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Abstract 
An extended Newtonian gravitation (ENG) model was developed to explain 
the rotation curves in galaxies and galaxy clusters. ENG requires the know-
ledge of a parameter that is a function of the mass of the gravitational source. 
An approximate eq. for that parameter was obtained (for disk galaxies) that 
yields asymptotic speeds close to binned measured data. ENG yielded larger 
circular speeds for galaxy clusters when compared with the MOND results. A 
classical gravito-electromagnetic model (which neither is based on Einstein 
GR, nor on gravito-magnetism only) was developed which yielded asymptotic 
circular speeds very small compared to experimental results. However when 
ENG was used to develop an extended gravito-electromagnetic model, it 
yielded results compatible with MOND results for simulated galaxies and 
larger than MOND results for a simulated galaxy cluster. This model showed 
measurable increase in the circular speed when compared to ENG alone in 
the galaxy cluster. The need for modifying the Einstein field equation to ad-
dress the dark matter problem in the framework of the ENG model was illu-
strated. 
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1. Introduction 

It has passed about 90 years since Zwicky published a paper [1] where an incon-
sistency between the galaxy’s circular speeds and the mass of the Coma galaxy 
cluster was noticed. He referred to the existence of dark matter as a possibility 
for the explanation of such a discrepancy. Since no dark matter has been found 
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(despite intensive efforts in this endeavor) and current alternatives that modify 
Newton’s gravitation have not solved completely the missing mass problem (e.g. 
in galaxy clusters) it was thought of addressing this problem with Gravi-
to-Electrodynamics despite that references can be found in the scientific litera-
ture that use Gravito-Magnetism (classical and in the frame of Einstein’s general 
relativity) to face this problem. 

What is distinctive in this paper is that classical (not based on Einstein GR) 
Gravito-Electrodynamics (GED) was used where the impact of the magnetic 
field is completely neglected (due to its very small impact in comparison to the 
electric field at the range of velocities of the problems in question) in all numer-
ical models and examples and the superposition of the fields of moving point 
masses (around the center of the cosmic structure) was used to determine the 
field at the test particle location. It did not work (very small value of asymptotic 
speeds were obtained) for typical values of galaxy masses where MOND para-
digm works remarkable well without assuming the existence of dark matter [2] 
[3], but that paradigm still has a missing mass problem in galaxy clusters [4]. 

The combination of this GED (as the gravitational model) and MOND (as the 
inertial model) was then tried. This hybrid approach did not get rid of the miss-
ing mass problem in galaxy clusters. 

An extended GED (EGED) model was then developed in such a way that it 
worked for typical galaxies and yielded larger values of circular speeds (in com-
parison with MOND results) for galaxy clusters. 

To do that, an extended Newtonian/Coulomb gravitational model (ENG) was 
developed that yielded circular speeds compatible with values for typical masses 
of galaxies and yields larger values for galaxy clusters when compared to MOND 
results. This ENG model adds a new term to the Newtonian gravitation which is 
inversely proportional to the separation distance between the gravitational 
source and the test particle and contains a parameter which is function of the 
total mass of the gravitational source. That parameter was determined (for disk 
galaxies) and yielded results, for disks galaxies, close to the calculations using 
binned measured data. 

Note that the classical GED has (intrinsically) the impact of the speed and ac-
celeration of the source along with the speed of the test particle (if the GM field 
is considered) unlike other theories in which it needs to be assumed. 

This paper has the following structure: Section 2 describes a GED algorithm 
for rotation curve calculations. Section 3 describes the combined GED-MOND 
model. In section 4 the ENG and EGED (GED-ENG) models are described. In 
section 5 example calculations for the developed models are presented and inter 
compared. Section 6 provides a summary with some concluding remarks. The 
first 2 appendices provide equations of the gravito-electromagnetic (GEM) fields 
produced by a point mass source moving in an arbitrary direction that were re-
ferenced and extended in this paper. Appendix C shows the need for modifying 
the Einstein field equation to address the dark matter problem in the framework 
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of the ENG model. 

2. Classical Gravito-Electromagnetism (GEM)  
in Galaxy Rotation Curves 

The gravito-electric (GE) and gravito-magnetic (GM) field, assuming that the 
speed of the gravitational force propagation and the speed of the gravitational 
waves are the same and equal to the speed of light in vacuum can be written as 
(see Appendix A) 

3 a v
v

GMc r rE d r v d a
c cd

  = − −  
  

� � � � , ( )3

1
v a

v

GMB d a r d v r
c d

= × + ×
� � � � �  

( )ˆvd r c r v= − ⋅
� , 2 2

ad c v r a= − + ⋅
� �  

where 
r: Distance from the position of the point mass to the observation point (se-

paration),  
r� , v� , a� : Separation vector, velocity and acceleration of the source of the 

fields. 

( )321Na a β= −� �  

Na� : Newtonian acceleration. 
The radial balance between the inertial acceleration and the GE field for a thin 

disk galaxy (ignoring the retarded time and the GM force) is written as: 

( )
1 1

,
NN ar

i j
i j

Ga f r
g

θ
= =

≈ ∆∑∑ , ( )( )321g v c= −  

where, 
a: Inertial acceleration (circular) of the test particle. 
G: Newton’s gravitational constant. 
g: Correction to a that yields the perihelion precession of the planets of the 

solar system. 

rN : Number of rings (radial partitions). 

aN : Number of angles (azimuthal partition). 

ir : Radius from the center of the galaxy to the i ring.  

jθ : Angle between the radial axis and the j disk segment (azimuthal angle). 
v: Circular speed of the test particle. 
c: Speed of light in vacuum. 

( ) , ,,i j i j i jf r M Eθ∆ = ∆ : Projection of the GE Field to the radial axis. 

,i jM∆ : Mass contained in the disk segment represented by ,i j . 

, , ,
, , .2 3

, , , ,

i j a i j
i j i i j i j i j

v i j v i j

d
E a g k c

d d
ρ

ρ α= +  

,i jρ : Distance from the source to the test particle. 

i ia g : Corrected acceleration of the source. 

iv : Circular speed of the source. 
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, , , , ,
ˆˆv i j i j i j i i j id c vρ ρ ρ φ= − ⋅ : 

2 2
, , , ,ˆ ˆa i j i i j i i j i id c v a a gρ ρ= − + ⋅ : 

( ). ,cosi j i j i jr rα θ ρ= − , cosj jk θ= , 2 2
, 2 cosi j i i jr r r rρ θ= + −  

Note that the total field at the observation point is determined using the su-
perposition of the individual segments (considered as a gravitational mass point 
source) of the ring in question (rotating at a constant angular speed). 

The circular speed is then calculated from 

2
, ,

1 1

NN ar

i j i j
i j

v g Gr M E
= =

= ∆∑∑                      (1) 

Because the ring in question is assumed to spin with constant angular speed 
the following equations are used: 

,
, ,

cos sinˆˆ sin cosi j i j
i j i j j

i j i j

r r rθ θ
ρ φ θ θ

ρ ρ
−

⋅ = +
 

,
, ,

cos sin
ˆ ˆ cos sini j i j

i j i j j
i j i j

r r r
a

θ θ
ρ θ θ

ρ ρ
−

⋅ = −
 

To find a potential asymptotic behavior for the rotational speed, distances far 
from the source are to be considered which leads to: 

, ,
, 2 3 2

/ /

1 1a i ji i
i j j

v r v r

da g
E k c

rd d r
= + , / . . ,v r v i j i jd d ρ= , . 1i jα = . 

For very large r the 2nd term is neglected. Substituting into Equation (1): 

2
, /

1 1 2

NN ar
i i

i j jv r
i j

a g
v g G M k

d= =

= ∆∑∑                     (2) 

Note that for very high speeds /v rd  becomes small and therefore Equation 
(2) would yield asymptotic speeds which cannot be obtained using pure Newto-
nian gravitation. This at least will lessen the need of hypothesizing the existence 
of dark matter at those speed levels. 

Assuming non-relativistic speeds and only one ring, Equation (2) becomes 

2
2

1
0

Na
S

j
j

a
v GM k

c =

≈ =∑                       (3) 

Equation (2) yields results very small compared with measurements of asymp-
totic circular speeds in many disk galaxies. This is expected (see Equation (3)). 

3. Gravito-Electrodynamics with MOND  
as an Inertial Acceleration 

Because Equation (2) yields very small asymptotic speed (at non relativistic re-
gime) it is of interest to use MOND as inertia (because of its remarkable success 
in reproducing rotation curves of galaxies) to establish the balance between the 
GE field and the inertial acceleration. 
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3.1. Balance between the Newtonian Gravitational Field and the 
Inertial Acceleration Using MOND 

For a thin galaxy, the radial balance between the Newtonian gravitational field 
and the MOND’s inertial acceleration, using the simple interpolating function, is 
written as 

( ) .
0 , 2

1 1 ,

,
NN ar i j

i j
i j i j

a a a G M
α

µ
ρ= =

= ∆∑∑ , ( )0
0

, aa a
a a

µ =
+

 

where, 

0 0
1 1.16
6

a cH≈ ≈ : Characteristic acceleration of MOND.  

0H : Hubble constant.  
In terms of the circular acceleration that balance can be written as 

( )
4 2

02

v vGf r a
rr

 
= + 

 
                      (4) 

( ) .
, 2

1 1 ,

NN ar i j
i j

i j i j

f r M
α
ρ= =

= ∆∑∑
 

For ir r�  and 
2

0
v a
r
�  ( )0

1 4v GMa=              (4a) 

3.2. Gravito-Electrodynamics with MOND as the 2nd Law of Newton 

The radial balance between the GE force and the 2nd law of Newton using 
MOND is written as: 

( )4 2 2
, , , 0

1 1

NN ar

i j i j i j
i j

v g G M E rv E r a
= =

= ∆ +∑∑                (5) 

( )2
, , ,

, , .2 3
0, , , ,

i j a i ji i
i j j i j i j

i iv i j v i j

da g
E k c

a g ad d
ρ

ρ α= +
+

, ( )2
2 2

, , , ,
0

ˆ ˆi i
a i j i i j i j i

i i

a g
d c v a

a g a
ρ ρ= − + ⋅

+
 

For 0ia a� , and 0a a� ⇒ 4 2
, , 0

1 1

NN ar

i j i j
i j

v g G M E r a
= =

= ∆∑∑ , ir r� ⇒  

( )2
, ,

, 2 3 2
/ , , 0 ,/ . ,

1 1a i ji i
i j j

v r i j v r i j

da g
E k c

rd a d r
= + ⇒  

( )2
, ,4

, 02 3
1 1 / /

NN ar a i ji i
i j j

i j v r v r

da g
v g G M k r c a

d d= =

 
 = ∆ +
 
 

∑∑             (5a) 

Assuming non-relativistic speeds and only one ring, Equation (5a) becomes: 
2

4
0 02

1

Na
S

j
j

a
v GM r k a GMa

c =

 
≈ + =  

 
∑                  (6) 

Equation (5) yields speeds that are still inconsistent with the results in galaxy 
clusters (as it will be seen later).  
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4. Extended Classical Gravito-Electrodynamics 

Because Equation (5) still has a missing mass problem in galaxy clusters and the 
potential problems with the 1st term of Equation (5a) it was thought of modify-
ing the GE field in such a way that an asymptotic value of the circular speed 
could be obtained that could be compatible with experiments involving low 
speed. For that purpose, the Newton/Coulomb (Gravitation/Electrostatics) static 
field equation was modified. Note that this modification does not impact the 
classical GEM wave theory. 

4.1. Extended Newtonian Gravitation (ENG) 

As an alternative to MOND as inertia and to the existence of dark matter, the 
Newtonian gravitation force field is extended as 

12
ˆ ˆM ME G r G r

rr
= +
�

                      (7) 

where 
( )1 ,G f M G= �  

r: Separation distance between the source of the field and the observation 
point. 

The radial balance between the extended gravitational force and the 2nd law of 
Newton for a thin disk galaxy is then written as 

. .2
, 1 ,2

1 1 1 1 ,,

N NN Na ar ri j i j
i j i j

i j i j i ji j

v Gr M G r M
α α

ρρ= = = =

= ∆ + ∆∑∑ ∑∑             (8) 

Here r is the distance from the center of the galaxy to the location of the test 
particle. 

ir r� ⇒ 2
1

1v GM G M
r

= + . r →∞ ⇒ 1v G M=          (9) 

In [5] the relation ( )2 4v GM R= π  was obtained for a Mestel disk. Equat-

ing both equations ⇒ 1 2
GG
R

=
π . 

This eq. is the result of a very strong correlation between a galaxy with a con-
stant circular speed in the interior (using Newtonian dynamics) and a galaxy 
with an asymptotic speed outside its edge, both having the same total mass. 

In ref. [6] it was found that 2 0.5M
R

≈  for 26 disk galaxies, therefore  

1 2 2
GG
M

=
π                          (9a) 

Equation (9) (using Equation (9a)) yields results in good agreement with 
binned measurement data of disk galaxies as will be seen later. 

Substituting Equation (9a) into Equation (9)  

⇒
2

4 1
2 2
Gv Mπ 

 
 

= .                     (9b) 
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This eq. is also consistent with the slope of 4 in the power law (Tully-Fisher 
relation) of binned measure data. 

4.2. Extended GEM (EGEM) 

The gravitational static potential usually defined as ( ) d
r

V r E l
∞

≡ − ⋅∫
��

 leads, 

when equation 7 is used, to ( ) ( )1
1

r

V r GM G MLn r
r ∞

 = − − + 
 

 for a point mass. 

This yields a term equal to ∞ . 

To avoid that, the potential is defined as ( )
0

d
r

r

V r E l≡ − ⋅∫
��

, 0r r� . The po-

tential equation is then ( ) ( ) ( )1 0 1
0

M MV r G G G MLn r G MLn r
r r

= − + − . Note that

( )0 0V r =  and that E V= −∇
�

⇒  Equation (7). 

That eq. can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1
0

d d d dG GV r r v r v G Ln r r v G Ln r r v
r r

ρ ρ ρ ρ′ ′ ′ ′ ′ ′ ′ ′= − + −∫ ∫ ∫ ∫
 

1G  should be expressed in terms of integrals also, but a dependency valid for 
the whole mass range of interest does not yet exist, therefore this detail is not 
considered in this work. 

The potential for GED is obtained by generalizing the gravito-static equation. 
Therefore 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 0
0

1

, , d , d , d

, d

r r r

r

G GV r t r t v r t v G Ln r r t v
r r

G Ln r r t v

ρ ρ ρ

ρ

′ ′ ′ ′ ′ ′= − +

′ ′−

∫ ∫ ∫

∫  

rt : Retarded time (the time elapsed between the time when the source moves 
and the time when the information of that movement reaches an observation 
point).  

It can be shown that ( ), d
ˆ1r
Mr t v
r v c

ρ ′ ′ =
− ⋅∫ �  [7] therefore 

( ) ( ) ( )1 0 1 1 2 3 4
0 / / /

,
v v r v r v r

Mc G Mc Mc McV r t G G Ln r G Ln r V V V V
d r d d d

= − + − = + + +
 

( )ˆvd r c r v= − ⋅
� , /v r vd d r=  

To calculate the GE field, the gradient of the scalar potential is needed: 

( )1 31  v a
v

v

d v d r
V GMc d GMc

d
−

∇ = ∇ =
� �� �

 [7] 

2 2
ad c v r a= − + ⋅

� �  

Choosing 0r  such that ( )1 0
0

G G Ln r
r
= ⇒ 2 3 0V V+ =  (see additional re-

marks at the end of this section). 
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The gradient of the last term is calculated as 

( )( ) ( )/ /
4 1 2

/

v r v r

v r

Ln r d Ln r d
V G Mc

d
∇ − ∇

∇ = −

� �
�

. 

where ( )( )
v

crLn r
rd

∇ =
��

, ( )/ 2
a

v r
v

d c vd r
rd rr

 
∇ = − − 

 

�� � . The relation  

( ) ( )/
1 1 1

v r v v vd d d d
r r r

   ∇ = ∇ = ∇ + ∇   
   

� � � �
 was used (with 2

1

v

c r
r dr

 ∇ = − 
 

��
). The 

calculation of ( )vd∇
�

 is described in [7]. 

The total gradient is therefore: 

( ) ( )/2
1 13 2 2

/

v rv a

v v v r

Ln r dd v d r rV GMc G Mc G Mc
d d d

∇−
∇ = − +

�� � ��

 
The GE and the GM fields, using the results shown in Appendix A, are then 

written as 

( )2
1 13 2 2

/
a v

v v v r

Ln rGMc r r rE d r v d ag G Mc G Mc K
c cd d d

  = − − + −  
  

�� � � �

 

2
a

v

d c vK r
rd rr

 
= − − 
 

�
�

 

( )3

1
v a

v

GMB d ga r d v r
c d

= × + ×
� � � � �

 
where the terms containing 1G  in the GE field represent the contribution from 
the extended Newtonian gravitation presented in this work. 

Appendix B shows the GE field equation extended to consider the parameter 
concerning the speed of the gravitational force propagation. 

The radial balance between the GE field and the test particle’s inertial accele-
ration in a thin disc galaxy is then written as: 

( )2 1 2
, , 1 . 1 .

1 1

NN ar

i j i j i j i j
i j

v g r M GE G E G E
= =

= ∆ + −∑∑             (10) 

where, 

, , ,
, , .2 3

, , , ,

1 i j a i j
i j i i j i j i j

v i j v i j

d
E c a g k

c d d
ρ

ρ α
 

= +  
 

 

,1 2
. .2

, ,

i j
i j i j

v i j

E c
d
ρ

α=
 

( ), . .2
. .2

. . ,/ , ,

i j a i j
i j i j

v i j i jv r i j

Ln d cE c
dd

ρ
α

ρ

 
= −  

   

For ir r�  and making / / ,v r v i jd d r= : 

, ,
, 2 3 2

/ /

1 1a i ji i
i j j

v r v r

da g
E k c

rd d r
= + , 

2
1
. 2

/

1
i j

v r

cE
rd

=  
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( )2
.i j

Ln r
E Kc

r
= , . .

3 2
/ /

a i j

v r v r

d cK
d d

= −  

For very large r (the term 2

1
r

∝  is neglected): 

( )
2

2
, 1 12 2

1 1 / /

NN ar
i i

i j j
i j v r v r

a g cv g M G k G G KcLn r
d d= =

 
= ∆ + − 

 
∑∑         (11) 

Note that 0K =  for low speeds of the source and for very massive system

1 0G ≈ . 
For only one ring (an average one): 

( )2 2
1 12 2

1 1 1/ /

1 .
N N Na a aj

s s
j j jv r v r

k
v g GMa g G Mc G McLn r K

d d= = =

= + −∑ ∑ ∑  

Note that for small circular speed of the source and the test particle the equa-
tion 1v G M=  (Equation (9)) is recovered. 

It is noted that, for example, for 32
1 10G −= ⇒ 20

0 1.5 10 mr ≈ ×  which could 
appear as a restriction on the range of validity of the calculation. But note that 

2 1V V�  because 0r r�  any way, and that the substitution ( ) ( )0Ln r Ln r− →  
can be made in the electric field (for the same reason). Taking 26

0 10 mr =  
(which is about the radius of the visible universe) in the numerical example (ga-
laxy cluster) shown in the next section made no impact on the results. So 

2 3V V∇ +∇
� �

 could reasonably be ignored. 
For completeness the GE field is written next without neglecting any term of 

the full potential: 

2
13 2a v

v v

GMc r r rE d r v d ag G Mc
c cd d

δ  = − − + +  
  

�� � � �

 

( ) ( )( )
2

1 0 2
0 /

a

v

v r

d c vr
rd rrGMc G Ln r Ln r

r d
δ

 
− −    = − + − 

 

�
�

 
Then 2

.i jE  in Equation (10) can be written as 

( ) ( )( ) . .2
. 1 , 0 2

1 0 / , ,

i j i j
i j i j

v r i j

KGE c G Ln Ln r
G r d

α
ρ

 
= + − 

 
, . .

.
. . ,

.a i j
i j

v i j i j

d cK
d ρ

= −  

Note that for low speed and/or large distances . 0i jK ≈ . 

5. Computational Results and Analysis 

Table 1 shows binned measurements of circular speeds of galaxies and clusters 
of galaxies along with the total mass (from luminosity and gas data) of the cos-
mic structures which were reported in ref [8]. The circular speeds represent 
asymptotic values [9]. That Table also shows av  predicted by ENG (Equation 
9(a)) and by MOND (Equation 4(a)). Table 1 also shows the values of 1G  us-
ing the binned experimental data ( 2

1 c bG v M= ) and Equation 9(a). 
Note the relatively closeness (for spiral and gas disk galaxies) between the 

measured circular speeds and the results of ENG and MOND (see Figure 1 also).  
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Table 1. Asymptotic circular speed for ENG (Equations ((9), (9a))) and MOND models. 

cv  and bM  (baryonic mass) were calculated from the binned measurement data (power 

law of ( )c bv f M= ) reported in [8]. 

System 
Mb 

(Msun) 
Vc 

(km/s) 
Va 

(Equation (9)) 
Vm 

MOND 
G1 

Binned 
G1 

(Equation (9a)) 

Cluster 1.00E+14 1.66E+03 1.02E+03 1.11E+03 1.38E−32 5.25E−33 

Cluster 3.72E+13 1.26E+03 7.98E+02 8.70E+02 2.14E−32 8.62E−33 

Cluster 1.38E+13 9.12E+02 6.23E+02 6.79E+02 3.03E−32 1.41E−32 

Cluster 5.75E+12 6.92E+02 5.01E+02 5.46E+02 4.18E−32 2.19E−32 

Cluster 2.88E+12 5.13E+02 4.21E+02 4.59E+02 4.59E−32 3.09E−32 

Spiral 2.09E+11 2.51E+02 2.19E+02 2.38E+02 1.52E−31 1.15E−31 

Spiral 9.77E+10 2.09E+02 1.81E+02 1.97E+02 2.25E−31 1.68E−31 

Spiral 4.27E+10 1.70E+02 1.47E+02 1.60E+02 3.40E−31 2.54E−31 

Spiral 1.82E+10 1.41E+02 1.19E+02 1.29E+02 5.51E−31 3.89E−31 

Spiral 1.00E+10 1.20E+02 1.02E+02 1.11E+02 7.27E−31 5.25E−31 

Gas Disk 7.08E+09 1.17E+02 9.38E+01 1.02E+02 9.80E−31 6.24E−31 

Spiral 6.17E+09 1.07E+02 9.06E+01 9.87E+01 9.36E−31 6.69E−31 

Spiral 2.04E+09 8.32E+01 6.87E+01 7.49E+01 1.70E−30 1.16E−30 

Gas Disk 1.62E+09 7.59E+01 6.49E+01 7.07E+01 1.78E−30 1.30E−30 

Gas Disk 4.17E+08 6.03E+01 4.62E+01 5.03E+01 4.38E−30 2.57E−30 

Gas Disk 1.74E+08 4.47E+01 3.71E+01 4.04E+01 5.77E−30 3.98E−30 

Gas Disk 1.91E+07 2.34E+01 2.14E+01 2.33E+01 1.45E−29 1.20E−29 

Dwarf 4.68E+06 1.95E+01 1.50E+01 1.64E+01 4.09E−29 2.43E−29 

Dwarf 3.98E+05 1.45E+01 8.12E+00 8.85E+00 2.64E−28 8.33E−29 

Dwarf 6.46E+03 8.71E+00 2.90E+00 3.16E+00 5.91E−27 6.54E−28 

 

 
Figure 1. Asymptotic circular speed (km/s) vs. Mass (solar mass) for the ENG (Equation 
(9a)) model and the binned measurement data (the reference). Log10 scale is used on 
both axes. 
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The MOND results are closer than the ENG (using Equation (9a) for 1G ), but 
using the 1G  values obtained from the binned data in ENG obviously repro-
duce the binned circular speeds which are significantly larger than MOND val-
ues for galaxy clusters. The ENG model slope (power law) is 4.0. 

The significant deviation from the results of the Dwarf galaxies (quasi-spherical 
shape) and clusters of galaxies should not be a surprise since Equation (9a) was 
obtained for a set 26 disk galaxies. Additionally, it is noted that the binned data 
set for the dwarf galaxies is accompanied by large uncertainties and it includes 
the local group that some of them appear not to be isolated [10]. 

Figure 2(a) shows a mass distribution resembling the one reported in [11] for 
NGC-4736 but truncated at 10 kpc and normalized (total mass used was 

103.43 10T SunM M= × ). Figure 2(b) shows the circular speed profile for the mass 
distribution of Figure 2(a). 

Figure 3(a) shows a mass distribution according to  
( ) ( ) ( )2 arctangTM r M r= π . Note that the plot shows only values up to 10 kpc  

 

 
Figure 2. (a) Normalized mass vs. r (kpc); (b) V (km/s) vs. r (kpc). For (a) mass function. 

 

 
Figure 3. (a) Normalized mass vs. r (kpc). ( ) ( )12 tanM r−π= ; (b) V (km/s) vs. r (kpc). For (a) mass function. 
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but it spans up to about 30 kpc. Note the radical difference of the circular speed 
profile between Figure 2(b) and Figure 3(b) which illustrates the importance of 
using a very accurate mass distribution. Notice in Figure 3(b) that the Newto-
nian results are, in that plot, indistinguishable from the Keplerian ones. This is 
expected since at r = 3 kpc about 80% of the mass is inside that radius. 

Ref [11] calculated the mass distribution of the galaxy GNC-4736 without the 
need of dark matter or modified gravity. An explanation for that feature of that 
galaxy is still not known. Could the method of determining the circular speeds 
from star luminosity and gas data be not unique in such a way that mass discre-
pancy could be missed in some cases? 

Figure 4 shows the circular speed profile for a galaxy having a total mass of 
111.0 10T sunM M= ×  and a radius of about 16 kpcgR =  using a mass distribu-

tion corresponding to constant mass density with a thickness of 410 gR− . Note 
that even using Newtonian dynamics the Keplerian behavior (like in the solar 
system) is not obtained for this disc galaxy up to about 30 kpc. Note also that 
about 50 kpc the speed yielded by ENGa (and MOND) is about twice the New-
tonian result and the ratio ENGb/Newton is even greater. 

A straightforward plot of the circular speed for a hypothetical compact galaxy 
cluster with 141.0 10T sunM M= ×  and 16 kpcgR =  does not provide a clear 
comparison of the different gravitational models (due to the large speeds in-
volved). But Table 2 shows the circular speed for different models: MOND, ENGa 
(using Equation (9a)), ENGb (using binned measured data ( 2

1 c bG v M= ) shown 
in Table 1) and Newtonian. That Table indicates that MOND yields a significant 
larger speed than the Newtonian results (mainly for large r outside the cluster 
edge). But what is more relevant is the difference between the MOND results 
(smaller values) and the ENGb results (larger values): The differences are about 57, 
142, 261 and 392 km/s for 4, 16.1, 22.5 and 47.9 kpc respectively. That MOND 

 

 
Figure 4. v (km/s) vs. r (kpc) 1110T sunM M= , 16 kpcgR = . At 30 kpc: top (ENGb). Bot-

tom (Newton/Kepler). 
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under predicts the circular speeds of galaxy clusters can also be inferred directly 
from Table 1 as was previously noted by [12]. 

It is noticed that in this application and others the MOND model yields larger 
values than what ENG yields at some distance near the galaxy center, farther on 
ENG exceeds significantly the values of the MOND model. 

Table 3 shows the results of MOND and ENG (using the same mass of Table 
2) in the framework of the GE (Equation (5) and Equation (10)). It can be seen a 
small impact on the circular speed. The major impact (between 18 and 19 km/s 
increase) happens at about the edge of the galaxy as expected because the speed 
is greater at that location. The differences between the models are about the 
same as in the case of Table 2. Note that the results shown in Table 3 contain 
the small impact of , ig g  (test particle and the source, see Equation (10)). For 
Non-GE calculation (previous examples) g was ignored. 

Note that in Equation (5) and Equation (10) v (the test particle circular speed) 
depends on the speed and acceleration of the source (r. h. s.) which are un-
knowns. An outer iteration (source iteration) algorithm was implemented that 
stops when sv v v∆ = −  inside the galaxy is less than 1 km/s. An inner iteration 
was performed to calculate v (g is a 6th degree polynomial on v). The calculation 
stops when 610 m sv −∆ < . 

Neither ENG nor MOND showed significant impact on the circular speed due 
to the GE terms proportional to ( )Ln r  and r respectively up to about 0c H   

 
Table 2. V vs. r for different gravitational models. 

r (kpc) 
V (km/s) 

MOND ENGa (Equation (9a)) ENGb (Binned) NEWTON 

0.2 385.6 384.9 385.0 384.9 

4.0 1284.1 1302.9 1341.5 1278.6 

16.1 9370.5 9423.0 9512.7 9367.4 

22.5 4966.1 5062.3 5227.5 4958.0 

47.9 3087.4 3226.0 3479.6 3059.8 

 
Table 3. V vs. r for different GE models. 

r (kpc) 
V (km/s) 

MOND ENGa (Equation (9a)) ENGb (Binned) 

0.2 385.6 384.9 385.0 

4.0 1284.6 1303.7 1342.7 

16.1 9388.4 9441.2 9531.5 

22.5 4969.7 5066.1 5231.6 

47.9 3088.8 3227.6 3481.4 
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for ENG and up to about 2
010 c H−  for MOND (the numerical algorithm did 

not converge for larger distances). 
Using 26

0 10 mr =  which is about the radius of the visible universe, in the eq. 
for δ , made no impact on the results (up to one decimal place after the point in 
a floating point format (in km/s)) of this application. 

There could be more than one theory that could reproduce the binned circular 
speed of Table 1 at large distances from the edge of the cosmic structure. ENG 
does it. If we allow 0a  to vary with the mass of the cosmic structure then 
MOND also will reproduce the binned circular speed of Table 1. Table 4 shows 
the circular speeds of MOND and ENG with values of 0a  (5.72 × 10−10 m/s2, 
Equation (6)) and 1G  (1.38 × 10−32 (m/s)2/kg, Equation (9)) calculated from the 
binned measured values of the mass and circular speed shown in Table 1. In that 
way not only ENG should reproduce the binned speeds but MOND also should. 
From that Table can be seen that at 0.16 kpc MOND yields about 3 km/s larger 
than the ENG value, but ENG yields significantly larger values farther on (i.e. 
about 37, 130, 239, 295 km/s larger than MOND values for 4, 16.1, 22.5 and 47.9 
kpc respectively). This shows that even allowing 0a  to change with the mass, 
MOND yields significant smaller speed than what ENG yields in this galaxy 
cluster application. 

Table 5 shows the circular speeds at the edge of a hypothetical galaxy having a 
mass of 142.0 10 sunM M= ×  for 3 values of the galaxy’s edge. That mass is close 
to the mass of the super-giant elliptical galaxy IC 1101 reported in [13] where 
the size of the galaxy is also reported as being more than 50 times the size of the 
Milky Way. Notice that increasing the radius of the edge, the average mass den-
sity decreases cause the total mass is the same. The circular speed at the last  

 
Table 4. Circular speed vs. distance for MOND (mass dependent 0a ) and ENG. 

r (kpc) 
V (km/s) 

MOND Binned a0 ENG Binned G1 

0.16 388.4 385 

4.00 1304.8 1341.5 

16.14 9382.5 9512.7 

22.53 4997.4 5227.5 

47.94 3185.1 3479.6 

 
Table 5. Circular speed at the galaxy edge vs. the galaxy radius. 

 
Rg (kpc) V (km/s) 

 
MOND ENGa Newton 

5.0 23,698.2 23,728.9 23,697.8 

16.1 13,200.0 13,300.0 13,200.0 

807.0 2320.0 2230.0 1870.0 
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point (about 50 times the radius of the Milky Way) is very far from the value of 
23,295 km/s reported in [14] if it is assumed that it corresponds to a location 
near the edge of the galaxy. However at the 1st point (~1/3 of the Milky Way ra-
dius) the circular speed is close to that value. This again illustrates the impor-
tance of accurate information of the mass distribution of a galaxy. 

It is curious in that Table that at the last point the circular speed of MOND 
(Equation (4a)) is greater than the one of ENGa (Equation (9a)). But note that 
ENGb (binned 1G ) was not used in this example (the mass is outside the range 
of the binned data of Table 1). 

It is expected that the GE-MOND and the GE-ENG model will yield, for this 
case, larger differences than the ones obtained in Table 3 since the mass in Ta-
ble 5 is twice the one in Table 3 and therefore larger circular speeds are in-
volved. 

Any new theory that extends an old one which has been experimentally veri-
fied before should reproduce the old one as a limited case (like the principle of 
correspondence of Quantum Mechanics). There are many examples of that: 
GTR vs. Newtonian theory, STR vs. classical mechanical kinetics, Classical GEM 
vs. Newtonian gravitation, etc. In this sense if MOND does not allow a variable 
characteristic acceleration (e.g. mass dependent) it will not comply with this ex-
tended correspondence principle when used in the solar system unless for exam-
ple, it is experimentally found that a very isolated star (like the sun) has satellites 
at very large distances that have significant non-zero asymptotic circular speeds. 
Note that in this case an important condition is present: very low acceleration 
(deep MOND regime) with small mass (solar system). Note also that if it is  

assumed that 0 0
1
6

a cH≈  is not just a numerical coincidence then making the  

speed of light infinite will not recover classical dynamics. However in that case 
STR becomes classical kinematics and classical GEM (EM) becomes Newtonian 
gravitation (Coulomb electrostatic). 

In order for ENG (and therefore EGEM) to comply with this extended cor-
respondence principle 1G  should have, for example, a bell shape (as function 
of mass) where the left branch (lower values of mass) asymptotically goes to zero 
and the right branch (larger values of mass) should cover the binned values 
shown in Table 1 with a tail approaching 0. Note that eq. 11 (1st term) could 
yield a significant asymptotic speed for relativistic speeds even if 1G  is zero, 
this is an intrinsic feature of GEM for a bound test particle in circular motion 
with constant angular speed. However if 0 0a =  is made in Equation (5a), no 
asymptotic behavior will be present. 

It is curious that using ( )3
02uM c GH=  as the universe mass [15] (≈8.57 × 

1052 kg) in the eq. 2
uc M , it yields a value of ≈10−36 (m/s)2/kg. Could this be an 

approximate value of 1G  at the edge of a visible rotating universe? In this case

0
1

2GH
G

c
= , if c is made infinite ⇒ 1 0G = , however in MOND 0 0

1
6

a cH≈ = ∞ . 
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Note that ref. [16] calculated 0H  (close to published experimental results) for a 
non-expanding universe based on a tired light theory and that ref [17] reports 
that the predictions of galaxy size and surface brightness based on an expanding 
universe contradict observations. 

6. Summary and Concluding Remarks 

An extended Newtonian gravitation (ENG) theory was developed to explain the 
missing mass problem in galaxy and galaxy clusters as an alternative to MOND 
(as a modification of the Newtonian inertial acceleration) and to the potential 
existence of dark matter. 

Because of the remarkable success of MOND reproducing the rotation curve 
of galaxies it was used as a reference for comparison with ENG in simulated ga-
laxies and cluster of galaxies. 

MOND has 2 free parameters (the characteristic acceleration and the interpo-
lation function), ENG requires only the knowledge of a mass dependent para-
meter which was calculated straightforwardly from published binned measured 
data (asymptotic circular speeds and baryonic mass) in a broad range (about 11 
orders of magnitude) of masses. 

Both theories were extended in the work frame of the classical GEM to con-
sider relativistic speeds of the source. The GEM extension of ENG required the 
derivation of terms which are not present in classical EM theory while the exten-
sion of MOND was straightforward (correct the acceleration terms of the source 
in the GEM equation with the interpolation function). 

It was shown that the ENG results are relatively close to MOND’s values in 
galaxies while are significantly larger in galaxy cluster which is where MOND is 
known to still have needs for more mass to reproduce the circular speeds in ga-
laxy clusters. 

It could be worthy to extend (if possible) the baryon content of cosmic struc-
tures all the way to the solar system and to very massive structures comparable 
to the visible universe. 

While waiting for the review results of this paper an application of the ENG 
on GR was developed (Appendix C). It turned out that the Einstein field equa-
tion needs to be modified to obtain the new Poisson equation corresponding to 
ENG. 

It was called to my attention by the reviewer that extended theories of relativity, 
in principle, could take care of the dark matter problem in galaxies and galaxy 
clusters (see [18] for example). Appendix C is a confirmation of that statement. 
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Appendix A 

The GEM fields of a point mass moving in an arbitrary motion can be written as 
[19]: 

2

1 23
1

d

d d d d

c M c a c rE G b v k kr b r k v
c c c c cb

     
= − − + −            

�� � � �
 

( )1 22 3
1

w dk c MB G b a r b v r
c b

= × + ×
� � � � � , ( )mF m E v B= − + ×

� �� �  

1 db rc r v= − ⋅
� � , 2 2

2 db c v r a= − + ⋅
� � , w dk k k= , d dc c k=  

where 
M: Mass of the gravitational source. 

dk : Coefficient to consider the impact of the speed (delay) of the GEM force 
on the orbit decay. 

wk : Coefficient to consider the impact of the GM permeability on the orbit 
decay ⇒ w wc c k= . 

wc : Gravitational wave speed. 
r: Distance from the position of the point mass source to the observation point 

(separation) 
r� , v� , a� : Separation vector, velocity and acceleration of the source of the 

fields. 

( )( )321Na a v c= −� �
Na� : Newtonian acceleration. This correction yields the 

perihelion precession of planets 
If ( )( )21Na a v c= −� �  is used instead, the correct deflection of light near 

massive bodies is obtained [20]. 
, mm v� : Mass and velocity of the test particle at the field point. 

All the terms are to be evaluated at the retarded time (except for
, , , , , ,d mG c c M k m v� ). 

Appendix B 

The extended GE field ( eE
�

) can be written in term of E
�

 (Appendix A) as 

( )2
1 12 2

1 /
e d d

v r

Ln rrE E G Mc G Mc K
b d

= + −
�� �

, 2
2

1

dcb vK r
rb rr

 
= − − 
 

�
�  

Appendix C 
It is noted that the ENG potential could be used directly in the week limit of Eins-

tein field equation (EFE). Just substitute the new potential in 0.0 2

21g
c
φ = − + 

 
 to 

obtain the Newtonian relation between gravitational field and the potential [21]. 
When considering the full EFE the energy-momentum tensor needs to be 

modified in such a way that in the week limit of Einstein GR (small mass density 
and speed) the following extended Poisson equation is obtained: 
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2
1

164
3

G G rφ ρ ρ∇ = +
π

π
 

φ  is the gravitational potential. Positive sign in the right hand side was used 
to follow a common use in GR. That equation can be obtained from  

( ) 2E φ φ∇ ⋅ = ∇ ⋅ −∇ = −∇
�

 using Equation (7). 
The EFE for matter can be written as 

. . .2

81 2 GR g R T
cµ ν µ ν µ ν− =
π

 or ( ). . .2

8 1 2GR T g T
cµ ν µ ν µ ν−
π

=  [21] 

where 

.Rµ ν : Ricci tensor 

.gµ ν : Metric tensor 
R: Ricci curvature 

.Tµ ν : Energy-Momentum tensor 
.

.T g Tµ ν
µ ν=  

Following the weak limit approach [21], in order to get that extended Poisson 

equation the following is needed: . . . .
21 2

2 3
T g T rµ ν µ ν µ ν µ ν

ρ ρδ δ− ≈ +  

For 0µ ν= = ⇒ 2
0.0 2 2

1 8 2
2 3

GR r
c c

ρ ρφ  = ∇
π

= + 
 

⇒  

2
1

164 .
3

G G rφ ρ ρπ
∇ = +π  

Because . . .1 2
2

T g Tµ ν µ ν µ ν
ρ δ− =  in EFE, to get the desired Poisson equation 

the Energy-Momentum tensor needs to be modified or an extra tensor needs to 
be added to EFE e.g. 

( ). . .2

8 GR P Q
cµ ν µ ν µ ν= +
π

 Extended Einstein field equation 

. . .1 2 PP T g Tµ ν µ ν µ ν= − , .
.PT g Tµ ν

µ ν=  EFE tensors 

. . .1 2Q QQ T g Tµ ν µ ν µ ν= − , .
.Q QT g Tµ ν

µ ν=  New tensors 

For 0µ ν= =  (weak limit) ⇒ 2
0.0 2

1R
c

φ= ∇ , 0.0 2
P ρ

= , 0.0
2
3

Q rρ
=  
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