active had to be short 
compared to the cluster free-fall time scale. Nevertheless, it still comprised a pe-
riod on the order of 109 yr. The third constraint applies to the spectrum of the 
radiation; to heat the gas to a temperature on the order of 107 - 108 K, soft x-rays 
were required. 

Assuming a source, the next step is to understand the heating process. 

9. Heating 

Since x-ray energies are far greater than the binding energy of the neutral hy-
drogen, the first effect would have been to ionize the neutral gas. Immediately 
afterward, the radiation heated the ionized gas via Compton scattering. The total 
Compton cross section is given by 

2h
mc

σ π =  
 

                        (9-1) 

and the MFP of the photons by 

1
4 2n

λ
σ

=                         (9-2) 

where n is the number density of the particles. From these equations, we can de-
termine that the heating of the protons was a 2-step process. For protons, the 
cross section is 30 25.4 10 mpσ −= ×  so the MFP is 253 10 mpλ = ×  which is 
considerably larger than the size of clusters. Clearly then, direct heating of the 
protons was not possible; they are just too massive. For electrons, on the other 
hand, 23 21.9 10 meσ

−= ×  so 189.5 10 meλ = ×  which is small compared to the 
characteristic dimensions of the cluster. The first step thus consisted of rapid 
heating of the electrons by the radiation. Considering now the thermal equili-
brium of the electrons, from [2], we find that they would have reached equili-
brium on a time scale equal to 1013 s so we find that the thermal equilibrium of 
the electrons would have closely tracked the changing output level of the radia-
tion. 

In the second step, the electrons would have interacted with the protons to 
bring the latter also into thermal equilibrium. The time scale for this second step 
is 1.9 × 1016 s which is about ½ of the period during which the sources were ac-
tive so the protons would have also achieved a degree of equilibrium with the 
radiation. 
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10. Galaxy Free-Fall and Supermassive Black Holes 

The final problem is to identify the sources. We need a huge power output and 
even more important, a long lifespan. Supernova produce a prodigious amount 
of power but they are both short-lived and not particularly common so they 
don’t qualify. Galaxies with luminous active nuclei (AGN), or in other words, 
quasars are the only real possibility. Power outputs of observed quasars [8] are 
typically on the order of 1040 watts which is in the range needed. The actual 
process involves the heading of the gas in an accretion disk surrounding a su-
permassive black hole at the center of the galaxy. Because the life span of a qua-
sar is determined by the amount of available gas, they can live a long time as 
evidenced by the existence of the nearby quasar. Once the gas is used up, the qu-
asar process ends and the galaxy becomes a normal galaxy. 

Quasars are known to have been more common in the distant past with the 
peak density occurring at about Gt t= . This latter fact is considered to be 
something of a mystery but this is easily explained by this new model which as-
serts that all quasars, along with everything else, originated at Gt t= . The ob-
served progressive extinction distribution is simply the result of quasars of dif-
fering sizes and masses running out of fuel at different times. Also, because ga-
laxies only had so much gas, aside from possible formation during galaxy colli-
sions, there are no second-generation quasars. 

To understand how quasar-like objects could have come into existence at pre-
cisely the time needed to prevent cluster collapse, we turn to Section 9 of [1]. In 
that section, we showed that, like the clusters, all galaxies originated during nuc-
leosynthesis and subsequently reached their ZVPs at Gt t= . We also showed 
that they were many times larger than their present-day size at that time and that 
soon after, began to collapse. The free-fall time would depend on the size and 
mass of each galaxy but in all cases, it would have been considerably shorter than 
the cluster free-fall period. The Milky way, for example, had a free-fall time of 
about 4 × 1016 s which is approximately the same as the width of the radiation 
peak of Figure 16. We know that the galaxies did not collapse but in order not to 
do so, they must have evolved into a stable state complete with their central 
massive black hole within a period much shorter than their free-fall time. This 
means that a large percentage, if not all galaxies, already had a black hole at their 
center well before the time at which the radiation reached its peak. Adding an 
accretion disk turns the galaxy into a quasar and because all galaxies developed 
at the same time, so did all quasars. The authors of [9] point out that the quasar 
UM 287 was in existence at least as early as 3 × 109 yrs after the big bang. This 
corresponds to a dimensionless time of 0.92t =  which fits very well with our 
model (compare with Figure 2). 

It follows then, that we must understand how a galaxy initially in free-fall 
could achieve stability. We have already seen that without radiation, the clusters 
would have collapsed and the same is true of galaxies so a source must have de-
veloped within the galaxies. To see how this happened, we return to the simula-
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tion equations. Because these are dimensionless, they apply equally well to ga-
laxies. The initial and boundary conditions are the same as for the clusters. The 
fact that the initial temperature was very close to absolute zero means that with-
out some source of radiation, no pressure would have developed during the ini-
tial collapse no matter how much the gas was compressed. This allows us to drop 
the pressure gradient term from (3-6) which eliminates the oscillation problem. 
In Figure 19, we show the density profiles that result. 

Take note that the scale is logarithmic. We find that the density increases ex-
tremely rapidly at the origin and does so long before there is any significant re-
duction in the outer dimension of the galaxy. Recall that for the Milky Way, for 
example, the final dimension of the galaxy is about 1/5 of its initial size ( 0.2r =  
in the lower panel) so the collapse would have continued for a considerable time 
beyond what is shown. Eventually, the rotation of the material making up the 
galaxy would also play a role in the stabilization but initially, as explained in [1], 
it was the vacuum that was rotating and carrying the particles along with it. That 
being the case, there was no centrifugal acceleration until after the galaxy had 
undergone a significant degree of compaction. 

We can now understand the evolution. The initial collapse caused an ex-
tremely rapid increase in the central density which resulted in the formation of a 
supermassive black hole. As the collapse continued, the in-falling gas would then 
have formed an accretion disk which, in turn, produced the radiation that heated 
the intergalactic gas. This, in turn again, resulted in the development of the 
pressure gradient that stopped the collapse. 

The key point is that the creation of supermassive black holes came first. 

11. Virgo 

We have seen that the output from just a few powerful quasars would have been 
enough to heat the cluster gas but that idea has problems. First, just a few  

 

 
Figure 19. Density profiles for galaxy free-fall. The solution fails at the point shown be-
cause of the steepness of the curves near the origin. 
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randomly located quasars would not be able to heat the gas uniformly. Second, 
such quasars have long lifespans and we now know that the sources, at least col-
lectively, must have been short-lived. What seems to be more likely than a sce-
nario with a few very powerful quasars is one with a multitude of mini-quasars. 

Referring to the Virgo cluster specifically, we saw in [1] that ETGs dominate 
its galaxy population. There are 513 ETGs inside the cluster with about 75% be-
ing either ellipticals or dwarf ellipticals. Their distributions are shown in Figure 
20. The left-hand panel shows just the ellipticals, of which there are 26. The 
right-hand panel includes also the dE and dEN galaxies of which there is a total 
of 361. 

The reason this is interesting is that all the known quasar host galaxies [10] 
are ETGs with ellipticals predominating. It is also shown in that same paper that 
the fraction of massive spheroids/black holes that produce quasar-level activity is 
about 0.1 percent at present and was greater than 10 percent at 2 - 3z ≈ . If we 
assume a half-life decay model and extrapolate back to Gt , we find a fraction 
somewhat greater than 15%. but, based on our galaxy stability argument, the ac-
tual number was probably 100%. Clearly, from the figure, the distribution of the 
dwarfs would have a much better chance of uniformly heating the gas than 
would the few ellipticals. 

For both this and the stability idea to work, however, dwarf galaxies must 
contain mini-supermassive black holes. That has long been a question but now, 
according to some very recent work [11], we find that they do. And, not only do 
they have black holes, but they also exhibit active nuclei. 

The conclusion is that the clusters were heated from within by their own ga-
laxies and the strongest argument for this model is that there is no other scena-
rio that could account for both galaxy and cluster stability. 

We are now at the point where a 3-dimensional simulation is needed to settle 
several questions. First, in the simulations presented here, it was assumed that  

 

 
Figure 20. Distribution of elliptical galaxies in the Virgo cluster. 
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the radiation absorption was evenly distributed whereas the actual distribution 
would to some extent reflect the random distribution of the sources. The ques-
tion is whether or not the resulting uneven heating will spatially thermalize 
quickly enough to prevent clumping and collapse. Another issue is the matter of 
the dispersion process discussed earlier needed to prevent clumping of the par-
ticle distributions after the initial heating was completed. We don’t know if the 
cluster underwent an expansion followed by a contraction or just remained at its 
present size which is another question to be studied. In connection with an ex-
pansion, another effect that needs to be considered is that, as the cluster gas un-
dergoes expansion, the outer portions would be moving away from the radiation 
sources and hence would cool. Lastly, we know that the initial density distribu-
tion was fixed at the time of nucleosynthesis but the simple simulation model 
presented here is far too limited to allow us to say anything more about it than 
that initial distributions must have had a modest negative slope. 

Lastly, on a more basic level, because vacuum energy density plays an impor-
tant role in the cluster evolution, 3-dimensional simulations based on the full set 
of Einstein’s equations including vacuum energy are needed and this is, even 
more, the case for understanding galaxy evolution. 

12. Conclusions 

In this paper, we discussed the evolution of galaxy clusters during the period 
immediately following the ZVP of their development. We modeled the cluster 
using the normal energy and momentum conservation equations for a dilute gas. 
Our goal was to determine what constraints are imposed on the initial gas den-
sity and radiation profiles by the requirement that the cluster neither undergoes 
free-fall collapse nor evaporation. By solving the gas equations for many possible 
initial density and radiation profiles, we found that the allowable density distri-
butions had to have a moderate negative slope and that the radiation profile 
must be narrowly peaked in time with a width considerably less than the free-fall 
time of the cluster. (Even though we speak of the radiation peak as narrow, its 
actual width was on the order of 109 yr.) 

We calculated that the power required to stabilize the cluster was on the order 
of a few times 1040 watts which must be sustained for the period just mentioned 
which leads immediately to the conclusion that quasars were the only possible 
source of the radiation since they are both long-lived and have power outputs of 
the necessary magnitude. 

The Virgo cluster does not contain a quasar at present which leads us to argue 
that instead of a few massive quasars, the cluster was powered by a large number 
of mini-quasars that came into existence immediately after ZVP of the cluster. 
These proceeded to use up their fuel supplies during the same period to become 
ordinary ETG galaxies we now see populating the clusters. 

Having established that mini-quasars were the source of the radiation, we 
were then in the position of needing to explain the origin of the quasars. In [1], 
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we showed that galaxies reached their ZVPs coincident with the galaxy clusters 
and that their sizes at that point were many times larger than their present-day 
sizes. Initially, all galaxies consisted of nothing but very cold gas and like the 
cluster, they began to undergo gravitational free-fall collapse since there was no 
pressure gradient within the gas to pervert that from happening. The conse-
quence was that during the early stages of the free-fall, the density of the gas in-
creased dramatically at the center of the galaxy which resulted in the formation 
of a supermassive or mini-supermassive black hole. Once the black hole formed, 
an accretion disk formed from the infalling gas setting the conditions for an ac-
tive galaxy nucleus. The resulting radiation headed the gas which in turn, al-
lowed pressure gradients to develop that stabilized both the galaxies and the 
clusters in which they happened to reside. This process applies to all galaxies so 
they all must have black holes at their centers, for if they didn’t, they would have 
rapidly undergone gravitational free-fall collapse. 
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