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Abstract 
Asset pricing models are almost always tested using stock returns over multi-
ple time periods, and the returns of portfolios over the investment horizon 
determined using the arithmetic average of these portfolio returns. The 
arithmetic average returns of portfolios selected using the model’s parameters 
are calculated and compared. However, investors’ returns are derived from 
changes in the value of their portfolios. This paper shows how the use of 
arithmetic returns creates large biases in the magnitude and statistical sig-
nificance of asset pricing models’ outcomes. It argues only evaluations using 
the values of portfolios produce reliable results. The identified bias is created 
because a positive return and its equal but negative return, represent different 
sized price movements, and this becomes obscured when returns are analysed 
and averaged over multiple periods. Most existing pricing models are poten-
tially invalid because of the biases generated by the methodology used in their 
development. 
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1. Introduction 

The problems associated with using arithmetic returns in place of geometric re-
turns when calculating stock returns and portfolio returns over multiple periods 
are well known. The problem of using arithmetic averages for portfolio per-
formance first came to prominence in the venture capital industry where poorly 
performing fund managers were blatantly deceiving potential investors about 
their past performance when raising new funds, as detailed in Phalippou [1]. 
Funds did this by expressing performance as the average arithmetic annual re-
turn of the fund rather than the actual return of the fund over the entire invest-
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ment period. As venture capital funds tend to suffer losses early and make their 
gains as investments mature, the effect can be dramatic with loss making funds 
appearing to be highly profitable. This problem has also been extensively dis-
cussed for other types of funds. 

The problem of using arithmetic returns in testing asset pricing models was 
demonstrated in Roll [2] when he evaluated the size effect. He showed how both 
the magnitude of the size effect and its statistical significance were overstated 
when arithmetic averages were used in place of geometric averages to consoli-
date returns over time. The shorter the buy and hold period, and the longer the 
period sampled, the greater the magnitude of the effect. 

Despite this, almost all research on asset pricing models and stock perform-
ance uses arithmetic stock returns to evaluate the returns of an investment 
strategy. This seems to be based on the idea that while the magnitude of the ef-
fect may be overstated, the differences in portfolio performance of the strategies 
are real, and the statistical significance tests are valid. The ambivalence towards 
substituting arithmetic returns for geometric returns has also been adopted by 
practitioners. A good example is when using CAPM to determine a company’s 
cost of capital. Brunner et al. [3] found practitioners prefer to use arithmetic av-
erages to calculate the market risk premium from historical data rather than the 
geometric return which is what investors receive. While this is theoretically in-
correct it is deemed to provide more acceptable results. 

The two most obvious dimensions of the problem are typically ignored or 
overlooked. Firstly, if stock returns are averaged to give a portfolio return for a 
single buy and hold period, the average stock return is not the portfolio return 
over the period. The second dimension is the bias generated when using returns 
of portfolios in place of their change in value over multiple periods. Table 1 has 
been prepared to give a simple numerical example which shows the errors in re-
turns generated in a five-stock portfolio over four monthly periods. The typical 
methods used in evaluating asset price models are subject to return errors gen-
erated over the total holding period in both dimensions. Table 1 portfolio is 
worth $500 at the start and at the end of the four-month period. Using arithme-
tic averages, the return is calculated to be 0.99 percent instead of zero percent, 
which is the return the investor receives. When the true value of each portfolio, 
each period, is used to calculate the average portfolio return over the four 
months, the return still comes out at 0.31 percent. 

Table 1 shows two dimensions of the problems, that is the erroneous return of 
the portfolio, and the error created using average arithmetic portfolio returns to 
measure returns over multiple periods. There is however a third dimension to 
the problem not readily discernible from Table 1. While it is easy to see per-
centage returns are a biased representation of price changes, it is less obvious 
that this bias is proportional to the volatility of the returns of each stock. If a 
stock price moves from $100 to $125 and then back to $100, its returns are +25 
percent and −20 percent giving an average return of 2.5 percent, but a real re-
turn of zero. The greater the price movement, the greater the error generated.  
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Table 1. Pricing anomalies caused by using arithmetic returns. 

 

Start Month 1 Month 2 Month 3 Month 4 Arithmetic  
Average Return Price Price Return Price Return Price Return Price Return 

Stock 1 $100 $90 −10.00% $105 16.67% $120 14.29% $100 −16.67% 0.86% 

Stock 2 $100 $115 15.00% $120 4.35% $99 −17.50% $100 1.01% 0.57% 

Stock 3 $100 $95 −5.00% $90 −5.26% $84 −6.67% $100 19.05% 0.42% 

Stock 4 $100 $90 −10.00% $105 16.67% $110 4.76% $100 −9.09% 0.47% 

Stock 5 $100 $75 −25.00% $109 45.33% $93 −14.68% $100 7.53% 2.64% 

Portfolio $500 $465 
 

$529 
 

$506 
 

$500 
  

Average Stock Return −7.00% 
 

15.55% 
 

−3.96% 
 

0.37% 0.99% 

Arithmetic Portfolio Return −7.00% 
 

13.76% 
 

−4.35% 
 

−1.19% 0.31% 

Geometric Portfolio Return 
       

0.00% 

 
Everyone knows individual stocks are more volatile than the market as a whole 
and investors use diversification to take advantage of this fact. As individual 
stock prices are much more volatile than movements in the stock index, not only 
actual returns, but returns relative to the market, i.e., excess returns, inevitably 
follow the underlying pattern of positive and negative returns. This inevitably 
generates a bias when comparing stock returns with market returns. As stocks 
have different overall price volatilities, and these volatilities vary over time, the 
bias created differs from stock to stock and time to time. A volatile and unpre-
dictable bias inevitably reduces the reliability of any estimate of the magnitude of 
any given price effect and impugns the statistical validity of any tests done to es-
tablish statistical validity. In addition, if price movements are normally distrib-
uted, returns will inevitable be skewed in the positive direction, creating prob-
lems with statistical tests, which may not be properly rectified by the methods 
adopted. 

This explanation of the problem does not persuasively establish the nature 
and magnitude of the problem, so a simulation will be used to show how ran-
dom price movements can generate errors which have the potential to accumu-
late and invalidate a pricing model’s claims as to the economic and statistical 
significance. The simulation will start with stocks all having the same price. Each 
stock’s price varies randomly from period to period. As the prices are purely 
random, it should be impossible to find a non-random price effect in the data. 
The use of stock return data instead of prices can allow researchers to find statis-
tically significant relationships in random data and this will be demonstrated.  

2. Testing a Random Simulation 

The nature and magnitude of the problem can be established by analysing simu-
lated stock prices with known characteristics and determining the distortion of 
results created by typical analysis techniques. CAPM was chosen as it forms the 
backbone of modern finance and is well entrenched in economic theory. It is an 
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ideal candidate as CAPM beta is a measure of volatility relative to an index and it 
will therefore be sensitive to errors resulting from volatility differences.  

A set of random returns with similar characteristics to stock prices was gener-
ated for testing. Monthly prices of 330 stocks over a 20-year period were ran-
domly generated. To make the prices representative of price movements of real 
stocks, the characteristics of 330 S&P 500 continuously listed stocks over the 
20-year period ending 31 Dec 2020 were used as a reference. An equal weighted 
monthly index was calculated for the S&P 500 reference stocks. Each of the 330 
simulated stocks was assigned a price volatility representative of a stock found in 
the S&P 500. The first stock in the simulation was assigned a volatility of 5.0 
percent with each subsequent stock’s volatility increasing at the constant amount 
needed to give the 330th stock a 20.0 percent volatility. 

The Excel random number generator was used to randomly generate prices 
changes to give each stock the assigned volatility. The random price adjustments 
were generated to produce a normal price distribution for each stock when cal-
culated over the 240-month test period. In other words, each stock price, in each 
period, was set at $100 and a random normally distributed error averaging $0.00 
was used to adjust the price so the resulting price series for the stock achieved its 
assigned price volatility. Each period the price generated for each stock was 
scaled to match the movement in the S&P 500 during the reference period. Each 
stock’s randomly generated price was multiplied by the equal weighted index 
value at the date in question, divided by the index value on 31 Dec 1999. Each 
stock has the same intrinsic price each period, plus or minus its random adjust-
ment. As the price movements are randomly generated, the difference in the 
price of any two stocks in any given period is purely random. It would of course 
have been possible to simply use unadjusted random movements in price so, on 
average, the stocks had the same price at end of the 20-year period as the begin-
ning, but by scaling prices to match the movement of a real world index the 
prices better represent actual stock prices. 

Table 2 compares some key characteristics of the simulated stocks with the 
S&P 500 it is designed to mimic. The main differences are due to the different 
assumptions used, and the random variations inherent in a randomised simula-
tion. In the simulation any differences in the geometric average return over the 
240-month period are random because the intrinsic price of all stock is identical 
each period before the random variation is applied. S&P 500 stocks have varied 
returns, and superior performance is naturally associated with both geometric 
and arithmetic returns being higher than the average, and thus are, to a degree, 
correlated. 

The price volatility of a simulated stock is the same over the entire period but 
varies over time in the S&P 500, leading to different price volatility averages. It is 
important to recognise it is inevitable the simulation will vary from the S&P 500 
on which it is based, as the actual stocks have varying volatilities over time, 
whereas the simulated stocks have the same volatility, subject to random fluctua-
tions, over the entire 20-year period. The simulation resembles real stock prices  
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Table 2. Comparison between simulation and S&P 500. 

 
S&P500 2000-2020 Simulation - 240 months 

Average Range Average Range 

Index geometric return (%) 0.351 - 0.352 - 

Index average arithmetic return (%) 0.42 - 0.47 - 

Stock geometric returns (%) 0.743 −1.03 - 2.21 0.353 0.167 - 0.545 

Stock arithmetic returns (%) 1.21 0.345 - 1.210 1.10 0.465 - 2.39 

Price Volatility (%) 9.85 4.79 - 29.31 10.98 5.33 - 27.0 

Correlation of geo. ret. & arith. ret 0.750  0.037  

 
which are commonly evaluated using pricing models, but all price changes are 
random, and any valid pricing model should generate zero excess returns. Any 
variation from zero should be clearly shown by tests to be statistically insignifi-
cant.  

Table 2 shows the simulation has return variation and volatility distribution 
of a similar magnitude to those found in actual stocks. The returns of the two 
indexes are similar when measured as arithmetic or geometric returns. The 
greatest difference between the two sets of data is the geometric return of the 
stock (0.743 vs 0.353). This arises because any difference between the geometric 
return of a stock and the index in the simulation is created by random chance, 
whereas the long term returns of individual real-world stocks are often markedly 
different from the index. Some S&P500 stocks outperformed the market by a 
large amount over the 20 year period and others badly underperformed the 
market. The expected geometric return of all simulated stocks is the market re-
turn, and any variation is due to random fluctuations which were set to be pro-
portional to the assigned volatility. 

The best test of validity of performance claims for a stock pricing model is to 
calculate the returns obtained by an investor holding the chosen portfolios. This 
involves valuing the stocks in each portfolio and monitoring the change in value 
over time as the portfolios are rebalanced. This can then be compared with the 
predictions of the model. If this is done using stocks in the simulation, this 
should generate a zero return over the 240-month period irrespective of the se-
lection technique adopted. 

Our test model is the Capital Asset Pricing Model, given in Equation (1). The 
simulation follows the return pattern of the S&P 500 and risk-free bond prices 
for corresponding periods are therefore available. In this case the 20 yr US Gov-
ernment bond was arbitrarily chosen as it matches the 20 yrs of data. Data for 
the 11 months before the start of the test period was collected or generated, and 
then CAPM betas calculated from the current month and trailing 11 months of 
returns. Equation (2) was used to calculate the beta used as the independent 
variable in our model. 

( ) ( )( )i f i m fE R R E R Rβ= + −                     (1) 
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We have reason to suspect this model could generate abnormal returns be-
cause of the relationship between volatility and beta, and the difference between 
a stock’s arithmetic and geometric returns. That is, the relationships found in the 
data presented in Figure 1. A data series has also generated using the arithmetic 
return data in Figure 1 after correcting it using Equation (3). This will be used 
to show the relationship between arithmetic return and price volatility is created 
by using arithmetic returns.  

( ) 1

1

100Corrected return %
1

2

t t

t t

P P
P P

+

+

−
= ×

+
               (3) 

This equation calculates the percentage return from the average of the starting 
and finishing prices, rather than the starting price. If the price moved from $100 
to $125 and back to $100 it would have percentage movements of +25 percent 
and −20 percent. Using corrected returns, the movements would be +22.5 per-
cent and −22.5 percent, which added together given an overall movement of 0 
percent instead of the erroneous arithmetic average of +2.5 percent. 

Figure 1 shows the relationship between return and price volatility found in 
the simulated data. Each point on the graph represents one stock’s average re-
turns over the 240 monthly intervals. The average arithmetic return over the 240 
months increases steadily as the price volatility of the stock increases. The in-
vestor’s actual return, the geometric monthly return, does not change as volatil-
ity increases. The geometric return is calculated from a stock’s beginning and 
ending price, and any variation between stocks is random. Additionally, Equa-
tion (3) has been used to correct the arithmetic averages, to generate an estima-
tion of the geometric averages. The accuracy of this approximation can be seen 
by comparing the positions of each cross and its corresponding triangle, which is 
slightly above or below it.  

 

 

Figure 1. Relationship between volatility and return. 
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Before launching into statistical tests of the relationship, between CAPM beta 
and return, for the simulated data, it is useful to see how the data has been 
transformed. This is presented in Figure 2 and Figure 3. The stocks have been 
sorted each period into 10 portfolios of 33 stocks according to their beta for the 
period. One is the lowest 10 percent of betas and 10 the highest 10 percent. 

Two things are immediately obvious. Firstly, the difference between the aver-
age monthly arithmetic returns of the lowest and highest portfolios is more than 
one percent per month. Secondly the relationship is not a linear one. Instead, we 
see a concave curve. This makes it obvious that a conventional linear regression 
test is not suitable for determining the statistical significance of the differences. 
Figure 3 gives us an insight how this pattern of returns came about. Portfolios 1 
and 10 contain the outlying negative and positive outliers from the beta calcula-
tion, and as the tails in the returns are from a normal distribution, they are thin. 
The discrepancy between arithmetic and geometric returns is greater when there 
is a higher the percentage price movement, and this becomes exaggerated as the 
tails of the normal distribution thin out. 

Also, in Figure 2 the returns for each beta portfolio have been calculated us-
ing Equation (3) and included as a comparison. This correction goes a long way 
towards eliminating the exaggerated return tails created when arithmetic aver-
ages are used. 

The beta calculation given in Equation (2) uses the covariance of the stock re-
turn with the market return to determine beta. The differences in covariances 
between the simulation and the S&P 500 are presented in Figure 4. Regression 
lines have been added to help interpretation. The S&P500 stocks, upon which 
the simulation is based, show the covariance of a stock with the market increases 
with the price volatility of the stock. The simulated stocks show no such rela-
tionship as price variation is purely random. For this reason, we would not ex-
pect the relationship between beta and return to be the same for the simulation 
as the actual stock market. The uncharacteristic relationship between beta and 
return found in Figure 2 must, a least in part, be due to this difference. 

 

 
Figure 2. Comparison of arithmetic and adjusted arithmetic returns of beta decile port-
folios. 
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Figure 3. Simulated beta distribution across decile portfolios. 

 

 
Figure 4. Relationship between stock covariance and price volatility. 

 
It is important to notice how the covariance of S&P500 stocks increases with 

increases in stock price volatility. This means stocks with high volatilities will 
tend to have higher betas. This will lead to a relationship where the stocks which 
are the most overpriced because of using arithmetic returns will tend to have 
higher betas, exactly the relationship CAPM predicts. 

3. Are the Relationships in the Simulation Statistically  
Significant? 

The existence of a relationship proves nothing. It is only if the relationship is 
statistically significant that we can draw valid conclusions. Before proceeding to 
statistical testing, it is worth discussing the methodologies typically used to 
evaluate CAPM. The existence of a relationship between beta and return can be 
evaluated at three distinct levels. Firstly, a single regression on the entire data set 
can be conducted on the raw data with return as the dependent variable and beta 
as the independent variable. The return used can either be for the same period as 
the beta calculation, or for the following period to determine its value at pre-
dicting future returns. Traditionally, asset pricing models fail to find relation-
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ships which are economically and statistically significant when tested in this way. 
It is more common to form portfolios to enhance the relationship and reduce 
the random noise from the sample before analysing the predictive ability of the 
independent variable. Testing portfolios in this way was first used to evaluate 
CAPM in Black, Jensen and Scholes [4] and involved sorting stocks into 10 
portfolios on the basis on their beta calculated using 5 years of monthly returns. 
This process removes the noise in the data by diversifying away the effect of 
other factors affecting return, leaving only the effect of beta in the data. This is 
only valid if beta is independent of all the other factors affecting return. If beta is 
not independent, sorting by beta can provide information associated with other 
factors affecting return. Figure 4 shows the relationship between price volatility 
and beta in S&P500 stocks so, knowing the relationship between the over state-
ment of arithmetic returns and price volatility shown in Figure 1, it is fair to 
conclude for CAPM, the process of sorting into decile portfolios should produce 
an overstatement of both the economic and statistical significance of the model.  

Figure 4 shows this is not a problem for our random simulation of stock 
prices. This means testing decile portfolios is still statistically valid.  

The relationships represented by asset pricing models seldom produce consis-
tent results for individual investment rebalancing periods. They require multiple 
investment periods to produce statistically significant results, even when stocks 
have been sorted into portfolios. The returns over multiple investment periods 
are assessed by comparing average arithmetic returns over the investment hori-
zon tested. This introduces a further layer of potential overestimation of returns 
due to using multi period arithmetic averages instead of geometric averages. 
Such overestimations are subject to bias, particularly when there is a relationship 
between the chosen independent variable or variables and return volatility re-
sulting from the relationship.  

For our tests, each month the 330 simulation stocks were sorted into 10 port-
folios according to beta. Beta was calculated over the 12-month period ending in 
the return period. The market return was the calculated using an equal weighted 
price index of the simulated stocks. The risk-free rate used was the 20-year US 
Government bond for the corresponding period of the S&P 500 reference port-
folio. As the results are not expected to yield significant results from linear re-
gression, regression against dummy variables has been used. For each of the 
79201 data points, a beta portfolio was determined for the period in question. 
The data was then divided into two groups. One of these groups was assigned 
the dummy variable 1 and the other the dummy variable 0, according to which 
beta group they occupied. Regressions were then conducted using the dummy 
variable as the independent variable.  

In Table 3 we can see the returns generated by Portfolios 1 and 10 have a 
positive coefficient (are higher) than the returns of any of the other portfolios. 
This difference is statistically significant at the 0.1 percent level. When Portfolios 
1 and 10 are combined, the difference is even more statistically significant. The  
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Table 3. Regression relationships found in the random simulation of CAPM. 

Dependent  
variable 

Independent variable  
dummies assigned 

   

Dummy Variable 1 Dummy variable 0 Coeff t-stat Adj R2 

Ri Portfolio 1 Portfolios 2-10 0.0057 3.817*** 0.0001 

Ri Portfolio 10 Portfolios 1-9 0.0107 7.148*** 0.0006 

Ri Portfolios 1&10 Portfolios 2-9 0.0093 8.221*** 0.0008 

Adjusted Ri Portfolio 1 Portfolios 2-10 0.0026 1.901* 0.0000 

Adjusted Ri Portfolio 10 Portfolios 1-9 0.0011 0.771 0.0000 

Adjusted Ri Portfolios 1&10 Portfolios 2-9 0.0012 1.133 0.0000 

*and ***significant at the 10.0% and 1.0% levels respectively. 
 

Adjusted R2s show the differences are small in economic terms. Despite the high 
degree of statistical significance, we know the prices are random and hence can-
not be statistically different. To show the effect is caused using arithmetic re-
turns instead of geometric returns, the returns were adjusted using Equation 3 
and the regressions repeated. Now, only Portfolio 1 shows any statistical signifi-
cance, and this is only at the 10 percent level, which could easily have occurred 
by chance. This shows the statistical significance arises from the bias created by 
using portfolio arithmetic averages instead of analysing the changes in value of 
the stocks comprising the portfolios. 

4. Discussion 

It is a mathematical certainty that the arithmetic average return of a portfolio is 
greater than the percentage change in the value of the stocks held in a portfolio 
over any given period, except when all the returns are equal. Similarly, the 
arithmetic average return of a given portfolio over time is greater than the actual 
return received by investors over multiple periods. In this paper it has been 
shown there is an additional problem. The statistical significance of the return 
results from an investment strategy cannot be relied upon because the price 
anomaly created when using arithmetic returns may easily result in a hidden 
variable with high statistical significance. 

This hidden variable arises because the arithmetic return anomaly is propor-
tional to the volatility of a stock in any given period. Volatility varies between 
stocks, and if, over time, it is correlated to any of the independent variables in 
the model, it will contribute to the reported statistical significance of the model’s 
predictions. 

The correlation between volatility and CAPM beta is obvious. Would we ex-
pect this correlation in other asset pricing models? There are good theoretical 
reasons for assuming so. The most fundamental ideas of modern finance are the 
concepts of efficient markets and the relationship between risk and return. The 
value of a stock is the present value of its future cash flows. If markets are effi-
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cient, market participants will seek out all publicly available information and use 
it to estimate the effect it has on future cash flows and revise price estimates ac-
cordingly. Price volatility will therefore be a measure of the uncertainty of future 
cash flows for the stock in question. The more estimates of future cash flows 
change the greater the price volatility. The uncertainty of the cash flows is con-
verted into risk, that is price volatility. There are two main measures of risk used 
in assessing stocks, CAPM beta, used in estimating a company’s cost of capital, 
and the Sharpe ratio which is used more generally. The Sharpe ratio is of course 
excess return divided by the standard deviation of excess returns. Thus, risk is 
predominately measured in using some form of price volatility.  

If investors are risk averse, as we generally assume they are, they will require a 
higher return in exchange for accepting higher risk. Any asset pricing model 
used to predict stock performance will, of necessity, be incorporating risk into its 
pricing factors. If markets are efficient, the investment strategy it recommends 
will involve detecting stocks with high risk and diversifying away this risk by 
forming a suitable portfolio of stocks. Market efficiency also predicts that once 
sufficient participants use the model, the excess returns will be driven down by 
competition, as markets are assumed not to reward an investor for assuming a 
diversifiable risk. Nevertheless, it is reasonable to assume that any asset pricing 
model predicting stock returns will incorporate risk, and hence stock price vola-
tility. 

If this is true, every asset pricing model derived by analysing returns over 
multiple periods must be considered suspect. Until proven otherwise, the statis-
tical significance, and the magnitude of the price advantage it is claimed to im-
part, must be questioned. 

The simplest way of doing this is to rerun the analysis, substituting returns 
adjusted using Equation (3), and find the effect this has on the result. Where 
multiple regression is used, the difference between the return and the adjusted 
return can be included in the regression as an additional factor to see if it is sta-
tistically significant, and how it affects the results of the other factors in the 
model. Equation (3) is, however, just an estimate, even though it appears to be 
adequate for the task. The true test is to analyse the model by forming portfolios 
and adding up the value of the stocks each period then rebalancing the portfolio 
and determining the next periods return in the same way. At the end of the 
evaluation period the geometric return of each test portfolio over time can be 
calculated. The reference standard for excess return is normally an index, and 
the geometric return of the index is easily calculated from its start and end value.  

Most financial research is done using SAS or a similar statistics package. Com-
mercial statistics packages have developed to serve demand, and in the case of 
financial analysis demand is for analysing returns. They are not conducive to the 
easy analysis of portfolios of assets. In addition, when returns are analysed at the 
portfolio level the number of data points are greatly reduced and it is more dif-
ficult to establish statistical significance. 
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The difficulty of doing the analysis should not be accepted as an excuse for 
ignoring it. Every asset pricing model which claims to outperform its reference 
index should be duplicated by forming actual portfolios of the stocks in the 
original testing of the model and tracking the value of this portfolio as it rebal-
ances over time. If the change in value of the test portfolio over the evaluation 
period does not exceed the market index, the model has failed. Testing it using 
the Equation (3) adjusted returns is a quick way of screening the model for prob-
lems of overstatement of excess returns and over statement of statistical signifi-
cance, but only using portfolios will be definitive.  

Without running such tests, it is hard to estimate how large a problem exists. 
Explanations of how asset pricing models produce the results they do are often 
in short supply in the papers proposing their use. If markets are efficient, com-
petition between investors should quickly drive profits to the point where they 
equal transaction costs. If this does not happen there is a convenient explana-
tion, the excess return is a reward for additional risk. There is an alternative ex-
planation. The excess profits are imaginary. This explanation is consistent with 
the difficulties active investment managers have in beating the market return, a 
phenomenon which has been researched in detail. Investment managers are not 
averse to taking on additional risk in order to produce superior results. Why do 
they leave the extra money sitting on the table? 

Reschenhofer et al. [5] investigate the prediction performance of pricing models 
and conclude, “apparently good forecasting performance does not translate into 
profitability once realistic transaction costs and the effect of data snooping are 
taken into account.” However, others have replicated studies and found models 
retain profitability. Mclean and Pontiff [6] looked at 72 characteristics providing 
return predictability and estimated, on average, returns dropped 32% due to 
publication informed trading. Most of the studies used Fama-MacBeth [7] slope 
coefficients or long short portfolio returns. Both methods are based on regres-
sion of stock returns, hence are subject to the overstatement bias inherent in us-
ing arithmetic returns. 

There will not be ready acceptance of the proposition that using arithmetic 
returns when testing pricing models leads to overstatement of both returns and 
statistical significance, as this has far reaching implications. Most financial re-
searchers have a large investment of time and reputation in the studies they have 
produced. However, this paper must surely have made a compelling enough case 
to raise doubts in the minds of many researchers.  

There are of course major limitations to the conclusions which can be drawn 
from this research as it does not actually test pricing models. While the differ-
ence in portfolio returns calculated using average arithmetic returns instead of 
actual portfolio values is mathematically certain, the overstatements of statistical 
significance, and the performance of model portfolios relative to market returns 
are not. The statistical anomalies presented in the paper arise from the relation-
ship between price volatility and the overstatement of returns. The volatility 
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characteristics of any given model’s parameters will differ from the simulation 
and may not lead to unreliable calculations of statistical significance. It does 
however provide a question needing an answer. Every model which relies on av-
eraging stock returns to calculate a portfolio return or averages sub-period re-
turns to determine long term performance is worthy of further investigation. 
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