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Abstract 
The Normal Inverse Gaussian (NIG) distribution, a special case of the Genera-
lized Hyperbolic Distribution (GHD) has been frequently used for financial 
modelling and risk measures. In this work, we consider other normal Variance 
mean mixtures based on finite mixtures of special cases for Generalised In-
verse Gaussian as mixing distributions. The Expectation-Maximization (EM) 
algorithm has been used to obtain the Maximum Likelihood (ML) estimates 
of the proposed models for some financial data. We estimate Value at risk 
(VaR) and Expected Shortfall (ES) for the fitted models. The Kupiec likelih-
ood ratio (LR) has been applied for backtesting of VaR. Akaike Information 
Creterion (AIC), Bayesian Information Creterion (BIC) and Log-likelihood 
have been used for model selection. The results clearly show that the pro-
posed models are good alternatives to NIG for determining VaR and ES. 
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1. Introduction 

The most popular measures for financial risk are Value at Risk (VaR) and Ex-
pected Shortfall (ES). These risk measures are based on return distributions. VaR 
is generally defined as possible maximum loss over a given holding period with-
in a fixed confidence level. An attractive feature of VaR is the backtestability of 
the measure. Backtesting is a method that uses historical data to gauge accuracy 
and effectiveness (Zhang and Nadarajah [1]). However, the main shortcoming of 
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VaR is that it ignores any loss beyond the value at risk level. That is, it fails to 
capture tail risk. It also lacks a mathematical property called subadditivity as 
stated by Wimmerstedt [2]. That is, VaR for two combined portfolios can be 
larger than VaR for the sum of the two portfolios independently. This implies 
that diversification could increase risk, a contradiction to standard beliefs in 
finance. 

Artzner et al. [3] [4] have proposed the use of Expected Shortfall (ES) also 
called conditional Value at Risk (CVaR) to circumvent the problems inherent in 
VaR. Expected Shortfall is the conditional expectation of loss given that the loss 
is beyond the VaR level. Nadarajah et al. [5] have given a detailed review of VaR 
and ES for various distributions. One of the distributions reviewed is the Gene-
ralized Hyperbolic Distribution (GHD) introduced by Barndorff-Nielsen [6] as a 
Normal Variance-Mean Mixture with the Generalized Inverse Gaussian (GIG) 
distribution as the mixing distribution. The most common special case is Nor-
mal Inverse Gaussian (NIG) distribution introduced by Barndorff-Nielsen [7] 
with the Inverse Gaussian (IG) as the mixing distribution. 

The objective of this paper is to determine VaR and ES for some financial 
data using Normal Weighted Inverse Gaussian (NWIG) distributions. In par-

ticular we consider Normal mixtures with finite mixtures of 1 , ,
2

GIG δ γ 
 
 

, 

3 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ 
 
 

 as mixing distribution. We study their  

properties and estimate parameters using the Expectation Maximization algo-
rithm introduced by Dempster et al. [8]. Akaike Information Creterion (AIC), 
Bayesian Information Creterion (BIC) and Log-likelihood have been used for 
model selection. 

The concept of a weighted distribution was introduced by Fisher [9] and ela-
borated by Patil and Rao [10]. Reciprocal Inverse Gaussian and the finite mix-
ture of Inverse Gaussian and Reciprocal Inverse Gaussian distribution are shown 
to be Weighted Inverse Gaussian (WIG) distributions by Akman and Gupta [11], 
Gupta and Akman [12], Gupta and Kundu [13]. Backtesting for value at Risk of 
the proposed models we use the Kupiec likelihood ratio (LR) introduced by Ku-
piec [14].  

2. Value at Risk and Expected Shortfall: Mathematical  
Background 

The most important risk measures despite their drawbacks are Value at Risk 
(VaR) and Expected Shortfall (ES). VaR was proposed by Till Guldimann in the 
late 1980s, and at the time he was the head of global research at J. P. Morgan.  

Value at Risk is generally defined as possible maximum loss over a given hold-
ing period within a fixed confidence level. Mathematically VaR at the (100-α) 
percent confidence level is defined as the lower 100α percentile of the profit-loss 
distribution. 

In statistical terms, VaR is a quantile of distribution for financial asset returns. 
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More formally, VaR is defined as  

{ }1
XP X VaR α α−≤ − =                        (2.1) 

where X represents the Asset’s returns. In integral form it can be expressed as  

( )d
XVaR

f x xα α
−∞

=∫                         (2.2) 

where f(x) is the profit-loss distribution. 
The concept of Expected Shortfall (ES) was first introduced in Rappoport [15]. 

Artzner et al. [3] [4] formally developed the concept. ES is the conditional ex-
pectation of loss given that the loss is beyond the VaR level and measures how 
much one can lose on average in the states beyond the VaR level. 

From Equation (2.2)  

( )1 d 1
VaR

f x xα

α −∞
=∫                         (2.3) 

Therefore ( )f x
α

 is a pdf for x VaRα−∞ < <  and we refer to it as “Tail loss 

distribution”. 
Conditional Expectation  

[ ] ( )
| d

VaR f x
E X X VaR x xα

α α−∞
< = ∫                  (2.4) 

is the Expected Shortfall denoted as ESα . This version was used by Yamai and 
Yoshima [16] to obtain the ES for a normal distribution. Equation (2.4) can be 
expressed in a different version as follows: Defining F(x) as the cdf of the ran-
dom variable X, let  

( ) ( )1u F x x F u−= ⇒ =  

( )d du f x x∴ =  

when 

0x u= −∞⇒ =  

x VaR uα α= ⇒ =  

( )1
0 0

1 1d duES F u u VaR u
α α

α α α
−∴ = =∫ ∫                (2.5) 

as presented by Zhang et al. [17]. 
Remarks: Equation (2.4) is the mean of the loss distribution. Equation (2.5) 

represents the average of the VaR between 0 and α . The loss distribution, 
( )

,
f x

x VaRαα
−∞ < <  gives the tail distribution. 

For the purpose of VaR and ES analysis, a model for the return distribution is 
important because it describes the potential behaviour of a financial security in 
the future (Bams and Wielhouwer [18]). A Normal distribution supposedly un-
derestimates the tail and hence VaR. Recently alternative distributions have been 
proposed that focus more on tail behaviour of the returns. One such candidate is 
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the Normal Inverse Gaussian (NIG) distribution. We consider extensions of NIG 
distribution as Normal Weighted Inverse Gaussian (NWIG) distributions. In the 
next few sections we give a detailed illustration on their construction, properties 
and parameter estimation via EM-algorithm.  

3. Weighted Inverse Gaussian Distribution 

Let Z be a random variable with pdf ( )f z . A function of Z, ( )w Z  is also a 
random variable with expectation  

( ) ( ) ( )dE w Z w z f z z
∞

−∞
=   ∫  

( )
( )

( )1 d
w z

f z z
E w Z

∞

−∞
∴ =

  
∫  

Thus  

( ) ( )
( )

( ) ,
w z

g z f z x
E w Z

= −∞ < < ∞
  

                (3.1) 

is a weighted distribution. It was introduced by Fisher [9] and elaborated by Pa-
til and Rao [10]. 

In this work we consider weighted distribution for the Inverse Gaussian (IG) 
distribution. 

Now, suppose ( ),Z IG γ δ
 the Inverse Gaussian distribution with para-

meters γ  and δ  and probability density function given by  

( ) ( )
3 2

22 1exp exp
22

f z z z
z

δ δδγ γ
−   

= − +     π
          (3.2) 

IG is a special case of the Generalised Inverse Gaussian (GIG) distribution.  

Generalised Inverse Gaussian  

The Generalised Inverse Gaussian (GIG) Distribution is based on modified Bes-
sel function of the third kind. Modified Bessel function of the third kind of order 
λ  evaluated at ω  denoted by ( )Kλ ω  is defined as  

( )
1

1 2
0

1 e d
2

x
xK x x

ω
λ

λ ω
 − + ∞ −  = ∫                   (3.3) 

with the following properties  

a) ( ) ( )1 1
2 2

e
2

K K ωω ω
ω

−

−
= =

π
                 (3.4) 

b) ( ) ( )3 3
2 2

1e 1
2

K K ωω ω
ω ω

−

−

 = = + 
 

π
            (3.5) 

c) ( ) ( )5 5 2
2 2

3 3e 1
2

K K ωω ω
ω ω ω

−

−

 = = + + 
 

π
          (3.6) 

d) ( ) ( )7 7 2 3
2 2

6 15 15e 1
2

K K ωω ω
ω ω ω ω

−

−

 = = + + +


π



         (3.7) 
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e) ( ) ( )9 9 2 3 4
2 2

10 45 105 105e 1
2

K K ωω ω
ω ω ω ω ω

−

−

 = = + + + +


π



      (3.8) 

f) ( ) ( )11 11 2 3 4 5
2 2

15 105 420 945 945e 1
2

K K ωω ω
ω ω ω ω ω ω

−

−

 = = + + + + + 
 

π
  (3.9) 

which are necessary in deriving the properties and estimates of the proposed 
models. For more definition and properties see Abramowitz and Stegun [19]. 

Using Parametrization ω δγ=  and transformation x zγ
δ

=  then Formula 

(3.3) becomes  

( )
2

1 2
0

1 1exp d
2 2

K z z z
z

λ
λ

λ
γ δδγ γ
δ

∞ −     = − +   
     

∫  

Hence  

( ) ( )
1 2

21exp
2 2

zg z z
K z

λ λ

λ

γ δ γ
δ δγ

−     = − +   
     

           (3.10) 

0; , 0, 0z λ δ γ> −∞ < < ∞ > >  

which is a Generalized Inverse Gaussian (GIG) distribution with parameter 
, ,λ δ γ . 
Thus  

( ), ,Z GIG λ δ γ
 

with 

( ) ( )
( )

r
rr K

E Z
K
λ

λ

δγδ
γ δγ

+ 
=  
 

                 (3.11) 

where r can be positive or negative integers. 
Consider the following special weights: 
Case 1: 
Let  

( ) 1w Z Z= +  

( )( )E w Z γ δ
γ
+

=  

( ) ( ) ( )1g z z f zγ
γ δ

∴ = +
+

                   (3.12) 

which is also a finite mixture of 1 , ,
2

GIG δ γ − 
 

 and 1 , ,
2

GIG δ γ 
 
 

. That is  

( ) ( )1 1, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = + − −   
   

 

with  

p γ
γ δ

=
+
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The mean and variance for the weighted distribution are  

[ ] ( )
( )2E Z

δ δγ γ δ
γ γ δ
+ +

=
+

                     (3.13) 

and 

( )
( )

2 2 3 2 3

24

3 2 2var Z δγ δ γ δγ δ δ γ
γ δ γ

+ + + +
=

+
              (3.14) 

Case 2: 
Let  

( ) 1 11
1

w Z
Zδγ

= +
+

                      (3.15) 

( )
2

2

1E w Z δ
δ
+

=    

( ) ( )
2

2

1 11
11

g z f z
z

δ
δγδ

 
∴ = + ++  

                (3.16) 

which is also a finite mixture of 1 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ − 
 

. That is  

( ) ( )1 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = − + − −   
   

 

with  
2

21
p δ

δ
=

+
 

The mean and variance for the weighted distribution are  

[ ] ( )
( )

2

2

1
11

E Z
δ δγ γδ
γ δγδ

 + +
=  

++   
                  (3.17) 

( ) ( )
( )

( )( )
( )

( )( )( )( ) ( )( )
( ) ( )

2222 2

2 3 2 22

223 2 2 4

223 2

11
1 1 1 1

1 1 1 1

1 1

var Z
δ δγ γδγ δ δγδ δ

δ γ δγ δ γ δγ

δ γ δγ δ δγ δ γ δ δγ γ

γ δγ δ

 + ++ + = −
 + + + + 

+ + + + − + +
=

+ +

  (3.18) 

Case 3: 
Let  

( )
2

1
1

Zw Z
δγ

= +
+

                      (3.19) 

( )
3

3E w Z γ δ
γ
+

=                        (3.20) 

( ) ( )
3 2

3 1
1

zg z f zγ
δγγ δ

 
∴ = + ++  

                (3.21) 
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which is also a finite mixture of 1 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ 
 
 

. That is  

( ) ( )1 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = − + −   
   

 

with  
3

3p γ
γ δ

=
+

 

The mean and variance for the weighted distribution are  

[ ] ( )
( )

4 3 2 23

3 5

1 3 3
1

E Z
δγ δγ δ γ δ γ δγ

γ δ γ δγ
 + + + +

=  
+ +  

          (3.22) 

( )
( )( )

4 3 2 2

2 3

1 3 3
1

δγ δγ δ γ δ γ δ

γ δγ γ δ

+ + + +
=

+ +
                (3.23) 

( )
( )( )( )( )

( ) ( )

26 5 4 4 3 3 2 2 3

26 3

1 10 45 105 105 1

1
var Z

δγ δγ δ γ δ γ δ γ δ γ δ δγ γ δ

γ δγ γ δ

+ + + + + + + +
=

+ +
(3.24) 

( )( )
( ) ( )

24 3 2 2

26 3

1 3 3

1

δγ δγ δ γ δ γ δ

γ δγ γ δ

+ + + +
−

+ +
               (3.25) 

Case 4: 
Let  

( ) 1 1
1

w Z Z
Zδγ

= +
+

                    (3.26) 

and using Formula (3.11)  

( )
3

2E w Z δ γ
γδ
+

=    

( ) ( )
2

3

1 1
1

g z z f z
z

γδ
δγδ γ

 
∴ = + ++  

              (3.27) 

which is also a finite mixture of 1 , ,
2

GIG δ γ 
 
 

 and 3 , ,
2

GIG δ γ − 
 

. That is  

( ) ( )1 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = + − −   
   

 

with  
3

3p δ
δ γ

=
+

 

The mean and variance for the weighted distribution are  

[ ] ( )
( )( )

23 2 3

2 3

1
1

E Z
δ δγ δ γ

γ δγ δ γ

+ +
=

+ +
                  (3.28) 

and 
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( )
( )( )( )( )( ) ( )( )

( ) ( )

222 3 2 2 4 3 4 3

224 3

3 3 1 1 1

1
var Z

δ δ γ δ γ δ δγ δγ δγ δ γ δ δ δγ γ

γ δγ δ γ

+ + + + + + − + +
=

+ +
(3.29) 

Case 5: 
Let  

( )
2

1
Zw Z Z
δγ

= +
+

 

( )
( )2

3

1
E w Z

δ γ

γ

+
=    

( ) ( ) ( )
3 2

2 11
zg z z f zγ
δγδ γ

 
∴ = + ++  

               (3.30) 

which is also a finite mixture of 1 , ,
2

GIG δ γ 
 
 

 and 3 , ,
2

GIG δ γ 
 
 

. That is  

( ) ( )1 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = + −   
   

 

with  
2

2 1
p γ

γ
=

+
 

The mean and variance for the weighted distribution are  

[ ] ( )
( )( )

22 2 2

2 2

1 3 3
1 1

E Z
γ δγ δ γ δγ

γ δγ γ

+ + + +
=

+ +
              (3.31) 

( )
( )( ) ( )( )( )( )

( ) ( )
( )( )

( ) ( )

2 2 2 3 3 2 2 2

224 2

222 2 2

224 2

3 3 1 6 15 15 1 1

1 1

1 3 3

1 1

var Z
δ γ δγ δγ γ δ γ δ γ δγ δγ γ

γ δγ γ

γ δγ δ γ δγ

γ δγ γ

+ + + + + + + + +
=

+ +

+ + + +
−

+ +

(3.32) 

Case 6: 
Let  

( ) 21w Z Z
Z

= +  

( )
( )( )3 3

3 2

1
E w Z

γ δ δγ

γ δ

+ +
=    

( ) ( )( )
( )

3 2
2

3 3

1
1

g z z f z
z

γ δ
γ δ δγ

 ∴ = + + +  
              (3.33) 

which is also a finite mixture of 3 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ 
 
 

. That is  

( ) ( )3 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = − + −   
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with  
3

3 3p γ
γ δ

=
+

 

The mean and variance for the weighted distribution are  

[ ] ( )
2

2 3 3

1 3
1

E Z δδ
δγ γ γ δ

 
 = +
 + + 

                (3.34) 

and 

( )
( )

( ) ( )

2 3 3 3 3 9 6 6 9 3

24 3 3

3 1 5 2 2

1
var Z

δγ δ γ δ δ γ δ γ δ γ

γ γ δ δγ

 + + + + + =
+ +

      (3.35) 

4. Normal Variance-Mean Mixture 

A stochastic representation of a Normal Variance-Mean mixture is given by let-
ting Let  

X Z ZYµ β= + +  

where 

( )0,1Y N
 

and Z, independent of Y, is a positive random variable. 
If F(x) is a cdf of X, then  

( ) { }

( ) ( )

( )

0

0

,0

d d

d

x z
z

F x prob X x

x zY z
z

y g z y z

x z g z z
z

µ β

µ β

φ

µ β

− −
∞

−∞

∞

= ≤

− − 
= ≤ < < ∞ 
 

=

− − 
= Φ 

 

∫ ∫

∫

 

where ( )φ ⋅  and ( )Φ ⋅  are pdf and cdf of a standard normal distribution, re-
spectively.  

( ) ( )

( )

( )
2

0

2
0

1 d

1 e d
2

x z
z

x zf x g z z
z z

g z z
z

µ β

µ βφ
∞

− +  −∞

− − 
∴ =  

 

=
π

∫

∫
              (4.1) 

Thus we have a hierarchical representation as  

( ),X Z z N z zµ β= +
                    (4.2) 

being the conditional pdf and g(z) the mixing distribution. 
If  

( ), ,Z GIG λ δ γ
                       (4.3) 

we obtain the Generalized Hyperbolic Distribution (GHD) introduced by Barn-
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dorff-Nielsen [6]. 
In general the integral formulation for constructing the Weighted Inverse Gaus-

sian (WIG) distributions is presented as  

( )
( ) ( )

( )

2
21

22
0

e e e d
2

xx z
zw z

f x z z
E w Z

δ φβ µ αδγδ
  − − + ∞ −   =

  π ∫            (4.4) 

We now construct six (6) models based on the special cases developed above. 
Model 1: 
Assuming case 1 presented by Formulation (3.12) the mixed model becomes  

( )
( )

( ) ( )
( )( ) ( )( )1 0

e e x

f x K x K x
x

β µδγδγ α αδ φ αδ φ
γ δ δ φ

−   = + 
+   π

     (4.5) 

With the following properties  

( )
( )( )

( )2E X
β δ δγ γ δ

µ
γ γ δ

+ +
= +

+
                  (4.6) 

and 

( )
( ) ( ) ( )

( )

2 2 2 3 2 2 3 2

24

1 2 1 3 2
var X

δ γ α δγ α α δ γ β δ γ δ

γ δ γ

+ + + + + +
=

+
  (4.7) 

Model 2: 
Assuming case 2 presented by Formulation (3.16) the mixed model becomes  

( )
( )

( ) ( )
( ) ( )( ) ( )( )

2

1 22

e e
11

x

f x x K x K x
x

β µδγδ ααδ φ αδ φ αδ φ
δγδ φ

−

π

 
= + 

++  
(4.8) 

With the following properties  

( ) ( )
( )

2

2

1
11

E X
δ δγ γδµ β
γ δγδ

 + +
= +  

++   
              (4.9) 

and 

( ) ( )
( )

( )( )( )( ) ( )( )
( ) ( )

2

2

222 3 2 2 4

223 2

1
11

1 1 1 1

1 1

var X
δ δγ γδ
γ δγδ

β δ γ δγ δ δγ δ γ δ δγ γ

γ δγ δ

 + +
=  

++   
 + + + + − + +  +

+ +

(4.10) 

Model 3: 
Assuming case 3 presented by Formulation (3.21) the mixed model becomes  

( )
( ) ( )( )

( )( )
( ) ( ){ } ( )( )

1
3

2 2
13

e e
1

1

x x
f x x K x

β µδγγ φ
α δγ δ φ αδ φ

α γ δ δγ

−
−

= + +
+π +

  (4.11) 

With the following properties  

( ) ( )
( )( )

4 3 2 2

2 3

1 3 3
1

E X
δγ δγ δ γ δ γ δ

µ β
γ δγ γ δ

+ + + +
= +

+ +
            (4.12) 
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( ) ( )
( )( )

( )( )( )( )
( ) ( )

( )( )
( ) ( )

4 3 2 2

2 3

26 5 4 4 3 3 2 2 3

2
26 3

24 3 2 2

26 3

1 3 3
1

1 10 45 105 105 1

1

1 3 3

1

var X
δγ δγ δ γ δ γ δ

γ δγ γ δ

δγ δγ δ γ δ γ δ γ δ γ δ δγ γ δ
β

γ δγ γ δ

δγ δγ δ γ δ γ δ

γ δγ γ δ

+ + + +
=

+ +

 + + + + + + + +
−  + +

+ + + + −
+ + 

(4.13) 

Model 4: 
Assuming case 4 presented by Formulation (3.27) the mixed model becomes  

( )
( )

( )( )( )
( ) ( ) ( )( ){

( )( )}

2
03

2
2

e e 1
1

x

f x x K x
x

K x

β µδγγδ δγ δ φ αδ φ
φ δ γ δγ

α αδ φ

−

π
= +

+ +

+

     (4.14) 

With the following properties  

( ) ( )
( )( )

23 2 3

2 3

1
1

E X
δ δγ δ γ

µ β
γ δγ δ γ

+ +
= +

+ +
                  (4.15) 

( ) ( )
( )( )

( )( )( )( )( ) ( )( )
( ) ( )

23 2 3

2 3

222 3 2 2 4 3 4 3

2
224 3

1
1

3 3 1 1 1

1

var X
δ δγ δ γ

γ δγ δ γ

δ δ γ δ γ δ δγ δγ δγ δ γ δ δ δγ γ
β

γ δγ δ γ

+ +
=

+ +

+ + + + + + − + +
−

+ +

(4.16) 

Model 5: 
Assuming case 5 presented by Formulation (3.30) the mixed model becomes  

( )
( )

( )( ) ( ) ( )( ) ( ) ( )( ){ }
3

0 12

e e 1
1 1

x

f x K x x K x
β µδγγ α δγ αδ φ δ φ αδ φ

α δγ γ

−

= + +
π + +

(4.17) 

With the following properties  

( ) ( )
( )( )

22 2 2

2 2

1 3 3
1 1

E X
γ δγ δ γ δγ

µ β
γ δγ γ

+ + + +
= +

+ +
             (4.18) 

( ) ( )
( )( )

( )( ) ( )( )( )( )
( ) ( )

( )( )
( ) ( )

22 2 2

2 2

2 2 2 3 3 2 2 2
2

224 2

222 2 2

224 2

1 3 3
1 1

3 3 1 6 15 15 1 1

1 1

1 3 3

1 1

var X
γ δγ δ γ δγ

γ δγ γ

δ γ δγ δγ γ δ γ δ γ δγ δγ γ
β

γ δγ γ

γ δγ δ γ δγ

γ δγ γ

+ + + +
=

+ +

+ + + + + + + + +
−

+ +

+ + + +
−

+ +

(4.19) 

Model 6: 
Assuming case 6 presented by Formulation (3.33) the mixed model becomes  
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( )
( )

( )( )( )
( )( ) ( )( ) ( )( ){ }3 3

3
2 13 3

e e
1

x

f x K x x K x
x

β µδγδγ α αδ φ δ φ αδ φ
απφ δ γ δγ

−

= +
+ +

(4.20) 

With the following properties  

( ) ( )

( )
2

2 3 3

1 3
1

E X E Zµ β

δµ βδ
δγ γ γ δ

= +

 
 = + +
 + + 

              (4.21) 

( ) ( ) ( )2var X E Z Var Zβ= +                      (4.22) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

22 9 2 3 2 3 3 2 3 3 3 3 5 2 2 2

2 24 3 3

3 1 4 2 1

1

δ γ α δ γ δγ δ α γ δ β γ δ γ δ δ γ α δγ β

γ γ δ δγ

   + + + + + + + + + −  =
+ +

(4.23) 

5. Maximum Likelihood Estimation via  
Expectation-Maximization (EM) Algorithm 

EM algorithm is a powerful technique for maximum likelihood estimation for 
data containing missing values or data that can be considered as containing miss-
ing values. It was introduced by Dempster et al. [8]. 

Assume that the true data are made of an observed part X and unobserved 
part Z. This then ensures the log likelihood of the complete data ( ),i ix z  for 

1,2,3, ,i n=   factorizes into two parts (Kostas, [20]). i.e.,  

( ) ( )

( ) ( )

1 1

1 1

log log log

log log

n n

i i i
i i

n n

i i i
i i

L f x z g z

f x z g z

= =

= =

= +

= +

∏ ∏

∑ ∑
 

where 

( )1
1
log

n

i i
i

l f x z
=

= ∑  

and 

( )2
1
log

n

i
i

l g z
=

= ∑  

Karlis [21] applied EM algorithm to mixtures which he considered to consist 
of two parts; the conditional pdf is for observed data and the mixing distribution 
is based on an unobserved data, the missing values.  

5.1. M-Step for Conditional pdf 

Since the conditional distribution for the six models is normal distribution as 
presented in Formula (4.2), we have  

( ) ( )2

1
1 1

1log 2 log
2 2 2

n n
i i

i
i i i

x znl z
z

µ β

= =

− −
= − π − −∑ ∑  

Therefore  
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( )1
1

ˆˆ0 0
n

i i
i

l x zµ β
β =

∂
= ⇒ − − =

∂ ∑  

i.e., 
1 1

ˆˆ 0
n n

i i
i i

x n zµ β
= =

− − =∑ ∑  

ˆˆ x zµ β∴ = −  

where 1
n i
i

x
x

n=
= ∑  and 1

n i
i

z
z

n=
= ∑ . 

Similarly,  

1
1 1

1 ˆˆ0 0
n n

i

i ii i

x
l n

z z
µ β

µ = =

∂
= ⇒ − − =

∂ ∑ ∑  

1 1 1

1 1ˆ ˆ 0
n n n

i

i i ii i i

x
x z n

z z z
β β

= = =

∴ − + − =∑ ∑ ∑  

1 1

1

1

ˆ
1

n ni
i i

i i

n
i

i

x x
z z

n z
z

β
= =

=

−
∴ =

−

∑ ∑

∑
 

5.2. For Model 1 

Consider Formula (3.12)  

5.2.1. M-Step 

( ) ( )

( ) ( )

2

2 2

1 1 1 1

log log 2 log
2
3 1log 1 log
2 2 2

n n n n

i i i
i i i ii

nl n n n

z z z
z

δγ δγ γ δ

δ γ
= = = =

= + − − +

+ + − − −

π

∑ ∑ ∑ ∑
       (5.1) 

Maximizing with respect to δ  and γ  we have the following representation  

( )
1

1ˆ 1
ˆ ˆˆ

ˆ
1 1n

i
in z

γ
δ γ δ

δ

=

 
 +
 + =
∑

                    (5.2) 

( )
1

1ˆ 1
ˆˆ ˆ

ˆ
1 n

ii z
n

δ
γ γ δ

γ

=

 
 +
 + =
∑

                    (5.3) 

5.2.2. E-Step 

Since the Values of random variables iZ  and 1

iZ
 are unknown, we estimate 

them by considering posterior expectations ( )i iE Z X  and 
1

i

E
Z

 
 
 

. 

In general,  
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( )
( ) ( )
( ) ( )

0

0

d

d

zf x z g z z
E Z X

f x z g z z

∞

∞= ∫
∫

 

( ) ( )

( ) ( )
0

0

1 d1

d

f x z g z z
zE X

Z f x z g z z

∞

∞
  = 
 

∫

∫
 

In general let  

( )i i is E Z X=  

and 

1
i i

i

w E X
Z

 
=  

 
 

Then the k-th iterations are as follows:  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )
2

0 1

2

0 1

k k k k k k k k k k k
i i i i

k
i

k k k k k k k k k k
i i i

x K x x K x
s

x K x K x

α δ φ α δ φ δ φ α δ φ

α δ φ α δ φ α α δ φ

+
=

+
 

and 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

1 2

2

1 0

k k k k k k k k k k
i i

k
i

k k k k k k k k k k k
i i i i

x K x K x
w

x K x x K x

α δ φ α δ φ α α δ φ

α δ φ α δ φ δ φ α δ φ

+
=

+
 

We therefore have the following iterative scheme  

( )

( )
( ) ( ) ( )( )

( )
1

1ˆ 1
ˆ ˆˆ

ˆ

k
k k k

k
kw

γ
δ γ δ

δ +

 
 +
 + =                 (5.4) 

( )

( )
( ) ( ) ( )( )

( )

1
1

1

1ˆ 1
ˆˆ ˆ

ˆ

k
k k k

k
ks

δ
γ γ δ

γ

+

+

+

 
 +
 + =                (5.5) 

( ) ( ) ( )

( ) ( )( )
1 1ˆ

1

n k
i ik i

k k

x x w

n s w
β + =

−
=

−

∑                    (5.6) 

( ) ( ) ( )1 1ˆˆ k k kx sµ β+ += −                      (5.7) 

( ) ( )( ) ( )( )
1

2 2 21 1 1ˆˆ ˆk k kα γ β+ + + = +  
                 (5.8) 

where  

1

n
i

i

w
w

n=

= ∑  

and 
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1

n
i

i

s
s

n=

= ∑  

and the k-th iteration is given as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 0

1

log log

log

k k k k k k k k k k

kn
k k k k k k

i ik ki
i

l n n n x n n

K x K x
x

δ γ δ γ β β µ γ δ

α α δ φ α δ φ
δ φ=

= + + − − π +

 
 + +
 
 

∑
 

Note that the iterative for β  and µ  is the same for all the models consi-
dered below. The posterior estimates differentiate the values obtained.  

5.3. For Model 2 

Consider Formula (3.16)  

5.3.1. M-Step 

( ) ( )2
2

1

2 2

1 1 1

33 log log 1 log 2 log
2 2

1 1 1log 1
1 2 2

n

i
i

n n n

i
i i ii i

nl n n n z

z
z z

δ δγ δ

γ δ
δγ

=

= = =

= + − + − π −

 
+ + − − + 

∑

∑ ∑ ∑
       (5.9) 

Maximizing with respect to δ  and γ  we have the following representation  

( )1

1

1 1
1 1 1

ˆ

n
i

i
n

ii

n
z

z

δ
δγ δγ

γ
=

=

 
− + + + =

∑

∑
                (5.10) 

( ) ( )
2

12

1

3 1 1
1 1 11

1

n
i

i

n
i

i

n n n
z

z

δ γ
δγ δγδ δ

δ
=

=

 +
+ − + + ++  

=

∑

∑
           (5.11) 

5.3.2. E-Step 
The posterior expectations for the k-th iteration are:  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )
2

1 0

2

1 2

1

1

k k k k k k k k k k k k
i i i i

k
i

k k k k k k k k k k k k
i i i

x K x x K x
s

x K x K x

α δ φ α δ φ δ γ δ φ α δ φ

δ γ α δ φ α δ φ α α δ φ

+ +
=

+ +
 

( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

2 3

2

2 1

1

1

k k k k k k k k k k k k
i i i

k
i

k k k k k k k k k k k k k
i i i i

x K x K x
w

x K x x K x

δ γ α δ φ α δ φ α α δ φ

α δ φ α δ φ δ γ δ φ α δ φ

+ +
=

+ +
 

We therefore have the following iterative scheme  

( )

( )
( ) ( ) ( ) ( )( ) ( )

( )

1

1

1

1 1
1 1 1

ˆ

nk
ik k k k k

ik
n k

ii

n
s

s

δ
δ γ δ γ

γ

=

+

=

 
 −
 + + + =

∑

∑
         (5.12) 
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( )

( )( )
( ) ( )( )

( )
( ) ( ) ( ) ( )( ) ( )

( )

2

1
112 1

1

1

3 1 1
1 1 11

ˆ

k
nk
ik k k k kk k

i
k

n k
ii

n n
n

s

w

δ
γ

δ γ δ γδ δ
δ

+
=+ +

+

=

 +
 + −
   + + ++    =

∑

∑
(5.13) 

and the k-th iteration for the log likelihood is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( )
( ) ( )

( ) ( ) ( ) ( )( )

2

1

1
1 1

2

2

log log 1

log log

1

n
k k k k k k k

i
i

n n
k k k k k k k

i
i i

k
k k k

k k

l n n x n n

x x K x

K x

δ δ γ β β µ δ

φ α δ φ α δ φ

α
α δ φ

δ γ

=

= =

  = + + − − π +    

− + 




+ 

+ 


∑

∑ ∑

 

(5.14) 

5.4. For Model 3 
5.4.1. M-Step for the Mixing Distribution 
Consider Formula (3.21)  

( ) ( ) ( )

( )

3
2

2 2
2

1 1 1 1

log 3 log log 2 log 1 log
2

3 1log 1 log
2 2 2

n n n n

i i i
i i i ii

nl n n n n n

z z z
z

δ γ δγ δγ γ δ

δ γδγ
= = = =

= + + − π − + − +

+ + + − − −∑ ∑ ∑ ∑
  (5.15) 

Maximizing with respect to δ  and γ  we have the following representation  
2

2
2 3

1 1

3 0
1 1

n n

i
i i i

n nz
z

δ δγ δγ
δγ δγ γ δ= =

 
− + + = + + + + 
∑ ∑             (5.16) 

2 3
2

2 3
1 1

1 0
1 1

n n

i ii i

n n
z z

γ δγ γδ
δγ δγ γ δ= =

 
− + + = + + + + 
∑ ∑            (5.17) 

Both equations are quadratic in γ  and δ  respectively.  

5.4.2. E-Step 
The posterior expectations for the k-th iteration are:  

( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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x K x
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α δ δ γ φ α δ φ α δ φ

α

α δ γ δ φ α δ φ

+ +
=

 + +  
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( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

3 2

2 0

32 3
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1

1

1

k k k k k k k k k k k k

k
i

k k k k k k k k k k

K x x K x
w

x x K x

α δ γ α δ φ α δ φ α δ φ

α δ δ γ φ δ φ α δ φ

+ +
=

 
+ + 
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( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
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2 2 24
1 3
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1

1

1
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i i

k
i
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i

x K x x K x
v
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δ γ α δ φ α δ φ δ φ α δ φ

δ γ α α δ φ α δ φ
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=
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Now, define the iterative scheme as follows: 
let  

( )
( )( )
( ) ( )

( )

2

1
1

11

k
n

k k
ik k

i

n
a s

δ

δ γ
+

=

 
 = − + 
 

∑  

( )
( )

( ) ( ) ( )
1

1
1 1

kn
k

k k k
i i

b
v

δ
δ γ

+

=

=
+ +

∑  

( )
( )

( )( ) ( )

1
1 3

3 k
k

k k

nc δ

γ δ

+ =
+

 

let  

( )
( ) ( )( ) ( ) ( )

( )

21 1 1 1
1 1 1 11

1
1

4

2

k k k k

k
k

b b a c
t

a

+ + + +

+
+

− − −
=               (5.18) 

using the square root transformation, we have  

( )11 kk tγ ++ =                         (5.19) 

Similarly, define  

( )
( )( )
( ) ( )

( )

21

1
2 1

11

k
n

k k
ik k

i

n
a w

γ

δ γ

+

+
+

=

 
 = − + 
 

∑                 (5.20) 

( )
( ) ( )

( ) ( ) ( )

1
1

2 1
1 1

k kn
k

k k k
i i

b
v

δ γ
δ γ

+
+

+
=

=
+ +

∑                  (5.21) 

( )
( )( )

( )( ) ( )

31

1
2 31

k
k

k k

n
c

γ

γ δ

+

+

+
=

+
                   (5.22) 

let  

( )
( ) ( )( ) ( ) ( )

( )

21 1 1 1
2 2 2 21

1
2

4

2

k k k k

k
k

b b a c
s

a

+ + + +

+
+

− − −
=             (5.23) 

using the square root transformation, we have  
( )11 kk sδ ++ =                        (5.24) 

and the k-th iteration for the loglikelihood is given by  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
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1
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δ γ γ δ φ
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α δ φ
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=
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 − + − + − 
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∑

∑
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   (5.25) 
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5.5. For Model 4 
5.5.1. M-Step for the Mixing Distribution 
Consider Formula (3.27)  

( ) ( ) ( )

( ) ( )

3
2

2 2

1 1 1 1

log 3 log log 2 log log 1
2

3 1 1log log 1
2 2 2

n n n n

i i i
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z z z
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γ δ δγ δ γ δγ

δ γ δγ
= = = =

= + + − π − + − +

 
− − − + + + 

 
∑ ∑ ∑ ∑

  (5.26) 

Maximizing with respect to δ  and γ  we have the following representation  

( ) ( )
23 2

23
1 1

0
1 1 1

n n
i

i
i i i

zn n z
z

δδ γδ γ
δγ δγγ δ γ = =
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∑ ∑           (5.27) 
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i ii i

zn n
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γγ δγ δ
δγ δγδ δ γ = =

+ − + =
+ + ++

∑ ∑           (5.28) 

5.5.2. E-Step 
The posterior expectations for the k-th iteration are:  

( )
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(5.29) 
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From Equations (5.27) and (5.28), we obtain the following iterative scheme    
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(5.33) 

and the k-th iteration for the loglikelihood is given by  
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5.6. For Model 5 
5.6.1. M-Step for the Mixing Distribution 
Consider Formula (3.30)  
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Maximizing with respect to δ  and γ  we have the following representation  
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5.6.2. E-Step 
The posterior expectations for the k-th iteration are:  
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These can be used to obtain the (k + 1)-th values as follows  
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The (k + 1)-th iteration of the log-likelihood function becomes  
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5.7. For Model 6 
5.7.1. M-Step for the Mixing Distribution 
Consider Formula (3.33)  
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Maximizing with respect to δ  and γ  we have the following representation  
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5.7.2. E-Step 
The posterior expectations for the k-th iteration are:  
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(5.45) 

From Equations (5.42) and (5.43), we obtain the following iterative scheme  
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and the k-th iteration for the loglikelihood is given by  
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Remarks:  
1) For all the proposed models, the β , µ  and α  parameters of the condi-

tional distribution are updated as follows:  
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2) The stopping criterion is when  
( ) ( )

( )

1k k

k

l l tol
l

−−
<  

where tol is the tolerance level chosen; e.g 10−6.  
3) Initial values used are moment estimates of NIG distribution as proposed 

by Karlis (2002).  

6. Application 
6.1. Fitting of the Proposed Models 

The data used in this research is the Shares of Chevron (CVX) weekly returns for 
the period 3/01/2000 to 1/07/2013 with 702 observations. The histogram for the 
weekly log-returns in shows that the data is negatively skewed and exhibiting 
heavy tails. The Q-Q plot shows that the normal distribution is not a good fit for 
the data especially at the tails. 

Table 1 provides descriptive statistics for the return series in consideration. 
We observe that the excess kurtosis of 2.768252 indicates the leptokurtic beha-
viour of the returns. The log-returns have a distribution with relatively heavier 
tails than the normal distribution. We observe skewness of −0.1886714 which 
indicates that the two tails of the returns behave slightly differently. 

 
Table 1. Summary Statistics for CVX weekly log-returns.  

Minimum Standard.dev skewness exc.kurtosis Maximum Mean N 

−13.76000 1.480436 −1.297339 8.10113 6.71400 0.08711 702 
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The proposed models are now fitted to CVX weekly log-returns. Using the 
sample estimates and the NIG estimators to the RRC data we obtain the follow-
ing estimates as initial values for the EM algorithm Karlis (2002).  

ˆ ˆˆ ˆ0.4190067, 0.1054991, 0.8324058, 0.3036691α β δ µ= = − = = . 

The initial values were used in all the proposed models to obtain the maxi-
mum likelihood estimates as shown in Table 2 below  

The parameter estimates from Table 2 are now fitted to RRC weekly log- 
returns. Figures 1-6 show the histogram and Q-Q plots of the RRC returns fit-
ted with the proposed models.  

Figures 1-6 show that the proposed model fit the data well. 
 

Table 2. Estimates for the proposed models.  

Parameter α̂  δ̂  β̂  µ̂  

Model 1 1.124238 1.574226 −0.2517274 0.572402 

Model 2 1.612872 2.805817 −0.4751398 0.9361947 

Model 3 0.976286 0.9163648 −0.1451396 0.4193146 

Model 4 1.167188 1.631209 −0.2491203 0.5691122 

Model 5 1.395091 1.480994 −0.2974406 0.6455598 

Model 6 1.426388 1.767935 −0.2627765 0.5908363 

 

 
Figure 1. Fitting Model 1 to CVX weekly log returns. 
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Figure 2. Fitting Model 2 to CVX log-weekly returns. 

 

 
Figure 3. Fitting Model 3 to CVX log-weekly returns. 
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Figure 4. Fitting Model 4 to CVX log-weekly returns. 

 

 
Figure 5. Fitting Model 5 to CVX log-weekly returns. 
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Figure 6. Fitting Model 6 to CVX log-weekly returns. 

 
Table 3 presents values of Alkaike Information Criterion (AIC), Bayesian In-

formation Creterion (BIC) and Log-likelihood. The values illustrate that the 
models are alternative to each other.  

Remark: 
Model 6 has the lowest AIC and BIC with the highest log-likelihood. It is the 

best fit for the data. Using Karlis [21] formulation, the Normal Inverse Gaussian 
(NIG) parameter estimates for the EM-algorithm are: ˆ 0.9265284α = ,  
ˆ 0.9265284δ = , ˆ 0.2429664β = − , ˆ 0.5578459µ = . The  
loglikelihood 1221.667= −  at 810tol −=  with 119 iterations. Therefore a finite 

mixture of 3 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ 
 
 

 is versatile compared to In-

verse Gaussian (IG) distribution.  

6.2. Risk Estimation and Backtesting 

We use the parameter estimates for our proposed model to determine the VaR 
and ES at levels { }0.001,0.01,0.05α ∈  as given in Table 4 and Table 5 respec-
tively. The three level are used to measure the risk of long position, We apply the 
Kupiec Likelihood Ratio (LR) test (Kupiec, [14]) which test the hypothesis that 
the expected proposition of violations is equal to α . The method consist of 
calculating ( )τ α  the number of times the observed returns, tx  falls below the 
VaRα  estimates at level α  as given in Table 6; i.e., tx VaRα< , and compare 
the corresponding failure rate to α . 
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The likelihood ratio statistic is given by  

( ) ( ) ( ) ( )
( ) ( ) ( )( )2log 1 2log 1

n
n

n n

τ α τ α
τ ατ ατ α τ α

α α
−

−   
− − − −   

   
    (6.1) 

where ( )τ α  is the number of violations. Under the null hypothesis this statistic 
is distributed as 2χ  distribution with one degree of freedom.  

Model 3 has the highest VaR and ES value indicating that it perform well than 
the other models at the tails. Table 7 gives the P-value for the Kupiec Test for 
Each Distribution.  

Remark: At 5 percent level of significant, the Normal distribution is rejected 
at levels at the level 0.001. The Normal weighted Inverse Gaussian distributions 
were all effective and well specified on all levels of VaR.  

 
Table 3. AIC, BIC and Log-likelihood values.  

Model Model 1 Model 2 Model 3 Model 4 

AIC 2453.276 2461.924 2473.254 2453.912 

Log-likelihood −1222.638 −1226.962 −1232.627 −1222.956 

 
Model Model 5 Model 6 

AIC Model 5 Model 6 

Log-likelihood −1223.504 −1191.753 

 
Table 4. VaR values of CVX log-returns based on normal and proposed models.  

 0.001 0.01 0.05 

Normal −4.487787 −3.356904 −2.347995 

Model 1 −6.373158 −4.008336 −2.376487 

Model 2 −5.603337 −3.706563 −2.321636 

Model 3 −6.6614465 −4.1473175 −2.4303994 

Model 4 −6.1845506 −3.9279027 −2.3550354 

Model 5 −6.005398 −3.881535 −2.358399 

Model 6 −5.618886 −3.685542 −2.286172 

 
Table 5. ES values of RRC log-returns based on normal and proposed models.  

 0.001 0.01 0.05 

Model 1 −7.417996 −5.033958 −3.392502 

Model 2 −6.417102 −4.532881 −3.181197 

Model 3 −7.776542 −5.236823 −3.499916 

Model 4 −7.177348 −4.907374 −3.333809 

Model 5 −6.918954 −4.805581 −3.304015 

Model 6 −6.450259 −4.527236 −3.154907 
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Table 6. Number of violations of VaR for each distribution at different levels.  

 0.001 0.01 0.05 

Normal 3 10 42 

Model 1 1 5 41 

Model 2 1 6 42 

Model 3 1 4 39 

Model 4 1 6 42 

Model 5 1 6 42 

Model 6 1 6 42 

 
Table 7. P-value for the Kupiec test for each distribution at different levels.  

 0.001 0.01 0.05 

Normal 0.04222549 0.2879388 0.245805 

Model 1 0.7381375 0.4191802 0.3190668 

Model 2 0.7381375 0.691514 0.245805 

Model 3 0.7381375 0.2126411 0.5066538 

Model 4 0.7381375 0.691514 0.245805 

Model 5 0.7381375 0.691514 0.245805 

Model 6 0.7381375 0.691514 0.245805 

7. Conclusions 

In this work we constructed a class of weighted inverse Gaussian Distribution by 
considering a finite mixture of two special cases of Generalized Inverse Gaussian  

distribution. We considered the cases when the indexes are 1
2

− , 1
2

, 3
2

−  and 

3
2

. These special cases are also weighted inverse Gaussian distributions. 

We further used the class as mixing distributions to construct the Normal Va-
riance-Mean Mixtures. The parameter estimates were obtained using the Expec-
tation Maximization (EM) algorithm. We obtained a monotonic convergence for 
the iterative schemes of the models using the method of moments estimates of 
NIG as initial values. 

We used AIC, BIC and loglikelihood for model selection. The model with 

the mixing distribution based on a finite mixture for 3 , ,
2

GIG δ γ − 
 

 and 

3 , ,
2

GIG δ γ 
 
 

 was found to be the best model. The results show that the six 

models are sufficient for VaR computation. 
Further work can be done on Normal Mixtures when the mixing distributions 

are Finite mixtures of higher indexes.  
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