
Journal of Information Security, 2022, 13, 43-65
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2022.132003 Feb. 28, 2022 43 Journal of Information Security

A Verifiable Credentials System with
Privacy-Preserving Based on Blockchain

Zhiji Li

College of Information Science and Technology, Jinan University, Guangzhou, China

Abstract
Decentralized identity authentication is generally based on blockchain, with
the protection of user privacy as the core appeal. But traditional decentralized
credential system requires users to show all the information of the entire cre-
dential to the verifier, resulting in unnecessary overexposure of personal in-
formation. From the perspective of user privacy, this paper proposed a veri-
fiable credential scheme with selective disclosure based on BLS (Bohen-
Lynn-Shacham) aggregate signature. Instead of signing the credentials, we
sign the claims in the credentials. When the user needs to present the creden-
tial to verifier, the user can select a part of but not all claims to be presented.
To reduce the number of signatures of claims after selective disclosure, BLS
aggregate signature is achieved to aggregate signatures of claims into one sig-
nature. In addition, our scheme also supports the aggregation of credentials
from different users. As a result, verifier only needs to verify one signature in
the credential to achieve the purpose of batch verification of credentials. We
analyze the security of our aggregate signature scheme, which can effectively
resist aggregate signature forgery attack and credential theft attack. The si-
mulation results show that our selective disclosure scheme based on BLS ag-
gregate signature is acceptable in terms of verification efficiency, and can re-
duce the storage cost and communication overhead. As a result, our scheme
is suitable for blockchain, which is strict on bandwidth and storage overhead.

Keywords
Verifiable Credential, Aggregate Signatures, Privacy Protection, Selective
Disclosure, Blockchain

1. Introduction

Credentials are a part of our daily lives, such as driver’s licenses, university de-

How to cite this paper: Li, Z.J. (2022) A
Verifiable Credentials System with Priva-
cy-Preserving Based on Blockchain. Journal
of Information Security, 13, 43-65.
https://doi.org/10.4236/jis.2022.132003

Received: January 28, 2022
Accepted: February 25, 2022
Published: February 28, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2022.132003
https://www.scirp.org/
https://doi.org/10.4236/jis.2022.132003
http://creativecommons.org/licenses/by/4.0/

Z. J. Li

DOI: 10.4236/jis.2022.132003 44 Journal of Information Security

grees, government-issued passports and so on. A verifiable credential is a tam-
per-evident credential that has authorship that can be cryptographically verified
[1]. Verifiable credential system is the core of the decentralized identity authen-
tication system. Traditional identity authentication has the problems of data
dispersion and repeated authentication. Users need to register different identity
information in different Internet authentication systems. These identity infor-
mation overlap each other. On the one hand, it causes a waste of storage re-
sources. On the other hand, it also makes users need to perform repeated regis-
tration and verification, which brings inconvenience to users. The decentralized
verifiable credential system cannot be separated from blockchain, and of block-
chain provides credential system with decentralized feature [2]. Besides, it is the
basis for user identity autonomy and a platform for managing identities, creden-
tials, and data storage. Blockchain and identity encryption on the chain can turn
centralized identity issuance and data sharing into distributed identity authenti-
cation. Users can control the identity and private key to carry out trusted identi-
ty authorization and sharing among multiple identity institutions, so as to solve
the problem of duplicate authentication and center failure. Therefore, whether
from the perspective of privacy or sharing, the research on decentralized identity
authentication is very meaningful.

Verifiable credential is an indispensable part of decentralized identity authen-
tication and autonomous identity. The verifiable credential system includes
three roles: Issuer, User, and Verifier. Figure 1 shows the structure and process
of the decentralized identity authentication system, which includes the process
of identity registration, credential issuance, and credential verification. Issuer
verifies legitimacy and personal information of user, and then signs and issues
credentials to user to provide user with a trust endorsement. When needed, the
user will present credential to the verifier, and verifier will check whether the
signature of the credential is issued by the corresponding issuer, thereby verify-
ing the validity of the credential. After obtaining the credentials, user can choose
to keep the credential locally, or put it on the blockchain for hosting. When user
needs to be verified, he can show the credentials to the verifier. And the creden-
tial contains certain attributes which prove that the user has sufficient qualifica-
tions to meet the requirements for service access. Through verifying claims in
credentials, verifier can confirm user’s identity legality.

There are, however, some limitations of verifiable credential in comparison to
established, centrally controlled authentication platforms concerning trust, pri-
vacy and usability [3]. Firstly, traditional decentralized verifiable credential sys-
tem has privacy leakage defect of excessive exposure of personal information,
that is, credential contains many information of user, while verifier may only
need to obtain some information of the user. User does not want to expose per-
sonal information to verifier excessively, which has the problem of privacy pro-
tection [4]. Secondly, traditional research does not focus on how to aggregate
different credentials into one credential, which is essential in practical applica-
tion scenarios. Thirdly, verifiers often need to verify credentials from different

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 45 Journal of Information Security

users at the same time, which poses certain challenges to the throughput and ve-
rification efficiency of the system [5].

Our scheme provides a selective disclosure [6] scheme, so user can prove
claims about their identity without revealing more information than they intend
and need for performing a specific action. For example, Jane only has to share
her age (without her gender) when she orders wine in an online store, as it is
sufficient for her to state that she is old enough to purchase wine legally. In addi-
tion, Verifier may not only require users to show one credential, but may require
different credentials issued by multiple organizations to make verifier trust the
user’s identity. For example, when we join a company, we often need to show
credentials such as graduation credential, degree credential, ID card, etc. But we
do not want to show the attribute of the household registration in the ID card to
the employer, and the employer may not require this attribute. Therefore, we not
only need to present attribute information from different credentials, but also
need to selectively present some attribute information of these credentials. That
is, from the user’s point of view, the user hopes to show some but not all person-
al information in different credentials to verifier. Our selective disclosure and
aggregation credential scheme aims to solve this problem.

In order to achieve selective disclosure, we use the method of signing claims
instead of signing the entire credential, but this will result in too many signa-
tures. Therefore, our scheme proposes an aggregate signature scheme that can
aggregate the user’s claims, thereby reducing the number of signatures and sto-
rage space stored in the blockchain. Selective disclosure is to aggregate the sig-
natures of the claims that the user chooses to expose from different credentials.
We use the BLS aggregate signature scheme [7], a short signature scheme to
achieve our goal. Traditional verifiable credential system has the problem that
credential volume is large and cannot be authenticated in batches. Also, our
scheme supports the aggregation of the credentials from different users, thereby
reducing the overall size of the credential, which is suitable for blockchain sto-
rage and batch authentication. Since the blockchain is only suitable for storing
small-capacity data, traditional verifiable credential system is not suitable for
blockchain-based decentralized identity authentication. The claims of creden-
tials are signed with BLS signature. Due to the claims of BLS signatures, different
signatures of claims can be aggregated. The verifier only needs to verify the final
aggregate credentials to verify all the credentials.

This paper proposes a selective disclosure and credentials aggregation scheme
based on BLS aggregate signature to solve the problems of privacy breach and
credentials bulky, so as to reduce the blockchain network bandwidth and storage
overhead and achieve the purpose of batch verification of credentials.

The organization of this paper is as follows: Section 2 introduces the current
work related to verifiable credential; Section 3 introduces the theoretical basis of
verifiable credential and BLS aggregate signature; Section 4 proposes a selective
disclosure and credentials aggregation scheme based on BLS aggregate signature;
Section 5 discusses the security and efficiency of the scheme; Section 6 summarizes

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 46 Journal of Information Security

Figure 1. The structure of the decentralized identity authentication system.

the work of this paper and the future research plan.

2. Related Work

Since entering the digital age, identity authentication has faced the challenges of
high-frequency requests, massive data, privacy and security, and emerging new
digital scenarios. Traditional paper credentials are facing electronic requirements,
but current electronic credentials such as bus cards, medical insurance cards,
membership Cards, etc. face the problems of data isolation, easy loss, insecurity,
and privacy leakage. The emergence of verifiable credentials makes up for these
deficiencies. The development of digital credentials depends on and serves the de-
velopment of digital identities. With the development of centralization, alliance
and self-sovereign identities of digital identities, the latest evolution direction of
digital credentials is verifiable credentials, which are implemented through en-
cryption algorithms and digital signatures. The validity and portability of physical
credentials are transferred to digital credentials, and the declared content, signa-
ture, and metadata can be digitally digitized within seconds or even milliseconds.

David Chaum first proposed to build an anonymous electronic credential sys-
tem with digital signatures, and use blind signatures to achieve payment
non-traceability, aiming to protect user privacy [8]. However, Chaum did not give
the specific implementation scheme of the system in this article, but proposed to
implement the system with RSA digital signature and a semi-trusted third party in
a later article [9].

WeIdentity [10] of WeBank implements a set of distributed multi-center
identity identification protocols that conform to the w3c did specification based
on the underlying platform of the fisco-bcos blockchain, enabling the real iden-
tity of entities to realize the identity identification on the chain at the same time.
Give the entities the ability to directly control its own identity. WeIdentity is a
complete set of decentralized identity authentication system, but WeIdentity
puts most of the business logic on the centralized server to complete, the block-
chain only stores data as a distributed database, and there is a problem of limited
degree of decentralization.

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 47 Journal of Information Security

David Bauer proposed to use the Merkle tree method to implement Verifiable
Credentials to minimize information leakage [111]. While this post doesn’t
mention DIDs, the approach to implementing verifiable credentials using Mer-
kle trees is instructive. This credential does not contain the user’s name and oth-
er data that directly reveal the user’s identity. The private part of the credential
contains the user’s private key and a Merkle tree whose leaves are all “mi-
cro-claims” of the user’s identity. Users can “show” credentials issued by differ-
ent institutions according to the requirements of the verifier, and the structure
used to save these credentials is the Merkle tree. Using the verifiable credentials
implemented by Merkle, the author implements a prototype system. The results
show that 200 authentications per second can be achieved using this system,
which is relatively fast.

W3C further standardized the standard of verifiable credentials [1] and for-
mulated a unified specification of verifiable credentials in JSON format. This
specification provides a standard specification for web transport credentials that
is cryptographically secure, privacy-preserving, and machine-verifiable. The de-
sign scheme of this article refers to the credential specification of w3c, which is
feasible. This specification defines that the credential should contain: the identity
information of the credential subject, the information of the issuing authority,
the credential type, the attributes of the credential subject, the credential export
evidence, the credential expiration time, etc.

Nan Guo et al. proposed an anonymous credential based on BLS signature,
which can aggregate different credentials into one credential [12]. The aggregate
signature of credential is shorter and the verification speed is faster, suitable for
small devices. The anonymous verification speed credential in the article has
constant complexity about the exponent and the number of pairs, and is more
efficient. However, this article just uses BLS aggregate signature to aggregate
multiple credentials into one credential, and does not implement selective dis-
closure to achieve the purpose of privacy protection. Our scheme uses BLS ag-
gregated signatures to implement attribute aggregation and credential aggrega-
tion after selective disclosure, which can achieve fine-grained verification and
privacy protection.

3. Preliminaries
3.1. Decentralized Identifiers and Verifiable Credentials

A Decentralized Identifier (DID) [13] provides a verifiable and decentralized
means for interacting with a DID Subject controlling the DID. A DID can be re-
solved to a DID Document, which can contain cryptographic material, verifica-
tion methods, and service endpoints. An example DID is “did:did-name:
WRfxPg8dantKVubE3HX8pw”, where “did” tells us that it is a DID, “did-name”
is the DID Method Name for Sovrin DIDs, and “WRfXPg8dantKVubE3HX8pw”
identifies the DID subject.

The International Electrotechnical Commission defines “identity” as “a set of

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 48 Journal of Information Security

attributes associated with an entity”. A digital identity is usually represented by
an identity identifier and an attribute claim associated with it. A distributed dig-
ital identity includes two parts: a distributed digital identity identifier and a dig-
ital identity credential.

“Claims” refers to attribute information associated with an identity, a term
that originated in claims-based digital identity, a way of asserting a digital iden-
tity independently of any particular system that needs to rely on it. Declaration
information usually includes: such as name, email address, age, occupation, etc.
Claims can be issued by an identity owner (such as an individual or organiza-
tion) themselves or by other claims issuers, and are called verifiable claims when
they are checked out by the issuer. The user submits the claim to the relevant
application, the application checks it, and the application service provider can
trust the verifiable claim signed by it just like the issuer. Credentials are a collec-
tion of multiple claims.

Verifiable credential provides a specification to describe certain properties of
an entity to achieve evidence-based trust. DID holders can prove to other enti-
ties that certain attributes of themselves are credible through verifiable claims.
At the same time, combined with cryptographic technologies such as digital sig-
natures and zero-knowledge proofs, the statement can be made more secure and
credible, and user privacy can be further protected from being violated.

Issuer is an institution that owns user data and can issue verifiable credentials
based on user data, such as governments, banks, schools, and so on. The holder
is user, which can apply for a verifiable credential from the issuer, and then hold
and keep the credential, such as in a wallet, and show the credential to the ve-
rifier if necessary. Verifier receives the credentials presented by the user, and can
provide corresponding services to the user according to the credentials. In addi-
tion, an identifier registry (Verifiable Data Registry) is also required. The iden-
tifier registry is a database that maintains DIDs, such as a blockchain or distri-
buted ledger, which can be understood as the example field in the aforemen-
tioned DID. The Verifiable Data Registry is needed because the validator needs
to validate the credentials, as well as the user.

Figure 2 shows the relationship between credential and proof. As shown in
the figure, a credential consists of fields like claims, type, issuanceDate and the
signature value of proof is obtained by signing all these fields of credential in
traditional scheme. In addition, proof also includes some information describing
the signature, such as signature algorithm, signature date, nonce and so on. The
cryptographic mechanism used to prove that the information in a verifiable cre-
dential or verifiable presentation was not tampered with is called a proof. In
general, when verifying proofs, implementations are expected to ensure the
proof is available in the form of a known proof suite.

3.2. BLS Aggregate Signature

The BLS aggregate signature is based on the computational CDH problem and

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 49 Journal of Information Security

bilinear mapping. Before introducing the BLS signature, the co-GDH scheme is
introduced first. Single signature in the aggregate signature is created and veri-
fied as signatures in their co-GDH scheme and the aggregate verification uses a
bilinear map on 1G and 2G . A flow chart of aggregate signature is shown in
Figure 3.

1) GDH Groups and Bilinear Mapping
Computational co-Diffie-Hellman (co-CDH): Given 1 1 1, ag g G∈ and

2h G∈ , compute 2
ah G∈ .

Figure 2. Credential and proof [1].

Figure 3. The process of aggregate signature.

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 50 Journal of Information Security

Decision co-Diffie-Hellman (co-DDH): Given 1 1 1, ag g G∈ and 2, bh h G∈ ,
if a b= , ()1 1, , ,a bg g h h is a co-Diffie-Hellman tuple.

Gap co-Diffie-Hellman (co-GDH) Group Pair: Groups 1 2,G G are co-GDH
groups if they are decision groups for co-Diffie-Hellman and no algorithem
breaks Computational co-Diffie-Hellman on them.

Let 1 2,G G be two groups as above, with an additional group TG such that

1 2 TG G G= = . A bilinear map is a map e: 1 2 TG G G× → with the following
properties:

a) Bilinear: for all 1 2,u G v G∈ ∈ and ,a b∈ , () (), , aba be u u e u v= .
b) Non-degenerate: ()1 2, 1e g g ≠
These properties imply two more: for any 1u G∈ , 1 2 2,v v G∈ ,
() () ()1 2 1 2, , ,e u v v e u v e u v= ⋅ ; for any 1,u v G∈ , ()() ()(), ,e u v e v uψ ψ= .
Based on the above definitions, the bilinear group pair is defined as follows:
a) 1 2,G G are bilinear groups if the group action on either can be computed

in one time unit, the map ψ from 1G to 2G can be computed one time unit,
a bilinear map 1 2: Te G G G× → exists, and e is computable in one time unit.

b) 1 2,G G are (),t ε -bilinear groups for co-CDH if they are bilinear groups
and no algorithm (),t ε -breaks computational co-CDH on them.

2) The co-GDH Signature Scheme
The signature scheme works on any co-GDH group pair 1 2,G G . It signs an arbi-

trary message { }*0,1M ∈ by using a full-domain hash function { }*
1: 0,1h G→ ,

viewed as a random oracle; and comprises the following algorithms:
Key Generation: Pick random R px∈ , and compute 11xv g G= ∈ . The

public key is 1v G∈ . The secret key is px∈ .
Signing: Given a secret key x and a message { }*0,1M ∈ , compute

()h h M= where 2h G∈ , and xhσ = . The signature is 2Gσ ∈ .
Verification: Given a public key v, a message { }*0,1M ∈ , and a signature

σ , compute ()h h M= and verify that ()1, , ,g v h σ is a valid co-Diffie-Hellman
tuple. If so, output valid; if not, output invalid.

4. Scheme Design

Verifiable credential scheme is based on digital signatures. Since digital signa-
tures have the function of guaranteeing the integrity and non-repudiation of a
certain message. For trust endorsement, the verification agency verifies the digi-
tally signed credential with the secret key of the issuer. Since a credential con-
tains multiple claims, the traditional credential is to hash all the claims and
splicing them together, and then put them into the claim filed of credential’s
json format. Then compute the hash of the credential as specified in the creden-
tial schema and use issuer’s secret key to sign the hash of the credential as sig-
nature.

In order to realize the selective disclosure of the claims of the credential, this
scheme changes the traditional scheme from signing the credential to signing the
hash of the splice of claim and DID. But this will cause the problem of excessive

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 51 Journal of Information Security

signature volume, so we adopts BLS aggregate signature to aggregate claims’
signatures, so as to reduce the size of signatures.

In this section, the proposed BLS-based verifiable credentials scheme will be
described in detail. To give a better understanding, the main notations will be
listed in Table 1.

4.1. Scheme Overview

As shown in Figure 4, our scheme consists of the following steps. The holder
applies for credentials from the issuer and the issuer signs the existing claims of
the holder with its own private key, and then issues credentials to the user. After
the user receives the credential, he stores the credential on the blockchain or
stores it himself. When holder needs to apply for relevant services or verifica-
tion, verifier will ask holder to present relevant credentials. Holder takes out one
or more previously stored credentials, generates a presentation through selective
disclosure and claims signature aggregation, and sends the presentation to ve-
rifier. The system will aggregate multiple presentations from different users into
one presentation. Verifier finally only needs to verify the aggregate presentations
with the public keys of different issuers.

4.2. Specific Application Scenarios

As shown in Figure 5, the following is a specific application scenario of verifia-
ble aggregate credentials. Suppose an employer needs to collect resume creden-
tials of different employees. The resume credentials must include the job appli-
cant’s school, college, major, and the position or other information, which is

Table 1. Notations.

Notation Definition

iv The public key of issuer i

ix The secret key of issuer i

iDID The decentralized identifier user i

iClaim The Claim of user i

iPresentation The Presentation of user i

iCredential The Credential of user i

iProof The Proof of user i

ijCredential
 The j-th Credential of user i

ijv

The public key to verify claims in ijCredential

ijx

The secret key to sign claims ijCredential

ijkClaim
 The k-th Claim of the j-th Credential of user i

ijkσ
 The signature of k-th Claim of the j-th Credential of user i

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 52 Journal of Information Security

Figure 4. Process of Issue and verify the credentials.

called claims. Employees need to obtain academic credentials from schools, work
proof credentials from the previous company, and ID credentials from govern-
ment departments. But there are many claims in the credentials issued by these
agencies that the employers do not need, and the employees do not want to show
all the claims to the recruiter. Our scheme allows employers to choose a part of
claims of multiple credentials and aggregate their signatures into one credential,
which is called presentation. Therefore, employees can use our system to aggregate
the academic credentials, ID credentials, and work proof credentials into resume
credentials, so as to achieve the purpose of multiple credential aggregation and se-
lective disclosure. In addition to aggregating multiple credentials of an employer
into a presentation, our solution also supports aggregating the presentations of
multiple employees into a single presentation. After an employer receives presen-
tations from multiple employees, he can aggregate them into a single presentation
in the verifiable credential system. In our example, the employer (verifier) only
needs to verify the aggregate presentation to verify the resume credentials from

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 53 Journal of Information Security

Figure 5. Overall architecture.

multiple employees, so as to achieve the purpose of batch verification of creden-
tials.

4.3. Selective Disclosure and Credentials Aggregation

The issued credential is stored on the blockchain. When the user needs to show
it, he selects some claims of the required credential, and then puts claims of the
credential into the presentation after the aggregate signature, and then only
needs to selectively disclose to the verifier. When presenting a credential to a ve-
rifier, we often do not need to present all the claims in the credential. For exam-
ple, a bartender may only require the holder to provide claims that meet the age
requirement of less than 18 years, and not other claims. The user can select the
claims that need to be presented from the obtained credentials, and aggregate
these claims into a signature, which becomes a presentation. The presentation
contains only one signature, which is the signature that the verifier needs to ve-
rify. By verifying the aggregate signature, all the signatures of claims can be veri-
fied. As shown in Figure 6, the user uses the “school” and “institute” claims of
credential A, and the “occupation” claim of credential B respectively. These in-
formation are spliced with the user’s DID, hashed, and then generated by BLS
signature, namely SigSk [Hash(Claim||DID)]. The reason why the DID is added
after the claim is that if the DID is not added, the attacker can steal the claim
signature of the victim’s credential, so as to put the signature of the claim in his
own credential, and state that the claim is owned by him. Therefore, DID is used

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 54 Journal of Information Security

Figure 6. Selective disclosure.

to bind with user claim to prove that the user has a certain claim.

A credential consists of a hash value, a public key list, etc., which are spliced
with multiple claims. The information of the credential must include the holder
did, proof information (attribute signature information), issue date, issuer in-
formation, credential type, etc.

First, issuer will issue a credential for the user, which contains the signature
(stored in the proof field), the DID of credential, creation date of credential, sig-
nature algorithm and other information, in which the information of the cre-
dential is all stored in json format. During the presentation stage, the user ag-
gregates the claims in the signatures which include signatures issued by multiple
issuers. The BLS aggregate signature is used for the aggregation here. BLS ag-
gregate signature can not only aggregate the signature information of the claims
in different credentials into a new credential, which is called presentation, as
shown in Figure 7. When verifying, the verifier only needs to verify the aggre-
gate signature in the presentation. BLS aggregate signatures can not only aggre-
gate signatures of different claims in different credentials of the same user, but
also aggregate signatures in presentations from different users. Verifier only
needs to verify the aggregate signature to verify the presentation of multiple us-
ers. It is not necessary to sign all the messages of the credential (such as issuer’s
DID, credential type, etc.), signing claims is enough to verify.

4.4. Presentations Aggregation

In addition, our system supports aggregation of presentations (aggregate credential)

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 55 Journal of Information Security

from different users. As shown in Figure 8, if a verifier needs to verify presenta-
tions presented by multiple users, he does not need to verify all the resentations
of each user one by one. Our solution also implements the aggregation of the
presentations of different users. The user displays his presentations, and the sys-
tem will automatically aggregate these presentations to one presentation, which
will be verified by the verifier at last. That is, take out signature of the proof field
in each user’s presentations, aggregate these signatures into one signature, and
put them into the proof field of a new presentation. Verifier only needs to verify
the signature in this new presentation.

4.5. BLS Aggregate Signature for Credential

Both of the above two aggregation methods require the use of aggregated signatures.
For the aggregate signature algorithm, we choose the BLS aggregate signature,

Figure 7. How credential become presentation.

Figure 8. Presentations aggregation.

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 56 Journal of Information Security

which can aggregate multiple signatures into one signature, reduce the size of
the signature, and facilitate verification operations.

(1) The BLS signature algorithm is used to sign the Hash value of the creden-
tial claim plus the DID. The signing process is divided into the following steps:

System initialization: Choose multiplicative cyclic groups 1 2, , TG G G with a
prime p generated by 1 2, , Tg g g respectively. Define a bilinear map

1 2: Te G G G× → , and hash functions { }*
1: 0,1H G→ .

Issuer Setup: For each claim managed by the iIssuer , choose a random
number i px ∈ as the secret key of iIssuer . The public parameter is set as
()1 2 1, , , , , ,TG G G e p g v , the secret key ix is stored by iIssuer .

Sign Claims: This is an important step in issuing credentials to users. As-
suming that the private key of the issuer is x, the issuer needs to declare Claim
for a user’s claim during the process of issuing the credential, the user’s decen-
tralized identifier is DID. Compute ()||h H Claim DID= , 2h G∈ , the signature
is xhσ = , 2Gσ ∈ , the signature σ is stored in the proof field of credential.

Aggregate Cliams’s signatures into Presentation: The most general assump-
tion is made here, and other situations are similar to this assumption. Suppose

iUser has credentials issued by different issuers jIssuer (whose secret key is

ijx), marked as ijCredential , the k-th claim contained in ijCredential is marked
as ijkClaim . The decentralized identifier of iUser is iDID . Therefore, sign the
claim ijkClaim in the ijCredential (issued by jIssuer) of iUser (with the de-
centralized identifier iDID), compute ()||ijk ijk ih H Claim DID= , 2ijkh G∈ , the
signature is ijx

ijk ijkhσ = , 2ijk Gσ ∈ , the signature ijkσ is stored in the proof field
of iUser ’s credential ijCredential . Suppose iUser selects claims ijkClaim in

ijCredential and wants to disclose the selected claims to Verifier, we need to ag-
gregate the claims’ signatures ijkσ of iUser from different Issuer jIssuer . The
aggregate signature is i ijkj kσ σ=∏ ∏ , aggregate signature iσ is stored in the
proof field of iPresentation , and then we store iPresentation into Blockchain.

Aggregate presentations from different user: After the previous step, the sig-
natures of claims from different credentials of a user have been aggregated in one
Presentation. In this step, we want to aggregate the signatures from presentations of
different users, that is, to aggregate the claim aggregation signatures from different
users placed in the proof field of the presentation. Aggregate the signatures of
presentations, i ijki i j kσ σ σ= =∏ ∏ ∏ ∏ , marked proof σ= and put proof
into the aggregate presentation, which is later stored in blockchain.

Verify: Given the final aggregate signature 2Gσ ∈ , the public key of the is-
suer 1ijv G∈ , the hash value h of the set of claims ijkClaim that need to be veri-
fied. To verify the aggregate signatrue σ , compute ()||ijk ijk ih H Claim DID= , if
Equation (1) is true, then the signature σ is accepted and credentials are cor-
rectly verified.

() ()1, ,ij ijk
i j k

e g e v hσ =∏∏∏ (1)

The calculation process of aggregate verification is as follows:

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 57 Journal of Information Security

For different issuers’ secret key ijx and public key 1
ijx

ijv g= , signature

()|| ijij xx
ijk ijk ijk ih H Claim DIDσ = = , aggregate signature

ijx
i ijk ijki i j k i j k hσ σ σ= = =∏ ∏ ∏ ∏ ∏ ∏ ∏ . Using the properties of the bili-

near map, the verification equation is shown in formula (2).

() ()

() ()

1 1 1

1

, , ,

, ,

ijij

ij

xx
ijk ijk

i j k i j k

x
ijk ij ijk

i j k i j k

e g e g h e g h

e g h e v h

σ

= =

= =

∏∏∏ ∏∏∏

∏∏∏ ∏∏∏
 (2)

5. Security Analysis

In this section, we will analyze the security related to our scheme, which focuses
on aggregate signature forgery attack and identity theft attack.

5.1. Aggregate Signature Forgery Attack

In order to analyze and define security, we generally believe that the security of
the aggregate signature scheme is equivalent to the fact that in a certain game
range, there is no adversary who can forge aggregate signatures, that is, there is
no adversary trying to forge on the message of his choice. This security problem
is defined as the chosen-key security model of aggregate signatures, in which,
given a single public key of Adversary , the goal of Adversary is to forge
an aggregate signature. Adversary A also gives access to the challenge keys of
other signing oracles. Adversary ’s advantage, AdvAggSig , is defined as his
probability of winning the following challenge [13].

Setup: The Adversary is provided with a public key PK which is gen-
erated at random.

Queries: Proceeding adaptively, Adversary requests signatures with
PK on messages of his choice.

Response: Finally, outputs 1k − additional public keys 2 , , kPK PK� .
Here k is at most N, a game parameter. These keys, along with the initial key
PK , will be included in ’s forged aggregate. also outputs messages

1, , kM M� ; and, finally, an aggregate signature σ by the k users, each on his
coressponding message.

The forger wins if the aggregate signature σ is a valid aggregate on messages

1, , kM M� under keys 2, , , kPK PK PK� , and σ is nontrivial, i.e., did
not request a signature on 1M under PK . The probability is over the coin
tosses of the key-generation algorithm and of .

The adversary ’s ability in the chosen-key model to generate keys suggests
the following attack, previously considered in the context of multi-signatures
[14] [15]. In the context of aggregate signature, we can defend against the attack
above by simply requiring that an aggregate signature is valid only if it is an ag-
gregation of signatures on distinct messages. The signature of our scheme will

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 58 Journal of Information Security

add the users’ DID after the claims. Because the user’s DID is unique, the con-
tent of the signature is also distinct. Therefore, our scheme is to chosen-key se-
curity.

5.2. Identity Theft Attack

Suppose that there is a phishing attack verifier, after obtaining the signature of a
certain attribute of the user, it is used for verification to the real verifier, thereby
stealing a user’s verifiable credential [16]. Assuming that the attribute is Claim
and the user’s identity identifier is DID, the claim and identity identifier are
signed, that is, ()1 ||h H Claim DID= , 1

xhσ = . The signature obtained by the
verifier of the phishing attack is either a single signature, that is, a σ , or an ag-
gregate signature. If it is an aggregate signature, the phishing attacker can only
perform verification, and cannot obtain the specific value of different individual
signatures. If it is a single signature, then according to the CDH difficulty prob-
lem, the phishing attacker cannot obtain the private key according to the public
key of the Issuer, and the only information the phishing attacker can obtain is
the public key of the Claim, DID, and Issuer. The previous step proved that the
attacker cannot get the specific value through these forged signatures. Then a
phishing attacker can only steal the credential, and says that the credential is
owned by him. Then, when signing the claim, our scheme splices the claim and
the DID and then signs it. During the verification process, the user’s DID is
spliced behind the claim. Suppose a claim is owned by the user whose DID is
DID , and the phishing attacker whose DID is DID obtains the claim signa-
ture through some means, and then uses it to show the claim signature to a ve-
rifier, claiming that he owns the attribute Claim, and verifying When verifying
the signature of this attribute, the attacker will splice the attribute Claim with the
identity identifier DID of the phishing attacker, and then hash and sign, that
is, ()||h Claim DID= , 2

xhσ = , According to our verification algorithm, it
cannot be verified. Therefore, our scheme is safe against credential stealing at-
tacks.

6. Implementation and Evaluation

We have a proof-of-concept implementation of the System, and we have identi-
fied essential libraries for realizing the VC-based PKI. Our system mainly in-
cludes two modules: DID system and Credential system. Figure 9 shows the
structure and credentials process of our system. For implementing the decentra-
lized verifiable credentials system, we must first implement a DID system. DID
system is a new type of identity system that enables verifiable, decentralized dig-
ital identity. Our system is implemented based on smart contract of Ethereum
[17]. The technologies and components involved in writing our smart contract on
Ethereum include: 1) Solidity, Ethereum’s Turing complete programming lan-
guage, used to write smart contracts [18]; 2) Ethereum Virtual Machine (EVM),
that is, the environment for smart contract operation; 3) Web3 Java SDK [19],

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 59 Journal of Information Security

Figure 9. Implementation architecture.

Java API to interact with Ethereum blockchain nodes.

We use solidity to write smart contract, our smart contract are mainly used to
store DID data and credentials. We use Java as our backend development lan-
guage. There are two smart contracts in our system implementation: DID con-
tract and Verifiable Credentials contract. DID contract is used to manage DID,
includes reading, resolving, validating and updating DID. Credential-related op-
erations are credential creation, credential signing, aggregate signing (credentials
aggregation and presentations aggregation), credential verification, and aggre-
gate verification.

For implementing the BLS Aggregrated Signature, we use JPBC [20] library of
Java. JPBC is the Java Pairing-Based Cryptography Library that provides a part
of the Pairing-Based Cryptography Library, library developed by Ben Lynn, to
perform the mathematical operations underlying pairing-based cryptosystems

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 60 Journal of Information Security

directly in Java. It is a Wrapper that enables the delegation of the pairing com-
putation to the PBC library to gain in performance. We implement the process
of BLS signature: initialization, signature, aggregate signature, verification, ag-
gregate verification.

6.1. Experimental Analysis

In this section, we used computational cost as a metric to analyze the perfor-
mance of our scheme. We have implemented BLS Signature into an open-source
library JPBC. We used the JPBC library Ver. 2.0.0 as an implementation of
cryptographic operations. JPBC provides several implementations of elliptic
curves, we use the elliptic curve of AType , AType parings are constructed on
the curve 2 3y x x= + over the Field q for prime q. Both 1G and 2G are
the group of points ()qE , so this paring is symmetric. The experimental test
runs in the Windows 10 environment, and the specific configuration is Intel(R)
Core(TM) i5-6200U CPU @ 2.30 GHz 2.40 GHz, 8 GB memory.

6.1.1. Efficiency
In order to verify the practical value of our scheme, the experiment mainly tests
the performance of BLS aggregate signatures and the performance of ECDSA
[21].

ECDSA elliptic curve digital signature algorithm is currently the most main-
stream digital signature algorithm, the combination of ECC and DSA, the entire
signature process is similar to DSA, the difference is that the algorithm adopted
in the signature is ECC (Elliptic Curves Cryptography), and the final signed val-
ue is also divided into r, s. ECDSA digital signature algorithm is used in WeI-
dentity, a well-known decentralized identity authentication project developed by
WeBank.

We compare the BLS aggregate signature algorithm and the ECDSA signature
from the aspects of signing efficiency, verification efficiency. In our experiments,
The BLS aggregation signature algorithm and ECDSA signature algorithm are
both implemented in Java.

We compare the signing speed and verification speed of ECDSA signature and
BLS aggregate signature when the number of signatures is 500, 1000, 1500, 2000,
and 2500. In addition, we compared the verification speed of the two under the
same and different key pairs.

Figure 10 shows the signature speed comparison between BLS aggregate sig-
nature and ECDSA signature. The ordinate indicates the number of signatures,
and the abscissa represents the signature speed (ms). It can be seen intuitively
that in terms of signing speed, the BLS aggregate signature speed (with the addi-
tion of aggregation time, but it can be ignored) is slower than ECDSA’s signature
speed. The signing time of BLS aggregate signature increases linearly, which has
a lot to do with the exponentiation operation required in the signature process of
BLS aggregate signature.

Figure 11 is the comparison of the verification speed of BLS aggregate signature

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 61 Journal of Information Security

Figure 10. Comparison of signing speed between ECDSA and BLS.

Figure 11. Comparison of verification (different signers) speed between ECDSA and BLS.

and ECDSA under different key pairs. The verification time of BLS aggregate
signature is also greater than that of ECDSA. This is because the BLS aggregate
signature needs to use a very time-consuming pairing when verifying. The more
signatures to be aggregated, the more pairing operations need to be used, but the
BLS aggregation signature is still acceptable in terms of verification speed. It
takes about 7000 milliseconds to verify the signatures of 1000 signature aggrega-
tions, equivalent to only 7 ms verification time for a signature, which is accepta-
ble in performance.

Figure 11 is the comparison of the verification speed of BLS aggregate signa-
ture and ECDSA under same key pairs. In the case of signing and verifying dif-
ferent messages with the same key pair, the verification speed of BLS aggregate
signature is much faster than that of ECDSA signature. This is because different
messages are signed with the same private key. When verifying, only one public
key is needed, let σ be an aggregate of the n signature 1, , nσ σ� . The time to
verify the aggregate signature σ is linear in n. In the special case when all n
signatures are issued by the same public key v, aggregate verification is faster.

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 62 Journal of Information Security

Figure 12. Comparison of verification (same signer) speed between ECDSA and BLS.

One need only verify that () ()()2 , ,iie g e h M vσ = ∏ , where 1, , nM M� are
the signed message. From this, it can be seen that using a public key to verify
multiple signatures only requires two pairing operations. In fact, the verification
speed of BLS depends on the number of key pairs used for different signatures
when aggregating signatures. It is assumed that n signatures are aggregated into
one signature, but these n signatures are generated by ()k k n≤ private keys.
Then the verification speed is only related to k, the more pairing operation is
needed, then the speed of verification is slower.

Therefore, in our solution, the BLS aggregation signature is more efficient in
verifying the aggregation of credentials issued by the same issuer, and we gener-
ally do not pay too much attention to the efficiency of the signing, because it has
little impact on actual projects. As shown, although slower than ECDSA, the
performance of BLS signature in our scheme is still acceptable for practical use.

6.1.2. Storage Cost and Bandwidth Overhead
The verification speed of BLS aggregate signature is only one aspect, and BLS
also has a full advantage in reducing the size of the signature and the public key.
BLS aggregate signature can not only aggregate signatures and reduce the size of
signatures, but also aggregate keys, so in the implementation, it can also reduce
the size of the public key that needs to be stored. In our experiment, the single
signature size of BLS aggregate signature is 128 bytes, and the key size is also 128
bytes. BLS can aggregate different signatures into one signature, and can aggre-
gate different keys into one key, which is also 128 bytes. In our experiment, the
signature size of ECDSA is 72 bytes and the key length is 72 bytes, which cannot
be aggregated. Therefore, in the processing of batch signatures, the storage re-
quired by ECDSA will increase with the increase of the number of signatures,
while BLS aggregate signatures do not have this concern. As a result, BLS aggre-
gate signature is especially suitable for storage of blockchains, which can greatly
reduce the storage overhead and bandwidth consumption of blockchain.

In conclusion, the ECDSA signature algorithm is good enough for its job. But

https://doi.org/10.4236/jis.2022.132003

Z. J. Li

DOI: 10.4236/jis.2022.132003 63 Journal of Information Security

ECDSA cannot provide signature aggregation or key aggregation, so it can only
verify signatures one by one. When verifying multi-signature transactions, this is
too cumbersome. We need to verify all signatures and their corresponding pub-
lic keys one by one, which consumes a lot of block space and transaction fees.
The BLS signature algorithm can solve the above problems. It can aggregate all
the signatures into one, easily implement multiple signatures verification, and
avoid redundant communication between signers. In addition to that, BLS sig-
natures are shorter in length (signatures are one point on an elliptic curve in-
stead of two) in practice.

7. Conclusion

In this paper, we proposed a secure BLS-based verifiable credentials aggregation
scheme, which is used for selective disclosure and privacy preservation on de-
centralized identity verification system. In our scheme, users can choose part of
claims from different credentials to disclose as they want, such that verifiers
cannot obtain user information excessively. BLS aggregate signature provides
aggregation for signatures of claims, which reduces storage cost and network
loan overhead in blockchain. In addition, our aggregation verification scheme is
also used to aggregate the credentials of different users, which can effectively
reduce the size of the credential signature further, and facilitate the verifier to
perform batch verification operations on the credentials of multiple users. Next,
we analyzed the performance of the proposed protocol to show the satisfying
features in both security and efficiency. In addition, experiments show that the
smaller the number of signers, the faster the verification speed. In future work,
we will focus on reducing the verification speed of aggregate signatures in the
case of multiple signers. Meanwhile, we will introduce zero-knowledge range
proofs to strengthen privacy preservation further on the basis of selective dis-
closure.

Acknowledgements

This work was in part supported by National Natural Science Foundation of
China (Grant No. 61932011), Guangdong Basic and Applied Basic Research
Foundation (Grant No. 2019B1515120010), Guangdong KeyR&D Plan2020 (No.
2020B0101090002), National KeyR&D Plan2020 (No. 2020YFB1005600).

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References
[1] W3C-VC (2021) Verifiable Credentials Data Model 1.0. Technical Report.

https://www.w3.org/TR/vc-data-model

[2] Takemiya, M. and Vanieiev, B. (2018) Sora Identity: Secure, Digital Identity on the
Blockchain. 2018 IEEE 42nd Annual Computer Software and Applications Confe-
rence, Volume 2, 582-587. https://doi.org/10.1109/COMPSAC.2018.10299

https://doi.org/10.4236/jis.2022.132003
https://www.w3.org/TR/vc-data-model
https://doi.org/10.1109/COMPSAC.2018.10299

Z. J. Li

DOI: 10.4236/jis.2022.132003 64 Journal of Information Security

[3] Brunner, C., Gallersdörfer, U., Knirsch, F., Engel, D. and Matthes, F. (2020) DID
and VC: Untangling Decentralized Identifiers and Verifiable Credentials for the
Web of Trust. 2020 the 3rd International Conference on Blockchain Technology
and Applications, Xi’an, 14-16 December 2020, 61-66.
https://doi.org/10.1145/3446983.3446992

[4] García-Rodríguez, J., Moreno, R.T., Bernabé, J.B. and Skarmeta, A. (2021) Towards
a Standardized Model for Privacy-Preserving Verifiable Credentials. The 16th In-
ternational Conference on Availability, Reliability and Security, Vienna, 17-20 Au-
gust 2021, 1-6. https://doi.org/10.1145/3465481.3469204

[5] Chen, Y.-C., Tso, R., Mambo, M., Huang, K. and Horng, G. (2015) Certificateless
Aggregate Signature with Efficient Verification. Security and Communication Net-
works, 8, 2232-2243. https://doi.org/10.1002/sec.1166

[6] Lux, Z.A., Thatmann, D., Zickau, S. and Beierle, F. (2020) Distributed Ledger-Based
Authentication with Decentralized Identifiers and Verifiable Credentials. 2020 2nd
Conference on Blockchain Research & Applications for Innovative Networks and
Services (BRAINS), Paris, 28-30 September 2020, 71-78.
https://doi.org/10.1109/BRAINS49436.2020.9223292

[7] Boneh, D., Gentry, C., Lynn, B. and Shacham, H. (2003) Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. In: International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, Berlin, 416-432.
https://doi.org/10.1007/3-540-39200-9_26

[8] David, C. (1985) Security without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM, 28, 1030-1044.
https://doi.org/10.1145/4372.4373

[9] Chaum, D. and Evertse, J.-H. (1987) A Secure and Privacy-Protecting Protocol for
Transmitting Personal Information between Organizations. In: Conference on the
Theory and Application of Cryptographic Techniques, Springer, Berlin, 118-167.
https://doi.org/10.1007/3-540-47721-7_10

[10] WeBank (2021) Weidentity.
https://weidentity.readthedocs.io/zh_CN/latest/docs/one-stop-experience.html

[11] Bauer, D., Blough, D.M. and Cash, D. (2008) Minimal Information Disclosure with
Efficiently Verifiable Credentials. Proceedings of the 4th ACM Workshop on Digital
Identity Management, New York, October 2008, 15-24.
https://doi.org/10.1145/1456424.1456428

[12] Guo, N., Cheng, J.J., Zhang, B. and Yi, K.B. (2013) Aggregate Signature-Based Effi-
cient Attributes Proof with Pairing-Based Anonymous Credential. IEEE 16th Inter-
national Conference on Network-Based Information Systems, Gwangju, 4-6 Sep-
tember 2013, 276-281. https://doi.org/10.1109/NBiS.2013.42

[13] W3C-DID (2021) Decentralized Identifiers (dids) v1.0. Technical Report.
https://weidentity.readthedocs.io/zh_CN/latest/docs/one-stop-experience.html

[14] Boldyreva, A. (2003) Threshold Signatures, Multisignatures and Blind Signatures
Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: International
Workshop on Public Key Cryptography, Springer, Berlin, 31-46.
https://doi.org/10.1007/3-540-36288-6_3

[15] Micali, S., Ohta, K. and Reyzin, L. (2001) Accountable-Subgroup Multisignatures.
Proceedings of the 8th ACM Conference on Computer and Communications Secu-
rity, Philadelphia, 5-8 November 2001, 245-254.
https://doi.org/10.1145/501983.502017

[16] He, B.-Z., Chen, C.-M., Su, Y.-P. and Sun, H.-M. (2014) A Defence Scheme against

https://doi.org/10.4236/jis.2022.132003
https://doi.org/10.1145/3446983.3446992
https://doi.org/10.1145/3465481.3469204
https://doi.org/10.1002/sec.1166
https://doi.org/10.1109/BRAINS49436.2020.9223292
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/3-540-47721-7_10
https://weidentity.readthedocs.io/zh_CN/latest/docs/one-stop-experience.html
https://doi.org/10.1145/1456424.1456428
https://doi.org/10.1109/NBiS.2013.42
https://weidentity.readthedocs.io/zh_CN/latest/docs/one-stop-experience.html
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1145/501983.502017

Z. J. Li

DOI: 10.4236/jis.2022.132003 65 Journal of Information Security

Identity Theft Attack Based on Multiple Social Networks. Expert Systems with Ap-
plications, 41, 2345-2352. https://doi.org/10.1016/j.eswa.2013.09.032

[17] Wood, G. (2014) Ethereum: A Secure Decentralised Generalised Transaction Ledg-
er. Ethereum Project Yellow Paper 151, 1-32.

[18] Buterin, V., et al. (2014) A Next-Generation Smart Contract and Decentralized Ap-
plication Platform. White Paper, 3(37).

[19] Web3 (2021) Web3/web3j-docs. http://docs.web3j.io/4.8.7

[20] Gas Lab (2021) Java Pairing-Based Cryptography Library.
http://gas.dia.unisa.it/projects/jpbc

[21] Johnson, D., Menezes, A. and Vanstone, S. (2001) The Elliptic Curve Digital Signa-
ture Algorithm (ECDSA). International Journal of Information Security, 1, 36-63.
https://doi.org/10.1007/s102070100002

https://doi.org/10.4236/jis.2022.132003
https://doi.org/10.1016/j.eswa.2013.09.032
http://docs.web3j.io/4.8.7
http://gas.dia.unisa.it/projects/jpbc
https://doi.org/10.1007/s102070100002

	A Verifiable Credentials System with Privacy-Preserving Based on Blockchain
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Preliminaries
	3.1. Decentralized Identifiers and Verifiable Credentials
	3.2. BLS Aggregate Signature

	4. Scheme Design
	4.1. Scheme Overview
	4.2. Specific Application Scenarios
	4.3. Selective Disclosure and Credentials Aggregation
	4.4. Presentations Aggregation
	4.5. BLS Aggregate Signature for Credential

	5. Security Analysis
	5.1. Aggregate Signature Forgery Attack
	5.2. Identity Theft Attack

	6. Implementation and Evaluation
	6.1. Experimental Analysis
	6.1.1. Efficiency
	6.1.2. Storage Cost and Bandwidth Overhead

	7. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

