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Abstract 
This paper deals with asset allocation decisions when the considered risk meas-
ure is directly related to the investor’s level of risk aversion. It is well known 
that the optimal portfolio weights are considerably sensitive to how assets are 
ranked on the basis of their risk-return profile. We propose a procedure to 
construct optimal portfolios that adapt quickly to changes in risk using a time 
varying asset allocation model based on a modified Sharpe Ratio measure re-
lated to downside and upside risk weighted using an aversion parameter. The 
model is applied, as an illustrative example, to six stock markets located in 
Western Europe basing the analysis on monthly data covering the period 
January 2000-December 2020. 
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1. Introduction 

Risk estimation is crucial in investment decisions [1]. In fact, the choice of dif-
ferent risk measures can considerably change asset risk return profile and, con-
sequently, asset ranking in the asset allocation model. Risk measures are statis-
tical measures that represent historical predictors of the volatility and risk of an 
investment, and are considered fundamental components in Modern Portfolio 
Theory [2]. 

Several risk measures have been suggested in finance to take also into consid-
eration that risk changes through time. These measures differ in the way they 
treat changes in risk, in particular in terms of the historical sample period con-
sidered and of the weighting scheme applied to time series returns at the time of 
portfolio optimisation [3] [4]. 
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Commonly used risk and performance functions in finance include: the va-
riance, which is the earliest way of risk measurement, and allows to evaluate the 
volatility of an investment considering the dispersion of data from its mean; the 
Sharpe Ratio, which is the most widely used measure of risk-adjusted perfor-
mance; Alpha, Beta and R-squared that are historical measures of past perfor-
mance in comparison to a benchmark related to regression analysis. Alpha eva-
luates the excess return of the investment relative to the return of the benchmark 
index; Beta measures the systematic risk of an investment in comparison to the 
market as a whole; R-squared measures the percentage of a security’s movement 
explained by movements in a benchmark index. 

These measures can be used individually or together to perform a risk assess-
ment. In selecting an appropriate risk measure, one can choose simple models, 
such as an equal weighting method applied to all the observations available or to 
a shorter but fixed sampling horizon until the point of asset allocation decision, 
or more complex models, such as an exponential weighted moving average or 
ARCH/GARCH. 

Our findings contribute to the literature in the following way. We move from 
the classical Sharpe Ratio, that employs probabilities of negative returns, as the 
positive ones, weighted in the same way by the investor, to a measure which al-
lows to overweight (underweight) risky assets on the basis of the investor de-
creasing (increasing) risk aversion. The model is based on a modified Sharpe Ra-
tio that can be used to evaluate separately downside and upside risk in order to 
rebalance the weights of the assets in the optimal portfolio. The proposed model 
is applied to the relationship between the risk aversion parameter and different 
asset allocation strategies considering an application to real data referring to 
monthly returns for the period January 2000-December 2020 of six stock mar-
kets located in Western Europe: FTSE MIB (Italy), DAX (Germany), FTSE 100 
(UK), CAC40 (France), IBEX (Spain) and AEX (Netherlands). 

The rest of the paper is organized as follows. In Section 2 the methodology of 
our proposal is described, and in Section 3 an illustrative example is reported. 
Finally, Section 4 concludes. 

2. A Methodology for Asset Allocation 

Asset allocation is the selection of a portfolio of investments where each com-
ponent is a “major” asset class rather than an individual security. Many are the 
optimisation techniques available that can be used in asset allocation [5]. A way 
to accomplish this task is to refer to the Sharpe Ratio [6] [7] introduced in Sec-
tion 1, that is defined as 

T f
T

T

r r
S

σ
−

=                            (1) 

where the average Tr  and standard deviation Tσ  of the logarithmic returns 
are estimated over the sample period { }1;T , while fr  is the risk free rate. The 
higher the Sharpe Ratio, the greater its risk-adjusted performance, and thus, the 
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better the investment. The literature surrounding the Sharpe Ratio has led to 
many related measures such as the Information Ratio [8] and the Differential 
Ratio [9]. 

The asset allocation problem at point T can be stated as 

,max T PS  

subject to 

1
1 and 0

k

i i
i

w w
=

= ≥∑                       (2) 

where ,T PS  is the Sharpe Ratio of the portfolio P and iw  are the weights as-
signed to the k available asset classes. Notice that the last constraint can be re-
moved to allow for short sales, and any other constraint can be added to take 
into account for other asset composition restrictions. 

The subset of the portfolios that will be preferred by the investor will differ 
according to the way risk is estimated. Moreover, in selecting a portfolio it is ne-
cessary to take into account how the investor views the trade-off between risk 
and return. 

As for the first problem, we will focus our attention on risk thought as the 
failure to achieve a target or a below target outcome. In this case, we should use 
a statistical measure of risk which represents only downside volatility and is 
called semivariance 

2
,2

,

ˆmin 0, t i it
i T

r r
T

σ−
 − =

∑                   (3) 

where ,t ir  is the logarithmic return of asset class i at time t and îr  is the target 
return. The use of semivariance is appealing in financial applications (see e.g. 
[10] [11]) and gives different statistical results, if compared for example with va-
riance, when the distribution of the returns is asymmetric, which is the case in 
almost every financial returns time series (for symmetric distributions semiva-
riance equals half of the variance). Also Markowitz said that “Analyses based on 
semi-variance tend to produce better portfolios than those based on variance. 
Variance considers extremely high and extremely low returns equally undesira-
ble.” (see [12], p.159). 

In treating risk as downside volatility, we also have to consider the other part 
of the distribution of returns, which represents “gain” and gives a measure of 
upside volatility 

2
,2

,

ˆmax 0, t i it
i T

r r
T

σ+
 − =

∑                    (4) 

and so the total volatility at time T of every asset class is 
2 2 2
, , ,i T i T i Tσ σ σ− += +                        (5) 

The problem related to this measure of risk is the selection of the target rate 

îr , which should be set exogenously and depends on the investment strategies. 
In this paper we assume, without loss of generality, that îr  equals zero for all 
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the assets considered, a value commonly used which distinguishes between capi-
tal gains and losses. 

In most financial applications volatility modelling must be done dynamically. 
Financial time series exhibit, in most cases, changes and persistence in variance 
and so temporal dependence in second moments must often be considered. Our 
approach to volatility estimation requires, in particular, to consider two condi-
tional dynamic measures 

( )2 2
, , ,|i T t i t d iE r rσ τ− −= <                      (6) 

( )2 2
, , ,|i T t i t d iE r rσ τ+ −= ≥                      (7) 

where d is a delay parameter which can be set to one. 
Having two different measures of volatility, it is necessary to define two con-

ditional variance models. While there are many variations to model stochastic 
volatility, we use a relatively simple ARCH formulation of risk [13] 
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for 1, ,i k=  , and where the orders 1P  and 2P  of the ARCH processes is 
chosen on the basis of the minimum AIC value over a range of lag lengths. In 
most of the empirical analysis, values less or equal to two are sufficient to model 
volatility which provides enough trade off between flexibility and parsimony: for 
this reason the grid search is restricted to values less or equal to two. 

To take into account for the investor risk tolerance, a final risk measure is de-
fined combining downside and upside volatility by means of a weighted average, 
looking as follows 

( )2 2 2
, , ,1 0 1i T i T i Tλσ λ σ λ σ λ− += + − ≤ ≤              (9) 

where λ  is a non negative risk aversion parameter. 
This approach allows to discriminate between periods in which the investor 

wants to overweight downside to upside volatility or vice versa. 
The objective function of this new asset allocation problem can be redefined 

as 

,
,

max P T f
T P

P T

r r
Sλ

λσ
−

=                      (10) 

subjected to the same constraints above in (2). 

3. Empirical Analysis and Results  

The model developed in this paper is applied to the relationship between the risk 
aversion parameter λ  and different asset allocation strategies. For illustration 
purposes the data set consists of monthly returns for the period January 2000- 
December 2020 of six stock markets chosen, as an example, within the six lead-
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ing financial centres located in Western Europe: FTSE MIB (Italy), DAX (Ger-
many), FTSE 100 (UK), CAC40 (France), IBEX (Spain) and AEX (Netherlands). 
The risk free rate is the 1-year Euribor rate. For all the indices, the study of some 
preliminary statistics (Table 1) allows us to conclude that the series are far from 
being symmetric (all the reported skewness are less than −1.0) and show lepto-
kurtosis, which is consistent with a large amount of empirical studies on the sta-
tistical properties of financial time series. The departure from normality has 
been confirmed for every series by the Jarque-Bera test. 

In order to have an overall perspective of the data, we examine in Table 2 
downside and upside volatility of the returns series: it is clear that returns more 
frequently fall short of breakpoint return; moreover, all the considered series 
experience higher downside volatility than the upside one. 

The estimation of the six ARCH models was performed using numerical maxi-
mum likelihood estimation. The parameter estimates reported in Table 3, all 
significant at the 1% level, provide evidence concerning time varying volatility. 
In particular, an ARCH(1) model is sufficient in all of the series to describe 
the time dependence in the conditional volatility, both the downside and upside 
one. 

Now, let’s turn to our optimisation problem, which requires to maximise the 
objective Equation in (10) under the constraints defined in (2). Table 4 summa-
rizes the results carried out using SASTM for different levels of the risk aversion 
parameter [ ]0,1λ ∈  at the end of 2020 using as downside and upside volatility 
estimates the ones retrieved from the corresponding ARCH models. Along with 
short-sales restrictions, an additional constraint was added to limit to a maxi-
mum level of 30% the weight assigned to each asset class. 

From these results we find that changes in the risk aversion parameter modify 
the optimal portfolio taking into consideration the proportion of downside and 
upside volatility associated to each asset as stated by the ARCH models. 

In Figure 1 changes in weights with respect to the “baseline” optimal portfolio 
when standard deviation is used are reported for the two extremes λ  parame-
ters: ceteris paribus, optimal weights shift from stock markets and adjust accor-
dingly to the asymmetries between downside and upside risk. 

 
Table 1. Statistical summary of the data. 

Index 
 Standard  Excess Jarque 

Mean Deviation Skewness Kurtosis Bera 

FTSE MIB40—Italy −0.247% 5.77% −1.13138 −0.95748 63.14 

CAC40—France 0.103% 4.67% −1.61517 2.99319 202.83 

DAX30—Germany 0.321% 5.19% −1.54234 2.65831 173.42 

FTSE100—UK 0.003% 3.84% −1.90499 5.66651 487.62 

IBEX—Spain −0.078% 5.11% −1.13907 1.65533 82.93 

AEX—Netherlands −0.015% 5.07% −1.94169 5.03655 423.01 
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Table 2. Downside and upside volatility of the returns series. 

Index 
Downside Upside  

Volatility Volatility % Downside 

FTSE MIB40—Italy 4.6110% 3.4516% 64.09% 

CAC40—France 3.7540% 2.7717% 64.72% 

DAX30—Germany 4.0499% 3.2423% 60.94% 

FTSE100—UK 3.1363% 2.2072% 66.88% 

IBEX—Spain 4.0101% 3.1451% 61.92% 

AEX—Netherlands 4.1925% 2.8291% 68.71% 

 
Table 3. ARCH volatility models. 

Index 
Downside Volatility Upside Volatility 

1β−  1β+  

FTSE MIB40—Italy 0.210622 0.237809 

CAC40—France 0.191541 0.266914 

DAX30—Germany 0.196246 0.319617 

FTSE100—UK 0.181620 0.226903 

IBEX—Spain 0.199735 0.215180 

AEX—Netherlands 0.197460 0.276253 

 
Table 4. Optimal portfolios. 

 
Weights 

FTSE MIB40 CAC40 DAX30 FTSE100 bIBEX AEX 

λ  Italy France Germany UK Spain Netherlands 

0.10 6.11% 20.20% 20.17% 26.54% 11.60% 15.39% 

0.20 6.14% 20.22% 20.65% 26.19% 11.81% 14.99% 

0.30 6.16% 20.23% 21.07% 25.89% 11.99% 14.65% 

0.40 6.18% 20.23% 21.45% 25.62% 12.15% 14.37% 

0.50 6.19% 20.23% 21.79% 25.37% 12.29% 14.12% 

0.60 6.21% 20.22% 22.10% 25.16% 12.42% 13.90% 

0.70 6.22% 20.21% 22.37% 24.96% 12.53% 13.71% 

0.80 6.22% 20.19% 22.62% 24.78% 12.63% 13.54% 

0.90 6.23% 20.18% 22.85% 24.62% 12.72% 13.39% 

 
In this way, the model can support the investor in rebalancing the weights as-

signed to the assets modifying the risk aversion parameter. Having a look, as an 
example, to German DAX market the risk aversion parameter reduces the weight 
when low values of λ  are used whereas optimal weight allocation results in an 
increase when λ  moves to its upper bound level. 
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Figure 1. Optimal Portfolios weights comparison.  

4. Concluding Remarks  

In this paper we developed an asset allocation model based on a modified Sharpe 
Ratio measure. Classical Sharpe Ratio implies that the probability of negative 
returns, as the probability of positive returns, is weighted in the same way by the 
investor. In order to evaluate separately downside and upside risk we consider a 
measure which permits to overweight (underweight) risky assets on the basis of 
the investor decreasing (increasing) risk aversion. In this way, the model can be 
used to rebalance the weights of the assets in the optimal portfolio. 

Generalizations could be taken into consideration in the future to expand the 
results presented in this paper. Extending our approach to other forms of risk- 
adjusted measures certainly represents an obvious area of development of the 
present contribution. A further possible extension goes in the direction of using 
nonlinear averaging methods to assess portfolio volatility starting from the esti-
mates of the positive/negative parts. 
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