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Abstract 
We discuss the Oppenheimer-Snyder-Datt (OSD) solution from a new pers-
pective, introduce a completely new formulation of the problem exclusively in 
external Schwarzschild space-time (ESM) and present a new treatment of the 
singularities in this new formulation. We also give a new Newtonian ap-
proximation of the problem. Furthermore, we present new numerical solu-
tions of the modified OSD-model and of the ball-to-ball-collapse with 4 dif-
ferent numerical methods. 
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1. Introduction 

The gravitational collapse (GC) is, together with the Robertson-Walker-Friedmann- 
Lemaitre (RWFL) cosmological models, the most important dynamical model in 
General Relativity. In its OSD form it has, apart from RWFL, the only closed 
analytic solution in this area. In astrophysics and cosmology it is of utmost im-
portance, because it is considered to be the valid model for the formation of stars 
from dust and gas clouds and for catastrophic events like star collapse to a neu-
tron star or a Black Hole. However, the OSD formulation has severe drawbacks: 
its assumptions of homogeneous density and zero pressure are completely un-
realistic and especially the latter can be even regarded as unphysical (Mitra [1]). 
Furthermore, the formation of the Black Hole asserted in OSD happens at infi-
nite time for an external observer in the corresponding external Schwarzschild 
or Vaidya space-time (ESM) (see e.g. [2]). Finally, OSD uses co-moving coordi-
nate frame as the formulation basis and introduces junction conditions (conti-
nuity of space-time function and derivative) to the external observer frame in 
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ESM, which are difficult to calculate symbolically and to implement numerically. 
Recent publications on this subject can be divided into 7 categories: 

• observational astrophysics with application of GC-formalism Kotake [3]; 
• review Naidu [4] Joshi [5] Lasky [6]; 
• gravitational collapse of fluid Lasky [6]; 
• gravitational collapse in star formation in Newtonian formulation Girichidis 

[7]; 
• extensions of OSD in COF (co-moving frame) with respect to heat-flux Her-

rera ([8] [9]) Goswami [10], radiation Sharma [11], neutrino-emission Na-
kazato [12], equation-of-state Sanwe [13] Joshi [14]; 

• singularity freedom in gravitational collapse Marshall [15], Mitra [1]; 
• gravitational collapse quantization from quantum-theoretical point of view 

Hajicek [16], Corda [17]. 
In this article we introduce the essential feature system equations for GC ex-

clusively in ESM, which adds 1 differential equation to the 4 of OSD, and radial 
velocity as a new, fifth variable function. 

This makes the system more complicated, particularly a separation ansatz in r 
and t like in OSD is not possible anymore, but there are no junction conditions 
and all results are directly observable for an external observer. 

The article can be subdivided into three parts: 
• fundamentals and the system equations for the different models in chapters 

2, 3, 4; 
• the particular models and discussion of singularities in chapters 5, 6, 7; 
• numerical methods and results in chapters 8, 9.  

2. GR Fundamentals 

The most general spherically symmetric line element, in spherical coordinates 
(xμ) = (t, r, θ, φ), can be written as 

( ) ( ) ( ) ( )2 2 22 2 2 2 2 2d , d , d , d sin ds A t r c t B t r r Y t r θ θ ϕ= − + + +      (1) 

where A, B and Y are functions of the coordinates t and r. 
The Einstein field equations with the above line element are: 

0
1
2

R g R g Tµν µν µν µνκ− + Λ =                    (2) 

where Rµν  is the Ricci tensor, R0 the Ricci curvature, 4

8 G
c

κ =
π , Tµν  is the 

energy-momentum tensor, Λ  is the cosmological constant (in the following 
neglected, i.e. set 0), with the Christoffel symbols (second kind) 

1
2

g gg
g

x x x
κµ µνλ λκ κν

µν ν µ κ

∂ ∂ ∂
Γ = + − 

∂ ∂ ∂ 
                 (3) 

and the Ricci tensor 

R
x x

ρ ρ
µρ µν σ ρ σ ρ

µν µρ σν µν σρν ρ

∂Γ ∂Γ
= − + Γ Γ −Γ Γ

∂ ∂
               (4) 
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The Einstein tensor is given by 

0
1
2

G R g Rµν µν µν= −                       (5) 

we obtain from (3) and (4) the non-vanishing Einstein tensor components [4] 
[8], 

( ) ( )2 22 2

00 2 2 2 2

'' ' ''2 2 2
Y YB Y A B Y Y AG

B Y B Y YY B Y Y

   °° °   = + − − + + +
   
   

      (6) 

( ) ( )2 22 2

11 2 2 2 2

'' '2 2 2
Y YB A Y Y A Y BG

A Y Y A YY Y Y Y

   °° ° °°   = − − + + −
   
   

      (7) 

01
' ' '2 B Y A Y YG

B Y A Y Y
° ° ° = + − 

 
                  (8) 

2

22 2

2

2

'' ' ' ' ' ' ' ''

Y B A B B Y A Y YG
B A B B Y A Y YA

Y A A B A Y B Y Y
A A B A Y B Y YB

°° ° ° ° ° ° ° °° = − − + − + 
 

 − − + − + 
 

           (9) 

2
33 22sinG Gθ=                         (10) 

The dot °  represents t∂  and the prime '  represents r∂ . 
The energy-momentum tensor T for a perfect fluid with 4-velocity uμ, 

heat-flow qμ, density ρ, and pressure P is 

2 2

P PT u u g q u
c c

λ
µν µ ν µν λρ = + − + 

 
               (11) 

We will consider here only adiabatic systems without heat-flow to outside, so 
in the following q = 0. 

For the gravitation collapse problem two coordinate systems are used. 
In the co-moving coordinate system (COF) the spatial part of the velocity is 

zero: 

0
1u
A

µ µδ=
 

and the acceleration 4-vector is 

1
'Au

A
µ µδ° =

 

In the external Schwarzschild space-time (ESM) with Schwarzschild-radius rs 

( )2 2 2 2 2 2 21d 1 d d d sin d
1

s

s

r
s c t r r

rr
r

θ θ ϕ = − − + + + 
  −

        (12) 

we take the coordinate system of the non-moving observer at infinity. 
In order to make the variables dimensionless, we introduce “sun units”, like in 

[18], where rs means the Schwarzschild-radius. 
In the following, we make all equations and variables dimensionless, by using 
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the “proper units” of the gravitating system s ss
sun

Mr r
M

=  Schwarzschild-radius 

for r, Msun for M, 
2

s ss
sun

M
M

ρ ρ
 

=  
 

 for ρ, 2
s sP cρ=  for P. 

3. System Equations for COF 

We insert the above expression for uμ into T and get the Einstein-equations as 
the system equations: 

eq00: 
( ) ( )( )
( ) ( )( ) ( )

2
0

2

exp 2 2

exp 2 2 '' 3 ' 2 ' ' exp 2

c fA fB fY fY

fB fY fY fB fY fY

ρ = − ° ° + °

− − + − + −
  (13) 

eq11:  
( ) ( )( )
( ) ( )( ) ( )

2
0

2

exp 2 2 3

exp 2 2 ' ' ' exp 2

c P fA fA fY fY fY

fB fA fY fY fY

= − ° ° − ° − °°

− − + − −
  (14) 

eq01: ( )( )0 0 2exp 2 ' ' ' 'c q fB fA fB fY fA fY fY fY fY− = = − − ° + ° − ° + °   (15) 

eq22: 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 2
0

2 2

exp 2

exp 2 '' ' ' ' ' ' ' ' '' '

c P fA fB fB fA fB fB fY fY fY

fB fA fA fA fB fA fY fB fY fY fY

= − − °° + ° − ° ° + ° ° + °° + °

+ − + − + − + +
 (16) 

where ( ) ( )( ), exp ,A t r fA t r= , ( ) ( )( ), exp ,B t r fB t r= ,  
( ) ( )( ), exp ,Y t r fY t r= . 

The constant 
( )0 2 2

8 3

ss s

Gc
c r ρ

= =
π , explicitly and in sun-units. 

In the dimensionless representation and M = Msun:c0 = 3. 
When calculating in COF, one uses in parallel an external space-time valid 

outside the gravitating mass system boundary, the usual choice is the Vaidya 
space-time for a radiating spherically symmetric mass system with total mass 
M(t) and initial mass M0 in new coordinates r2, t2: 

( ) ( )22 2 2 2 2 2
2 2 2 2

2 0

d 1 d 2d d d sin ds M tr
s c t t r r

r M
θ θ ϕ

 
= − − − + + 

 
      (17) 

When the system is adiabatic, i.e. heat-flow = 0 and M(t) = M0, the Vaidya 
space-time becomes the Schwarzschild space-time in Eddington-Finkelstein 
coordinates: 

( )2 2 2 2 2 2
2 2 2 2

2

d 1 d 2d d d sin dsrs c t t r r
r

θ θ ϕ
 

= − − − + + 
 

         (18) 

The line element functions of the inner and the external space-time must be 
continuous, and so must be their derivatives normal to the surface boundary, 
this generates junction conditions on the surface [8]: with the boundary surface 
space-time ( )2 2 2 2 2 2d d d sin ds c Yτ θ θ ϕ= − + +  

https://doi.org/10.4236/jhepgc.2022.82034


J. Helm 
 

 

DOI: 10.4236/jhepgc.2022.82034 461 Journal of High Energy Physics, Gravitation and Cosmology 
 

( )2
2

2 0

d d 1 ds M tr
A t t

r M
τ

 
= − = 

 
                 (19) 

( )2 2Y r t=                          (20) 

( )22 2

2 0 2

d d
1 2

d d
s M trt rA

r M tτ
= − +                    (21) 

2 2

2

' ' '2

' ' '2 2 2 2

B Y A Y Y
B Y A Y Y

B Y A Y Y A A Y Y B
A Y A Y Y B A Y Y Y

° ° ° − + − 
 

   °° ° ° °   = − − + + + −               

     (22) 

In the last equation, the dot °  represents t∂  and the prime '  represents 

r∂ . 

4. System Equations for Schwarzschild Space-Time ESM 

Here we give up the COF, and calculate exclusively in ESM. Now the radial ve-
locity u(t,r) becomes a new variable function and we derive an additional system 
equation for it from the GR orbit equations, where τ is the proper time: 

2

2

d d d
d dd

x x xκ µ ν
κ
µν τ ττ

= −Γ                      (23) 

and the relativistic velocity normalization condition (dimensionless, c = 1) 

d d1
d d
x xg
µ ν

µν τ τ
− =                       (24) 

we get the following differential equations for t = x0 and r = x1 and their deriva-
tive '  for τ: 

( ) ( ) ( )1,0 0,1 1,0
0 2 0 0 2 2 2
00 01 11 2'' ' 2 ' ' ' ' 2 ' ' 'A A BBt t t r r t t r t

A A A
= −Γ − Γ −Γ = − − −

 
( ) ( ) ( )0.1 1,0 0,1

1 2 1 1 2 2 2
00 01 11 2'' ' 2 ' ' ' ' 2 ' ' 'AA B Br t t r r t t r t

B BB
= −Γ − Γ −Γ = − − −

 
2 21 '' r Bt

A
+

=
 

And from that for the radial velocity ur = r': 
( ) ( ) ( )0,1 1,0 0,1

2 2 2
2 2

1 1' 2r r r r r
A B Bu u u u u

A A BB B
 = − + − + − 
   

We get for the energy-momentum tensor 

2 2
0 1ru A u B= +  

2
1 ru u B=  

( )( )2 2 2
00 1rT P u B Aρ= + +

 

( ) 4 2 2
11 rT P B u PBρ= − + +  
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2
22T PY=  

2 2
33 sinT PY θ=  

From this and the expressions for Gμν (6…10) get the system equations for 
ESM, where u(t,r) = ur 

eq00: 

( )( ) ( )( )( )
( ) ( )( )
( ) ( )( ) ( )

0

2

2

1 exp exp

exp 2 2

exp 2 2 '' 3 ' 2 ' ' exp 2

c fu fB P fu fB fA

fA fB fY fY

fB fY fY fB fY fY

ρ + + + + −

= − ° ° + °

− − + − + −

  (25) 

eq11:   

( )( ) ( )( )
( ) ( )( )
( ) ( )( ) ( )

0

2

2

1 exp exp

exp 2 2 3

exp 2 2 ' ' ' exp 2

c P fu fB fu fB

fA fA fY fY fY

fB fA fY fY fY

ρ− + − +

= − ° ° − ° − °°

− − + − −

   (26) 

eq01:  ( )( )0 0 2exp 2 ' ' ' 'c q fB fA fB fY fA fY fY fY fY− = = − − ° + ° − ° + °  (27) 

eq22: 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 2
0

2 2

exp 2

exp 2 '' ' ' ' ' ' ' ' '' '

c P fA fB fB fA fB fB fY fY fY

fB fA fA fA fB fA fY fB fY fY fY

= − − °° + ° − ° ° + ° ° + °° + °

+ − + − + − + +
(28) 

eq44: 

( ) ( )
( ) ( )( )
( ) ( )( ) ( )

exp 'exp

'exp 1 exp 2 2

2 exp 1 exp 2 2 'exp

fu fA fu fB

fA fu fB fu

fB fB fA fu fB fu fB fu

° +

= − + − −

− ° − + + − − −

 (29) 

where ( ) ( )( ), exp ,A t r fA t r= , ( ) ( )( ), exp ,B t r fB t r= ,  
( ) ( )( ), exp ,Y t r fY t r= , ( ) ( )( ), exp ,u t r fu t r= . 

5. The Gravitational Dust Cloud Collapse Model  
of Oppenheimer-Snyder-Datt 

The Oppenheimer-Snyder-Datt (OSD) model of a gravitational collapse was the 
first exact GR-solution of a dynamic GR system, Joshi [5]. With the (unrealistic) 
assumption of a no-pressure dust cloud with homogeneous density and calcu-
lating in COF one can use a separation-ansatz in the system equations and gets 
an explicit analytic expression for the function variables. 

In the following we use the terminology in [2] and [5]. 
In COF the solution space-time becomes (dimensionless) 

( ) ( ) ( )
2

22 2 2 2 2 2
2d d d d sin d

1
v t

s t r v t r
kr

θ θ ϕ= − + + +
−

         (30) 

where the edge of the cloud is in COF 

( ) ( )1 0R t r v t=  
and 2

01k r= , and r0 is the initial edge radius, v(0) = 1, density ( ) ( )3
0t v tρ ρ= . 

The function v(t) = 0 at the dimensionless time 3 2
02colT rπ

=  (see [2]), where 
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the radius of the cloud R1(Tcol) = 0 and there is a singularity with density blow-
ing-up. 

In ESF, with coordinates t2 and r2, the (dimensionless) equation for the edge is 
([2] 45.10): 

2

2

2 2

d 1
d 1 11

t
r

r r

= −
 
− 

   
which gives the relationship 

22
2 20 2

2

1
2 1 log

3 1
rrt t r
r

  −  = − + +      +    
             (31) 

( )2 2 2, 1 expt r const t→∞ = + ∗ −  
so in the limit of infinite time t2 the edge in ESM goes exponentially slowly (with 
the characteristic time ts = rs/c) to the Schwarzschild-radius rs: there is no singu-
larity, as the Black Hole forms at infinity. 

This result can be found in [2] [15] and [19]. 
In [19] the author gives a proof for non-existence of singularities in gravita-

tional collapse in COF under certain conditions. 

6. Gravitational Collapse in the Newtonian Approximation 

In the Newtonian approximation, we consider the total energy density of pres-
sure, kinetic energy and gravitational energy, 

( ) ( )2

2d s

GM rvE P
r

ρρρ= + −                  (32) 

with the equation-of-state (eos) of the ideal gas ( )s rP Tρ ρ=  which is con-
served and therefore stationary under t∂  and r∂ , which gives 2 differential 
equations for the 2 function variables ρ(t,r) and v(t,r). 

( ) ( ) 2

0

4 d
r

x x xM r r r rρπ= ∫  is the mass within the radius r. 

In proper units, i.e. dimensionless the total energy density becomes 

( )
2

2

0

3 d
2 2

r

d r x x x
vE T r r r

r
ρ ρρ ρ= + − ∫

 

Into the eos enters the relative temperature 2r
n

kTT
m c

= , relative to the nucleon 

mass. 
The resulting (dimensionless) equations are of order 1 in ρ(t,r) and v(t,r). 
equt: 0t dE∂ =  

2

2
2

3
2

3
2 2r

v v I r
r

vI r T
r

ρ ρ
ρ
ρ ρ ρ

  ° − °  °  =
 

  − +  
 

                  (33) 
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equr: 0r dE∂ =  
2

2
2

2
2

3 3'
22'

3
2 2r

rv v I r
r

vI r T
r

ρ ρρ
ρ
ρ ρ ρ

 
 + −  

 =
 

  − +  
 

                (34) 

with the abbreviation 

( )2 2

0

d
r

x x xI r r r rρ ρ  =  ∫  and ( )2 2

0

d
r

x x xI r r r rρ ρ ° = °  ∫  

and mean density 
2

2 .m

I r

r

ρ
ρ

  =  

These equations can be simplified by using the integrability condition: 

t∂  equr = r∂  equt 

22 2
2

2

3 3 1
2 2 2r

I rvI r T
r r r

ρρ ρρ
ρ

  °      − + = −    °   
           (35) 

With this the Equations (33), (34) become 

( ) ( )2 211 1
3m

rr vρ
ρ

° + = + °                   (33a) 

( ) ( )2 21' 1 '
2m mr r vρ ρ ρ ρ ρ
ρ

 
− ° = ° − − 

 
            (34a) 

Using (33a) and 2 1v <  one can show that ρ cannot blow-up at r = 0, so there 
is no singularity. 

The numerical results for the ball-to-ball model are given in 9.6 below. 

7. Singularity in ESM Gravitational Collapse 

In this section we examine the singularity behavior in Schwarzschild space-time 
gravitational collapse. 

We assume that there is a singularity in one or several of the function variable 
at the time t = t0, i.e. A(t0) or B(t0) or Y(t0) = 0. For simplicity, by a coordinate 
shift we can make t0 = 0. 

We make the ansatz ( ) ( )( ), exp , 0kB t r t fBr r t= → ,  
( ) ( )( ), exp , 0kY t r t fYr r t= → , 

( ) ( )( ), exp , 0A t r fYr r t= →
 

that is, B and Y vanish at t = 0 like tk (k ≥ 2) and A remains non-zero, this beha-
vior is modeled at the OSD-COF singularity (where k = 2), but any other choice 
of vanishing space-time function with k = 2 will bring the same result. 

For the logarithmic function variables it means  
( ) ( ) ( ), log , 0fB t r k t fBr r t= + → , ( ) ( ) ( ), log , 0fY t r k t fYr r t= + →  both B 

and Y have a genuine logarithmic singularity at 0, where they become negative 
infinite. 
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Before the singularity is reached, all physical feasibility conditions must be 

met, i.e. in particular [ ]0 , 1u t r≤ < , 1
1 1sound

Pv k γγ ρ
ρ

−∂
= = <

∂
, mass condition 

[ ]
0

2
0

0

, 4 d
r

M t r r rρ π= ∫ , so with pressure non-zero, there is a physical limit for 

the density. 
Under these assumptions and taking only terms, which have the strongest di-

vergence in t, the ESM Equations (25)…(29) take the form 

eq00: ( ) ( ) ( )( )2
00 exp 2 2 '' 3 ' 2 ' ' exp 2 2c fB fYr fYr fBr fYr fBr fYrρ= − − − + − − −

(25s) 

eq11: ( ) ( ) ( )( )2
0 10 exp 2 2 ' ' ' exp 2 2c k fB fAr fYr fYr fBr fYrγρ= − − − + − −  (26s) 

eq01: ( ) ( )10 ' ' ' ' ' 'kfBt fYr fAr fYr kt fYr fAr fYr−= ° + − = + −   (27s) 

eq22: 
( ) ( )(

( ) )

2
0 1

2

0 exp 2 '' ' ' ' ' '

' ' '' '

c k fB fAr fAr fAr fBr fAr fYr

fBr fYr fYr fYr

γρ= − + − + − +

− + +
 (28s) 

eq44:   ( ) ( )0 exp 2 expfu fA fB fA= − ° − ° −     (29s) 

where ( ) ( )( ), expA t r fAr r= , ( ) ( ) ( )( ), exp logB t r k t fBr r= ∗ + ,  
( ) ( ) ( )( ), exp logY t r k t frY r= ∗ + , ( ) ( ) ( )( ), expu t r fut t fur r= + ,  
( ) ( ) ( ),t r rhot t rhor rρ = ∗ : with t-limit behavior a product ansatz in t and r is 

always possible, where ρ is the density and u is the velocity. 
Now, as the density ρ must not blow-up (this would mean an unphysical solu-

tion before the Black Hole generation), the brackets with ( )exp 2 fB−  must va-
nish identically. 

This gives ' 0fAr = , then ' ' 0fBr fYr = , and finally ' 0 'fBr fYr= = , and 
from (29s) also fur const=  so that the space-time and the velocity is spatially 
constant, which is impossible. 

One can show, that other choices of divergent space-time functions lead to a 
blow-up of the density or to unphysical results. 

In essence, this confirms in ESM the results of [19], that (in COF) the gravita-
tional collapse singularity can arise only with zero pressure, which is physically 
untenable. 

8. The Differential Equations and Their Numerical Form 

The 5 differential equations for the gravitational collapse in SMF (Schwarzschild 
metric frame) have the form (25…29). 

The first 4 are the Einstein-equations for R00, R11, R01, R22, and the last is the 
equation for the radial velocity u from the GR equations-of-motion. The dot 
represents t Ak∂  and the prime’ represents r Ak∂ . The constant  

( )0 2 2

8 3

ss s

Gc
c r ρ

= =
π , explicitly and in sun-units, and P is replaced by the equa-

https://doi.org/10.4236/jhepgc.2022.82034


J. Helm 
 

 

DOI: 10.4236/jhepgc.2022.82034 466 Journal of High Energy Physics, Gravitation and Cosmology 
 

tion-of-state ( ) ( )eosP fρ ρ= , the total mass M0 = 1(Msun). 

The chosen space-time range is with edge radius r0 and final time T1: t = 
0...50(rs/c), r = 0…10(rs), rs = Schwarzschild-radius. 

The variable functions are ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , ,Ak fA t r fB t r fY t r t r fu t rρ= ,  
where ( ) ( )( ), exp ,A t r fA t r= , ( ) ( )( ), exp ,B t r fB t r= ,  
( ) ( )( ), exp ,Y t r fY t r= , ( ) ( )( ), exp , .u t r fu t r=  
It is important to note the highest derivatives of the variable functions, they 

are: 
,  '', ,  ', , '', ,  , 'fA fA fB fB fY fY fu fuρ° °° °° °  

For the variables with the differential degree 2 in t, the t-boundary-condition 
becomes 

0t = : [ ]Ak fbx r= , [ ]t Ak fDbx r∂ = , 

for degree 1 it becomes 

0t = : [ ]Ak fbx r= , 

and correspondingly in r. 
The density ρ is the only algebraic variable function, so no boundary condi-

tion is imposed, its boundary value is calculated from the equations at the 
boundary, together with the other highest derivatives. 

All numerical solution methods used here operate on an equidistant 
2-dimensional lattice {ti, rj} with step size h1 = r0/ndimx in t, and step size h2 = 
T1/ndimy in r, ndim = 8…32, depending on the required execution time. 

For Ritz-Galerkin test functions and for fits a 2-dimensional trigonometric 

(Fourier) expansion ( ) ( ),
, 0

exp exp
ngrad

k l t r
k l

a I k t I l rω ω
=
∑ , with basic angular fre-

quencies ωt ωr and 1I = − , of degree ngrad is used. 
Before the solution procedure starts, an appropriate “seed function” wvarfit is 

chosen with the desired boundary conditions, and then corrected to solve the 
equations at the boundary, the boundary conditions are corrected appropriately. 
Its error is evaluated and a global trigonometric t-r-fit on the lattice {ti,rj} is cal-
culated. 

9. Numerical Solution 
9.1. Numerical Solution Methods 

Table 1 Ritz-Galerkin global minimization with a trigonometric test function 
and the parameter vector qv2t operates on the differential-equation-set with the 
variable functions replaced by the test function, see Helm [19]. 

 
Table 1. Ritz-Galerkin global minimization. 

lattice 16 × 16 exec.time (s) error testfunc error total error, testf error mass 

local min 1330 0.18 0.50 23.1, 24,600 1.01 

global min 434  0.64 17.1, 24,600 0.98 
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The goal function is the sum of the absolute error values on the lattice {ti,rj}. 
First, an appropriate seed function wvarfit is chosen, which fulfils the equations 

at the boundary. 
Its error is evaluated and a global t-r-fit on the lattice {ti,rj} to the 

Ritz-Galerkin-test function is performed with a resulting parameter value vector 
qv20t. 

The boundary conditions 

0t = : [ ]Ak fbx r= , [ ]t Ak fDbx r∂ =  

0r r= : [ ]Ak fby t= , [ ]r Ak fDby t∂ =  

are enforced via a penalty added to the goal function. 
The physical feasibility conditions 

[ ] max0 ,t rρ ρ≤ ≤ , [ ]0 , 1u t r≤ ≤ , [ ]
0

2
0

0

, 4 d
r

M t r r rρ π= ∫  

are used as minimization precondition for the minimization procedure, the start 
vector for qv2t is qv20t, the initial fit parameter vector. 

The result of the procedure is the global parameter vector qv2t, parameter re-
placement in the trigonometric test functions gives the solution functions. 

The variable vector qv2t has the length 5 * ngrad2. 
Table 2 Finite-difference-minimization is based on the finite-difference dis-

cretization of the differential equations, see Helm [19]. 
In the finite-difference scheme, the variables are the values Ak(ti,rj) on the lat-

tice {ti,rj}. 
The differences in the scheme are t-forward and r-backward, because it starts 

with the boundary condition: the start-values in {ti} and {rj} are replaced by the 
boundary values. 

The goal function is the sum of the absolute error values on the lattice {ti,rj}. 
The start vector are the values {Ak(ti,rj)(wvarfit)} of the seed-function. 
The physical feasibility conditions are imposed via a penalty function added to 

the goal function. 
Finally, a global minimization with the variable-vector { Ak(ti,rj)} and the start 

vector is performed, yielding the array {Ak(ti,rj)}0 as the solution. 
The variable vector {Ak(ti,rj)} has the length 5*ndimx*ndimy, much more 

than global Ritz-Galerkin, but the minimization has no precondition and is 
therefore much faster. 

Table 3 R-profile-wavefront for fixed t = ti, calculates r-profiles for a fixed ti, 
starting with the boundary t = t0 = 0. For each profile, the highest derivatives are  

 
Table 2. Finite-difference-minimization. 

lattice 16 × 16 exec.time (s) error testfunc error total error, testf error mass 

local min 183 0.73 0.035 2.94, 17,776 0.85 

global min 101  0.14 43.3, 17,776 0.85 
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Table 3. R-profile-wavefront. 

lattice exec.time (s) error testfunc error fit error discrete mass 

32 × 32 210 0.091 0.64 0.74 0.70 

 
calculated from the differential equations, the values of the lower derivatives are 
calculated from the predecessor profile via Euler step and inserted into the equa-
tions, see Helm [19]. 

The Euler-step is: 
( ) ( ) ( ) ( ) ( ) ( ),0 ,0 1,0

1, , ,d d d
i j i j i jAk t r Ak t r Ak t r hstep+
+ = + ∗ , 

where ( ),0dAk  is the d-th derivative in t. 
After the insertion of the lower derivatives the equations become algebraic 

equations for the highest-derivative-profiles ( ) ( ),0 ,d
iAk r t . 

These functional algebraic equations in r can be solved point-wise consecu-
tively starting with the r-boundary r = rndimy = r0 and obeying continuity re-
quirements (discrete algebraic profile calculation). 

Alternatively, they can be solved by 1-dimensional trigonometric Ritz-Galerkin 
minimization starting with a 1-dimensional trigonometric r-fit to the predeces-
sor profile as start parameter-vector, and the r-boundary values as precondition 
(trigonometric Ritz-Galerkin r-profile calculation). 

Here, we used the trigonometric Ritz-Galerkin r-profile calculation, because it 
is faster and the continuity is guaranteed automatically. 

The initial step i = 0 t = t0 uses the boundary r-profile for t = t0 as the prede-
cessor. 

The result of the wavefront procedure is the array of the solution function 
values on the lattice vla (value local array). 

For each profile, the variable vector qvt has the length ngrad*5, so the total 
number of variables is ndimx*ngrad*5. 

Finite-difference-wavefront for fixed t = ti, calculates discrete r-profiles for a 
fixed ti, starting with the boundary t = t0 = 0. Here, the differential equations are 
discretized via a finite-difference-scheme with variables Ak(ti,rj) on the lattice 
{ti,rj}. For each profile t = ti, the discrete variables {Ak(ti,rj)}j are calculated by 
minimization of the discretized equations, with start vector from the predecessor 
profile. 

The initial step i = 0 t = t0 uses the boundary r-profile for t = t0 as the prede-
cessor. 

The result of the wavefront procedure is the array of the solution function 
values on the lattice vla (value local array). 

For each profile, the variable vector ( ) ( ){ },0 ,d
i j j

Ak t r  has the length ndimy*5, 
so the total number of variables is ndimx*ndimy*5. 

9.2. Numerical Result Statistics 

All calculations were made in Mathematica-code Helm [19], which is available 
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for download and can be viewed either with Mathematica or with the freely 
available Wolfram CDF player. 

We present the results for the function variables as 3D-plots and for the rest in 
form of a table, which contains the essential numerical parameters: lattice size, 
execution time on a conventional 3 GHz desktop and the error statistics. 

For the minimization methods Ritz-Galerkin and finite-difference the nu-
merical parameters are: lattice size, execution time in sec, error = median error 
of the solution, error-testfunc = median error of the seed functions, total-error = 
total minimization error, for comparison testf-error = total error of the seed 
functions, and the mass = numerical mass of the solution over time (should be 
1). The minimization is carried out globally (global-min) and with start-vector = 
seed functions (local-min). 

For the wavefront methods r-profile and finite-difference the numerical pa-
rameters are: lattice size, execution time in sec, error-fit = median error of the fit 
(spline, Fourier or polynomial interpolation) to the discrete solution values on 
the lattice, error-testfunc = median error of the seed functions, error-discrete = 
median error of the discrete solution array vla, and the mass = numerical mass 
of the solution over time (should be 1). 

In the 3D-plots the first coordinate is time t = 0...50(rs/c) and the second co-
ordinate is radius r = 0…10(rs), rs = Schwarzschild-radius. 

9.3. The Equation-of-State 

The equation-of-state, which we are using here for the GR-gravitational-collapse 
is 1P k γρ=  for the non-interacting nucleon Fermi gas, with γ = 5/3 near the 
critical nucleon density. 

In the limit of the Newtonian approximation, we use, as customary for 
sun-like stars, simply the dimensionless ideal-gas-equation (c = 1) rP Tρ= , 

where 2r
n

kTT
m c

=  is the relative temperature, relative to the nucleon mass. 

9.4. Extended Oppenheimer-Snyder-Datt Model 

The original OSD postulates dust without pressure (P = 0) and a homogeneous 
density (ρ = ρ(t)) in COF(co-moving frame), which results in a collapsing ball 
with a diminishing edge R1(t), in ESM(external Schwarzschild metric)  

( ) ( )( )1 1 exp ,s sR t r const ct r t= + − →∞ , i.e. the edge reaches the Schwarzschild 
radius rs in an infinite time. 

We extend here OSD to incorporate 1P k γρ=  and the density initially con-
stant with a smooth (exponentially zero) edge and we calculate exclusively in ESM. 

We chose as the seed-functions the solution of OSD in COF transformed into 
ESM and smoothed. Still, the derivatives of the seed-functions are numerically 
not very well behaved, therefore the results of the 32 × 32-lattice are modest (er-
ror Ritz-Galerkin minimization 0.50 (Table 1) and for r-profile-wavefront 0.64 
(Table 3).  
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The best results achieve the finite-difference minimization with an acceptable 
error 0.035 (Table 2). 

The most interesting result is the density: it goes from an approximately con-
stant distribution in r through a “build-up” at the center to an approximately 
constant distribution again at the final time, there is no blow-up. 

Plot of numerical results: 
time-radius distribution of the spacetime functions: fA(r,t) = radial scale func-

tion (dr2-factor) as shown in Figure 1, fB(r,t) = time scale function (dt2-factor) 
as shown in Figure 2, fY(r,t) = angular scale function (dθ2 - dφ2 factor) as shown 
in Figure 3, ρ(r,t) is the density as shown in Figure 4, u(r,t) is the velocity as 
shown in Figure 5, r and t are in Schwarzschild-units. 

9.5. Ball-to-Ball Gravitational Collapse 

We present the numerical results for the ball-to-ball gravitational collapse. This 
models the (fully GR) transition of an initially non-moving gas ball with radius 
r0 = R1 to a smaller ball with radius R2 = R1/2 at the time t = T1 = 50, transition 
characteristic time Tcr = 0.2T1. 

For this purpose, we choose a corresponding ball-to-ball seed-function for ρ, 
Schwarzschild-expressions for fA fB fY, Newtonian form for the gravitational  
acceleration axt(t,r) and calculating the velocity u(t,r) via the relativistic addi-

tion-of-velocity-theorem dd
1 d

u axt tu u
u axt t
+ ∗

+ =
+ ∗ ∗

, which gives the formula 

( )
( )( )
( )( )

exp 2 , 1
,

exp 2 , 1
Iaxt t r

u t r
Iaxt t r

−
=

+
, where ( ) ( )

0
, , d

t
x xIaxt t r axt t r t= ∫  is the integral  

 

 
Figure 1. Radial scale function fA(r,t) t = 0...50(rs/c), r = 0…10(rs). 
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Figure 2. Time scale function fB(r,t) t = 0...50(rs/c), r = 0…10(rs). 
 

 
Figure 3. Angular scale function fY(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
of the acceleration axt(t,r). This expression for u(t,r) fulfills automatically the 
physical feasibility condition u < 1 (for dimensionless equations c = 1). 

In a second step, we correct the boundary values (and the seed-functions) by 
solving the GR-equations on the boundary via Ritz-Galerkin-minimization as 
shown in Table 4. 
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Figure 4. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 
 

 
Figure 5. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
Table 4. Ritz-Galerkin global minimization. 

lattice 16 × 16 exec.time (s) error testfunc error 
total error,  
testf error 

mass 

local min 492 0.23 0.028 4.42, 568 0.93..0.79 

global min 223  1.39 61.7, 568 0.76..1.01 
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The best results with error = 0.012 give the finite-difference minimization 
(Table 5), but the other methods yield very similar results (Table 6, Table 7).  

The space-time function Y(r,t) is in normal Schwarzschild space-time Y(r,t) = 
r, here it reaches at the edge Y(r = 10,t) = 2.5, so area is scaled down by a factor 
of 42 = 16. 

The density builds-up at the center to a dense inner ball with approximate ra-
dius r = 3 at the time t = 10 = Tcr, and stays then approximately constant. 

The radial velocity builds-up at t = 10 = Tcr to about 0.2c, then rises at t = 30 
and decreases sharply at final time. 

Plot of numerical results: 
time-radius distribution of the spacetime functions: fA(r,t) = radial scale func-

tion (dr2-factor) as shown in Figure 6, fB(r,t) = time scale function (dt2-factor) 
as shown in Figure 7, fY(r,t) = angular scale function (dθ2 - dφ2 factor) as shown 
in Figure 8, ρ(r,t) is the density as shown in Figure 9, u(r,t) is the velocity as 
shown in Figure 10, r and t are in Schwarzschild-units. 

Plot of numerical results: 
Time-radius distribution of the spacetime functions: fA(r,t) = radial scale func-

tion (dr2-factor) as shown in Figure 11, fB(r,t) = time scale function (dt2-factor)  
 

Table 5. Finite-difference-minimization. 

lattice 16 × 16 exec.time (s) error testfunc error total error, testf error mass 

local min 104 0.23 0.012 0.75, 101.2 0.92..0.81 

global min 107  0.15 42.4, 101.2 1.14..2.09 

 

 
Figure 6. Radial scale function fA(r,t) t = 0...50(rs/c), r = 0…10(rs). 
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Figure 7. Time scale function fB(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 8. Angular scale function fY(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
as shown in Figure 12, fY(r,t) = angular scale function (dθ2 − dφ2 factor) as 
shown in Figure 13, ρ(r,t) is the density as shown in Figure 14, u(r,t) is the ve-
locity as shown in Figure 15, r and t are in Schwarzschild-units. 

Plot of numerical results: 
Time-radius distribution of the spacetime functions: fA(r,t) = radial scale  
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Figure 9. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 10. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs) 

 
Table 6. R-profile-wavefront. 

lattice exec.time (s) error testfunc error fit error discrete mass 

32 × 32 4500 0.96 0.57 0.92 1.00 
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Figure 11. Radial scale function fA(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 12. Time scale function fB(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
Table 7. Finite-difference-wavefront. 

lattice exec.time (s) error testfunc error fit error discrete mass 

32 × 32 390 0.27 0.030 0.020 0.97..0.85 
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Figure 13. Angular scale function fY(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 14. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
function (dr2-factor) as shown in Figure 16, fB(r,t) = time scale function 
(dt2-factor) as shown in Figure 17, fY(r,t) = angular scale function (dθ2 - dφ2 
factor) as shown in Figure 18, ρ(r,t) is the density as shown in Figure 19, 
u(r,t) is the velocity as shown in Figure 20, r and t are in Schwarz-
schild-units. 
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Figure 15. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 16. Radial scale function fA(r,t) t = 0...50(rs/c), r = 0…10(rs). 

9.6. Newtonian Gravitational Collapse 

We present the numerical results for the ball-to-ball gravitational collapse in the 
Newtonian limit. This models the transition of an initially non-moving gas ball 
with radius r0 = R1 to a smaller ball with radius R2 = R1/2 at the time t = T1 = 50, 
transition characteristic time Tcr = 0.2T1, using simple Newtonian gravity and  
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Figure 17. Time scale function fB(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 18. Angular scale function fY(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
the ideal-gas as the equation-of-state. 

Here, there are only 2 differential equations derived from the energy conser-
vation, for the 2 variable functions u(r,t), ρ(r,t). 

Here, the density behaves essentially like in the full-GR calculation, the veloc-
ity rises to about 0.2c in the medium radius range, and stays low in the central  
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Figure 19. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 20. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
Table 8. Ritz-Galerkin global minimization. 

lattice 8 × 8 exec.time (s) error testfunc error total error, testf error mass 

local min 57 1.6 * 10−6 0.000019 16.9, 62.8 0.88..1.09 

global min 5.4  0.00010 6.8, 62.8 1.14..1.02 
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“bulb” area, where most of the mass is concentrated. 
The Newtonian collapse was calculated with Ritz-Galerkin minimization (Table 

8), finite-difference minimization (Table 9), and R-profile wavefront (Table 10). 
Plot of numerical results: 
Time-radius distribution ρ(r,t) the density as shown in Figure 21, u(r,t) the 

velocity as shown in Figure 22, r and t are in Schwarzschild-units. 
Plot of numerical results: 

 

 
Figure 21. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 22. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs). 
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Time-radius distribution ρ(r,t) the density as shown in Figure 23, u(r,t) the 
velocity as shown in Figure 24, r and t are in Schwarzschild-units. 

 
Table 9. Finite-difference-minimization. 

lattice 8 × 8 exec.time (s) error testfunc error total error, testf error mass 

local min 0.37 1.6 * 10−6 0.000022 0.92, 1.50 1.04..1.57 

global min 203  0.00021 0.0074, 1.50 1.07..0.61 
 

 
Figure 23. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 24. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs). 
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Table 10. R-profile-wavefront. 

lattice exec.time (s) error testfunc error fit error discrete mass 

8 × 8 306 1.64 * 10−6 0.000019 0.41 0.99 

 

 
Figure 25. Density ρ(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 

 
Figure 26. Velocity u(r,t) t = 0...50(rs/c), r = 0…10(rs). 

 
Plot of numerical results: 
Time-radius distribution ρ(r,t) the density as shown in Figure 25, u(r,t) the 

velocity as shown in Figure 26, r and t are in Schwarzschild-units. 
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