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Abstract

The Normal Inverse Gaussian (NIG) distribution, a special case of the Genera-
lized Hyperbolic Distribution (GHD) has been frequently used for financial
modelling and risk measures. In this work, we consider other normal Variance
mean mixtures based on finite mixtures of special cases for Generalised In-
verse Gaussian as mixing distributions. The Expectation-Maximization (EM)
algorithm has been used to obtain the Maximum Likelihood (ML) estimates
of the proposed models for some financial data. We estimate Value at risk
(VaR) and Expected Shortfall (ES) for the fitted models. The Kupiec likelih-
ood ratio (LR) has been applied for backtesting of VaR. Akaike Information
Creterion (AIC), Bayesian Information Creterion (BIC) and Log-likelihood
have been used for model selection. The results clearly show that the pro-
posed models are good alternatives to NIG for determining VaR and ES.

Keywords

Risk Measures, Backtesting, Weighted Distribution, Normal Mixture,
EM-Algorithm

1. Introduction

The most popular measures for financial risk are Value at Risk (VaR) and Ex-

pected Shortfall (ES). These risk measures are based on return distributions. VaR

is generally defined as possible maximum loss over a given holding period with-

in a fixed confidence level. An attractive feature of VaR is the backtestability of

the measure. Backtesting is a method that uses historical data to gauge accuracy

and effectiveness (Zhang and Nadarajah [1]). However, the main shortcoming of
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VaR is that it ignores any loss beyond the value at risk level. That is, it fails to
capture tail risk. It also lacks a mathematical property called subadditivity as
stated by Wimmerstedt [2]. That is, VaR for two combined portfolios can be
larger than VaR for the sum of the two portfolios independently. This implies
that diversification could increase risk, a contradiction to standard beliefs in
finance.

Artzner et al. [3] [4] have proposed the use of Expected Shortfall (ES) also
called conditional Value at Risk (CVaR) to circumvent the problems inherent in
VaR. Expected Shortfall is the conditional expectation of loss given that the loss
is beyond the VaR level. Nadarajah et a/ [5] have given a detailed review of VaR
and ES for various distributions. One of the distributions reviewed is the Gene-
ralized Hyperbolic Distribution (GHD) introduced by Barndorff-Nielsen [6] as a
Normal Variance-Mean Mixture with the Generalized Inverse Gaussian (GIG)
distribution as the mixing distribution. The most common special case is Nor-
mal Inverse Gaussian (NIG) distribution introduced by Barndorff-Nielsen [7]

with the Inverse Gaussian (IG) as the mixing distribution.
The objective of this paper is to determine VaR and ES for some financial
data using Normal Weighted Inverse Gaussian (NWIG) distributions. In par-

1
ticular we consider Normal mixtures with finite mixtures of GIG(E,&;/),

GIG[—%,&‘,;/J and GIG(%,&,;/) as mixing distribution. We study their

properties and estimate parameters using the Expectation Maximization algo-
rithm introduced by Dempster et al [8]. Akaike Information Creterion (AIC),
Bayesian Information Creterion (BIC) and Log-likelihood have been used for
model selection.

The concept of a weighted distribution was introduced by Fisher [9] and ela-
borated by Patil and Rao [10]. Reciprocal Inverse Gaussian and the finite mix-
ture of Inverse Gaussian and Reciprocal Inverse Gaussian distribution are shown
to be Weighted Inverse Gaussian (WIG) distributions by Akman and Gupta [11],
Gupta and Akman [12], Gupta and Kundu [13]. Backtesting for value at Risk of
the proposed models we use the Kupiec likelihood ratio (LR) introduced by Ku-
piec [14].

2. Value at Risk and Expected Shortfall: Mathematical
Background

The most important risk measures despite their drawbacks are Value at Risk
(VaR) and Expected Shortfall (ES). VaR was proposed by Till Guldimann in the
late 1980s, and at the time he was the head of global research at J. P. Morgan.

Value at Risk is generally defined as possible maximum loss over a given hold-
ing period within a fixed confidence level. Mathematically VaR at the (100-a)
percent confidence level is defined as the lower 100a percentile of the profit-loss
distribution.

In statistical terms, VaR is a quantile of distribution for financial asset returns.
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More formally, VaR is defined as
P{X <-VaR’, } =« (2.1)

where Xrepresents the Asset’s returns. In integral form it can be expressed as
X
[t (x)dx=a (2.2)

where f{x) is the profit-loss distribution.

The concept of Expected Shortfall (ES) was first introduced in Rappoport [15].
Artzner et al [3] [4] formally developed the concept. ES is the conditional ex-
pectation of loss given that the loss is beyond the VaR level and measures how
much one can lose on average in the states beyond the VaR level.

From Equation (2.2)

1 ke f(x)dx=1 (2.3)
o

f(x)

(24

Therefore is a pdf for —o < x <VaR, and we refer to it as “Tail loss

distribution”.
Conditional Expectation

E[X|X <VaR,]=["" LMY (2.4)
- a

is the Expected Shortfall denoted as ES, . This version was used by Yamai and
Yoshima [16] to obtain the ES for a normal distribution. Equation (2.4) can be
expressed in a different version as follows: Defining Hx) as the cdf of the ran-
dom variable X, let
u=F(x)=x=F"(u)

s.du = f(x)dx
when

X=—0=U=0

x=VaR, =>u=a
ES _irF‘l(u)du—ijaVaR du (2.5)
.. a—a 0 _a 0 u .

as presented by Zhang et al. [17].
Remarks: Equation (2.4) is the mean of the loss distribution. Equation (2.5)
represents the average of the VaR between 0 and « . The loss distribution,
f(x)

(24

,—o < x<VaR_ gives the tail distribution.

For the purpose of VaR and ES analysis, a model for the return distribution is
important because it describes the potential behaviour of a financial security in
the future (Bams and Wielhouwer [18]). A Normal distribution supposedly un-
derestimates the tail and hence VaR. Recently alternative distributions have been

proposed that focus more on tail behaviour of the returns. One such candidate is
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the Normal Inverse Gaussian (NIG) distribution. We consider extensions of NIG
distribution as Normal Weighted Inverse Gaussian (NWIG) distributions. In the
next few sections we give a detailed illustration on their construction, properties

and parameter estimation via EM-algorithm.

3. Weighted Inverse Gaussian Distribution

Let Zbe a random variable with pdf f(z). A function of Z, w(Z) is also a

random variable with expectation

E[w(Z)]=]" w(z)f(z)dz
= W(z)
A= ———=f(z)dz
~E[w(z)]
Thus
w(z)
0(2) = b
E[w(z)]
is a weighted distribution. It was introduced by Fisher [9] and elaborated by Pa-
til and Rao [10].

In this work we consider weighted distribution for the Inverse Gaussian (IG)

f(Z),—oo<X<oo (3.1)

distribution.
Now, suppose Z ~ 1G(y,5) the Inverse Gaussian distribution with para-

meters y and J and probability density function given by

f(z):iexp(ﬁy)z% exp 1 5—2+yzz (3.2)
N 2\ z
IG is a special case of the Generalised Inverse Gaussian (GIG) distribution.

Generalised Inverse Gaussian

The Generalised Inverse Gaussian (GIG) Distribution is based on modified Bes-
sel function of the third kind. Modified Bessel function of the third kind of order
A evaluatedat @ denotedby K, (w) is defined as

o, 1
K, (0)= %j: x“eig(xijdx (3.3)

with the following properties

T

K, (w)=K , (w)=,—e 3.4
a) %( ) %( ) 20 (3.4)
b) K, (0)=K ,(0)= iew(ulj (3.5)

2 ) 2(0 [0}

T 3 3
Ki(w)=K . (0)=,—e“|1+—+— 3.6
9 Ks(0)=K s (0)= e (1424 % 36)

e 6 15 15
d K. (w)=K ,(w)=,—|1+—+—+— 3.7
) Ks(0)=K 5 (0)= e (102422 8 67)
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[ 0] 2] @

[% _.(, 15 105 420 945 945
f) Kll(CO):Kll(a)): Ze (1—"_54_?-}_?4_?4_?) (39)

(. 10 45 105 105
e) Ky (0)=K 4 (@)= /%e [1+—+—2+—3+—4j (3.8)

which are necessary in deriving the properties and estimates of the proposed

models. For more definition and properties see Abramowitz and Stegun [19].

Using Parametrization @ =38y and transformation ngz then Formula

2 2
K,(67)= %.[:(éj 71 exp{—%(%ﬂxzzj}dz

(rY_ L8,
g(z)_(aj 2K1(5y)exp{ 2( 7 7 Zj} (3.10)

2>0;—0<A<0,6>0,y>0

(3.3) becomes

Hence

which is a Generalized Inverse Gaussian (GIG) distribution with parameter

1,0,y .
Thus
Z ~GIG(4,6,7)
with
"K
E(Z’)z(éj Ko (07) (3.11)
Y K, (57)

where r can be positive or negative integers.

Consider the following special weights:

Case 1:
Let
w(Z)=1+2
w =)/+5
e (w(z))="2
9(z) /4 (1+2)f(z) (3.12)

- y+0

which is also a finite mixture of GIG (—%, 5,;/) and GIG [%,5, 7/) . That is

9(z)= pGIG(%,6,7j+(1— p)GIG(—%,(S,yj

with

_ 7
p;/+5
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The mean and variance for the weighted distribution are

O+ o
E[z]=w (3.13)
7°(y+9)
and
2.2 3 2 3
Var(z):357+25 74+57 +225 +0°y (3.14)
y' (6+7y)
Case 2:
Let
1 1
Z)=1 — 3.15
W( ) +1+5;/Z ( )
1+ 682
5° 11
=—1 —|f 3.16
9(2) l+52(+1+5y2j (2) (3.16)

which is also a finite mixture of GIG (—%, 5,;/) and GIG (—g,é‘, yj . That is

9(z)= pGIG(—%,(S, ;/J+(1— p)GIG[—g.& J’j

with
52
Pl

The mean and variance for the weighted distribution are

& S(1+y)+y
E[Z]_1+52[ y(1+57) } G17)
2 2 2 2 2
var(2) = 5 2 Sy §§(1+5y) 5 2(5(1+5}/)+72/)
1+6°| P 1+dy)  1+8° y(1+0y)
, , (3.18)
8 (1" +(@+ ) )(1+87) 1+ 8y) -5y (5(1+67)+7)
- 3 2 2\2
7 (1+3y) (1+6%)
Case 3:
Let
ZZ
w(Z)= +l+57 (3.19)
3
E[w(z)]=L32 (3.20)
y
3 2
. _ 7 z
..g(z)_y3+5[1+1+5yjf(z) (3.21)
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which is also a finite mixture of GIG (—%, 5,;/) and GIG [g,é‘, 7) . That is

o(2)= pGIG(—%,é,y}r(l— p)GIG(%,é‘,yj

with

3

_ Y
P )/3+5

The mean and variance for the weighted distribution are

3 4 3,2 2
E[z]- 3;/ Sy (1+5;/)5+57/ +35°y+36 (3.22)
¥ +8 y (1+57)
ot (1+8y)+8%* +35%y +36
_or( +27)+ ot (3.23)
/4 (l+5;/)(7 +é')
(5}/6 (1+0y) +5%* +105°y° + 4557 +1055%y +1055)(1+ &) (r*+9)
var(Z)= - T (3.24)
y (1+57) (7/ +5)
(87 (1+67)+ 6% +35%y +35) 625)
_ 3.25
76(1+57/)2(73+5)
Case 4:
Let
1 1
Z)=Z — 3.26
W( ) +l+§}/z ( )
and using Formula (3.11)
S+y
E Z)|=
752 1 1
= ——|f 3.27
9(2) 53+7[Z+1+57 ZJ (2) (3.27)

which is also a finite mixture of GIG (% 5,}/) and GIG(—%,& 7/] . That is

9(z)= pGIG(%,&,ijr(l— p)GIG(—%,ﬁ,yj

with
63
- S+ ¥

p

The mean and variance for the weighted distribution are
E[Z]

S (1+y) +6%°
72 (1+ 5)/)(53 + 7/)

(3.28)

and
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52 ((53;/2 +36%y +36)(1+07) + 574)(1+ &) (8% +y)-6" (5(1+ sy) + }/3)2

var(Z)= (3.29)
71+ 57/)2 (53 + ;/)2
Case 5:
Let
ZZ
7Z)=
W( ) +1+5}/
5(72+1)
E[w(Z)]=——
Y
3 2
y z
~g(z)= Z+ f(z 3.30
O e 330
which is also a finite mixture of G|G(%,5,7j and GIG(%,&,}/).That is
1 3
9(z)= pGIG(E,&y}L(l— p)GIG(E,&yJ
with
2
_ 7
p_;/z +1
The mean and variance for the weighted distribution are
2 2 2,2
E[Z]:y (1+257/) +5 72+35)/+3 (3.31)
14 (1+57/)(7 +l)
@) ((527/2 +35y +3)(1+87)y* +(8%° + 657 +1557/+15))(1+ &7)(r* +1)
var(Z)=
1+ 5)/)2 (7/2 -1-1)2
, (3.32)
(;/2 (1+6y ) +5%7 +357+3)
)/4 (1+ 5}/)2 (;/2 -1-1)2
Case 6:
Let
w(z)=%+z2
3 3
(;/ +0 )(l+5)/)
3¢2
. 7o [1 2}
Lg(2)=—m——| =+2° | f (2 3.33
9(z) (°+6°%)(1+0y)L 2 (2) (3:33)

which is also a finite mixture of GIG (—%, 5,;/) and GIG (g,é‘, 7/) . That is

9(z)= pGIG(—%,&,yJ+(1— p)GIGG,&J/j
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with
p=—
7/3 + 53
The mean and variance for the weighted distribution are
E[z]=6" 1 % (3.34)
1+ 0y }/2 (7/3+§3)

and
3(1+07)° 8°[57° +26° [+ 8% +25%° + 5%

: (3.35)
[ (;/3 +53) (1+ 5}/)

var(Z)=

4. Normal Variance-Mean Mixture

A stochastic representation of a Normal Variance-Mean mixture is given by let-
ting Let
X = p+ pZ +ZY

where

Y ~N(01)

and Z independent of Y} is a positive random variable.
If H(x) is a cdf of X, then

F(x)= prob{X <x}
- <X—,u——ﬂ2 <7<w
—{Y_ 7 ,0<z }
=j:j:l%¢(y)g(z)dydz
:I:CD(—X_’\E’BZJQ(Z)dZ

where ¢(-) and ®(-) are pdf and cdf of a standard normal distribution, re-

spectively.
o 1 X—u—pz
S f(x)=| —=¢| ————|g(z)dz
(9-0; 4o 4222 o)
4.1
L1 et @
= e z)dz
‘[0 N2z 9(2)
Thus we have a hierarchical representation as
X/Z=72~N(u+pz,12) (4.2)
being the conditional pdf and g(2) the mixing distribution.
If
Z ~GIG(4,8,7) (4.3)

we obtain the Generalized Hyperbolic Distribution (GHD) introduced by Barn-
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dorff-Nielsen [6].
In general the integral formulation for constructing the Weighted Inverse Gaus-

sian (WIG) distributions is presented as

2
5eb‘yeﬂ(x—y) " W(Z) L _E{ﬁzfi’x +a’1

f(x)= o . E[W(Z)]Z }dz (4.4)

We now construct six (6) models based on the special cases developed above.
Model 1:

Assuming case 1 presented by Formulation (3.12) the mixed model becomes
5ye57 /)
f(x)= D) \/7 Ky (@08 (x))+ K, (@0 g (%)) (4.5)

With the following properties

B(5+3y(y+05))
E(X)=pu+ (4.6)
and
S (1420 )+ 6/ (1+ & 253 25(3y+268
var(X)= ’ ( e )+ 4 ( ja )+6; 7453 +29) (4.7)
7 (6+7)
Model 2:

Assuming case 2 presented by Formulation (3.16) the mixed model becomes

X)= 5e%eltw) { \/7 (Q5W)+ K, (aém)} (4.8)

(1+52)

With the following properties

E(X):Mﬂlf;{&(j&f@;q o)
and
w555 v
. i [53 (72 +(1+ 57)2)(1+ 8°)(1+ 5y)_54y(5(1+5y)+y)2] (4.10)
7 (1+8y) (1+5° )2
Model 3:

Assuming case 3 presented by Formulation (3.21) the mixed model becomes

_7ebyeﬂ(X#)( ¢(x)){ ? (L+37)+ 5°p(X)} K (0‘5\/7) (411)

an(73 +5)(1+ 5)

-1

With the following properties
Sy (1+07)+ 8% % +35%y +35

(o) (73 +5) (4.12)

E(X)=u+p
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Syt (1+8y)+ 8% +35%y +35
72 (1+ 5)/)(;/3 +5)

p (5}/6 (1+y) + 5% +105*° +455%)° +105527+1055)(1+ &) (r*+9) iy
y° (l+5}/)2 (7/3+5) '

var (X )=

(87° (L+07)+ 5% +35% +35)
7° (1+ 57/)2 (7/3 + 5)

Model 4:

Assuming case 4 presented by Formulation (3.27) the mixed model becomes

f(x)= yse e/ H) {(l+ 57)5%( (a5 ( )

np(x)(5° +7)(1+07) (4.14)
+a2K2(a5m)}

With the following properties

8% (1+8y) +6%°
E(X)=u+p 2( 7) ; ! (4.15)
y (1+57/)(5 +y)
3 2 2.3
var(x): 52 (1+5}/) +3§ 14
7 (1+0y)(8°+7)
2((s3,2 2 4 3 4 2 3)\? (4.16)
(5 ((8°2 +38% +38) (L4 8y )+ 87 (14 07)(6 + 1) -8 (S (1+ 87 ) +1°)
-B
74 (1+5}/)2 (534-7/)2
Model 5:
Assuming case 5 presented by Formulation (3.30) the mixed model becomes
3,87 o B(x—4)
A {a(1+67) K, (a0 (X)) + 6./ ( 58(x))f 417
om(1+5}/)<72+1) 7)K (a ) (a " )) .17
With the following properties
2(1+8y)" +6%% +387 +3
E(X):,u+ﬂy( /) e (4.18)
y (1+57/)(7 +1)
2 2 2,2
var(X)=7/ (1+2§7) +6 72+35;/+3
y (1+5;/)()/ +1)
i ((52}/2 +367 +3)(1+87)y* + (5% + 657y +155y +15))(1+ o7)(r*+1)
-B (4.19)
71+ 5}/)2 (7/2 +1)2
(" (@) + 5% +35}/+3)2
rt(1+ 5y (}/2 +1)2
Model 6:

Assuming case 6 presented by Formulation (3.33) the mixed model becomes
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8%y (a?5+7)+3(1+ sy) &8 [az (7 +6%)+ B (4°+ 53)] +(2/°+6%)5%° [az (1+57) —/52]

f(x)= Syereftm) ){a3K2(a5m)+(5 WY Kl(a5m)}(4-20)

aﬂ¢(x)(53 + ;/3)(1+ Sy
With the following properties
E(X)=u+pBE(Z)

:u+ﬁ52[ 35 j (4.21)

l+5}/+y2(7/3+53)

var(X)=E(Z)+ p*var(Z) (4.22)

(4.23)
P (P48 (L oy)

5. Maximum Likelihood Estimation via
Expectation-Maximization (EM) Algorithm

EM algorithm is a powerful technique for maximum likelihood estimation for
data containing missing values or data that can be considered as containing miss-
ing values. It was introduced by Dempster et al. [8].

Assume that the true data are made of an observed part X and unobserved

part Z This then ensures the log likelihood of the complete data (x;,z;) for

i=123,---,n factorizes into two parts (Kostas, [20]). ie.,
logL = Iogf[ f (xi/zi)+logﬁg(zi)
i1 i1
:iZ;:Iog f (xi/zi)+iZ;:Iog 9(z)
where
I, :Zn:Iog f(x/z)
i
and
I, =iZ:l:Iogg(zi)

Karlis [21] applied EM algorithm to mixtures which he considered to consist
of two parts; the conditional pdf is for observed data and the mixing distribution

is based on an unobserved data, the missing values.

5.1. M-Step for Conditional pdf

Since the conditional distribution for the six models is normal distribution as

presented in Formula (4.2), we have

| =—E|Og(2n)—li|092-—iw
' 2 2 = 2z,

Therefore
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X Z
where X = zin:lF' and 7 = Z-, -
Similarly,

o L. N
S h=0= X iy nf=0

i=1 Zi i=1 Zi

5.2. For Model 1

Consider Formula (3.12)

5.2.1. M-Step
l, :n5y+nIogéy—glog(Zn)—nlog(y+5)
5.1
n 3¢ &1 Y &1
+ log(1+z)-=>log(z)——>.———>.7
i1 2 23z 23
Maximizing with respectto 0 and ¥ we have the following representation
? 1+%
) 5(7+3)
o= Ezn l (5.2)
Ntz
5 1+%
A }/(}/—1-5)

1
HZL 4

5.2.2. E-Step
Since the Values of random variables Z; and Zi are unknown, we estimate

1
them by considering posterior expectations E(Z;/X;) and E [Z_J .

In general,
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[ et (x/z)g(z)dz
_f f( (2)

.[:% f(x/z)g(z)dz
E(l/xj: [ f(x/2)g(z)dz

E(Z/X)=

z

In general let

:E(Zi/Xi)

el
o <x.>>+<cs> )
| 58 (0K ( 8 (x) )+ () 547 ()

and

We therefore have the following iterative scheme

), 1
) 71+ 3(k)(7;(k)+5‘(k))]
5(k+l) — L - (54)
W
"(k+1) ;
) 1+ ?(k) (?(k) + 5D )]
}'/\(k+1) — L (5 5)
=y '
n _\w®)
B 2 (% -X)w (5.6)
n(1—§ k)v—v(k))
A =5 gl (5.7)
1
2 ~ 2
a,\(kJrl) _ |:(7f/\(k+1)) +(ﬂ(k+1)) :|2 (5.8)
where
W
w=S 1
2
and
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and the 4-th iteration is given as

I(k):nlogé(k)y(k)+n5(k)7(k)+nﬂ(k)i—nﬂ(k)y(k)—nlog( y )46 ))

N a ) 5(6) [4(0) (x)
#2log) — ’ Kl(a PCNP (xi) ( 150 [ )

Note that the iterative for # and g is the same for all the models consi-

dered below. The posterior estimates differentiate the values obtained.

5.3. For Model 2
Consider Formula (3.16)
5.3.1. M-Step

I, =3nlog s + né;/—nIog(1+52)—glog(2n)—§ilog Z;
i=1
7,2 n n 1
log| 1 2Ly, 2y
O e e )

i=1 Z; i=1 |1Z|

(5.9)

Maximizing with respectto 0 and ¥ we have the following representation

1 n 1
ol n— )
{n 1+6y Z':11+(1+ 57)2J

7= - (5.10)
Zi:lzi
gn+ns” N1 N 1
5(1+6?) 1 ey =1z,
S = T (5.11)
Zi:l?i
5.3.2. E-Step
The posterior expectations for the &-th iteration are:
. o s® ¢(k)(xi)K1(a<k)5(k> M (x )) (1+5 )52¢ X Ko(a (X.))
s =
(1+5<k)y<k))a<k>5<k> ¢(k)(xi)Kl(a(k)5(k) A (x) ) a ? 2(a (X.))
. (1 +5<k>y<k>)a<k)5<k> ¢(k)(xi)K2(a(k)5(k) M (x) ) Ks(a (X.))
MOPC! ¢(k)(xi)K2(a(k)5(k) A (x )) (1 PCNG )( ) (% Kl( 17 (x) )
We therefore have the following iterative scheme
(k) n 1 n 1
” 1+ 6™ 1+ (1460 )5
= - (5.12)
2
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ZLWi(k’

and the 4-th iteration for the log likelihood is given by

“ =nlog 5™ +ns®y" + g x, —nﬁ(k)y(k)—nlog( 1+ 5<k> D

i=1

- Zn: log (¢(k) (% )) + Zn: log{a™s™ g™ (x)K, (a(k)é(k),lyﬁ(k) (x)) (5.14)

(]
) (a<k>5<k) ) ( )
14500,00 2 7 (x)

5.4. For Model 3

5.4.1. M-Step for the Mixing Distribution
Consider Formula (3.21)

l, =nlog & +3nlogy + n5;/—glog(27c)—nlog(1+6;/)—nlog(7/3 +5)
(5.15)

n 2 n 2

+Zn:Iog(1+57+ zf)—gZIog Z, _5 i_%izi

i=1 i=1 2 Tz i-1

Maximizing with respectto d and y we have the following representation

2 n n
(ng ZJ 21: ::,nfs =0 (5.16)

1+oy I l+5y+z y+5

n n 3
ny’ _Zl 52+ 4 —+ 27 -0 (5.17)
1+0y Iz ial+oy+z y+0o

Both equations are quadraticin y and J respectively.

5.4.2. E-Step
The posterior expectations for the 4-th iteration are:

0 00T o100 7)o L o )
i [((w ) (1+8%59) (59 g (X)} K, (a<k>5<k> " (X))

O L e e A L R )
(s <1+a~ >J— +<a Tl ﬂa( )
) I G )

oy <<k>>< e >2¢ <.}K1( )

—_
=
+
<,

N —

—_
Q/‘\

N

—_—
S

=

N —

N
S;
/—\
]
N—
N—
+
><
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Now, define the iterative scheme as follows:

let
A
all = n(5 ) _Zs_(k)
1+6%,0
) = 5(k)
1+6™ 7/ +v()
Cl(k+l)_ 3ns™
<y(k>)3 L5
let

t(k+1) _bl(k+l) _\/(bl(kﬂ) 4aik+1 (k+1)

(k+1)

23
using the square root transformation, we have

7k+1 — lt(k+1)

Similarly, define

(k+1)\?
. n{y n
alkd — ( k)ﬂ gwl(k)

1+6™

o -3 5<k>7<k+1)
=1+6Y 7/ +v()
(k+1)
k+1): n(}/ )

let

S(k+1) _

_b£k+1)_\/(b§k+l)) 4a2k+1 (k+1)

2 azk +1)

using the square root transformation, we have
5k+1 — S(k+l)

and the 4-th iteration for the loglikelihood is given by

n
1) = 3nlog )+ 15 + SO (x, - )~ nlog e

=1

—nIog(l+5(")y(k))—nlog((;f ) j—%ilogqﬁ (x)
Soo] ) (1) 5

+Z log K, (a(k)a(”,/qﬁ(k) (% ))

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)
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5.5. For Model 4
5.5.1. M-Step for the Mixing Distribution
Consider Formula (3.27)
l, =nlogy +3nlog s + nﬁy—glog(Zn) —~nlog(8° +7)—-nlog(1+5y)
(5.26)
i=1 i=1 4 i=1 i=1 j
Maximizing with respectto J and y we have the following representation
no* Lo 2 n 87’

- +y———>=0 (5.27)

7(53 +},) 1+6y "3 T 1+(1+ 7))z

3ny oy’ o1 Q yz?
P T S L R 5.28
5<53+7,)+1+5y ézi +§1+(1+5y)zi2 5:28)

5.5.2. E-Step

The posterior expectations for the &-th iteration are:
. {(lﬂg 9)(a" )3( ¢(k)(xi))3+(a(k))2§(k) ¢(k)(xi)}Kl(a(k)5(k) ¢(k)(xi))
s = o (10 )( )2 ¢(k)(xi)K0(a(k)5(k) ¢(k)(xi))+(a(k))3 Kz(a(k)é‘(k) ¢‘k)(xi))
o) (" )2(1 5% )¢ Kl(a(k)5(k) ¢(k)(xi)) +(a(k))3 K3(a<k)5(k> ¢(k)(xi))
(1+5k7k)(5<k> 49 (x )3 ( \/7) ( ) <k>(x)K2(a<k>§(k> ¢(k)(xi))
(1+5 9)(s" (a )+(a(k))2 Ko(a(k)5(k) ¢(")(xi))
( ()) (1+5 ) ( (1) 5(0) ¢<)( ))+(a(k))2 Kz(a(k)é(k) ¢(k)(xi))

From Equations (5.27) and (5.28), we obtain the following iterative scheme

0)? ®) [ 500
n(é( ) Jrn;/ (5 )+z(k) 5(k)zi2
S0 (( 5 )3 . y<k>) LWy 0 (146009 22
= . (5.32)
®)
Zi:lsi
2
3m/(k+1) +n5(k)(},(k+1)) = 7/(k+1)ziz
[ <0V, (k1) 14+ 5K, (k) Z +1 A 22
0 (5 ) +y toy +6® z;
' (5.33)

DI

and the 4-th iteration for the loglikelihood is given by

19 = nlog 5% + ne® ¥ A3 % —nph
i=1

—nlog ((1+ 5(k)y(k))n((6(k) )3 +yW D - Zn: log ") (x, )
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+Zlog{(1+5 9)(5%) ¢ (x ( 9500 ¢(k>(x))

(5.34)
()t a0
5.6. For Model 5
5.6.1. M-Step for the Mixing Distribution
Consider Formula (3.30)
I, =3nlog y + ndy—ﬂlog(Zn)— nlog(y* +1)-nlog(1+5y)
. 2 0 5201 (5.35)
——Zlogz +Z[Iog(1+5y+z )]- LNy -2y =

Maximizing with respectto d and y we have the following representation
3n+2ndy .
Z, |+ n+
-0) ( & j B

n 1
1+5y +yYy - zl_i_o (5.37)

(5.36)
11+ 57 +7

:11+5;/+z

5.6.2. E-Step

The posterior expectations for the 4-th iteration are:

NOPC! ¢(k)(x)(l +§(k)y(k))Kl(a(k)§(k) ¢(k)(x)) +5(k>¢<k)(x)(1 +5<k>7<k))K2(a<k>(5<k> ¢(k)(x))

(k+1) _
s =
(a<k>)2(1+5<k)y<k>)K0(a(k>5<k> ¢<k)(x))+a<k>5<k> ¢(k)(x)K1(a(k)5(k) ¢<k>(x))
2
o (aw) (1 +5(k)7(k))Kl(a(k)5(k) /¢(k)(x)) + a5 59 (K, (5 ¢<k)(x))
Wi = 2
o 5®) ¢(k)(x)K0(a(k)5(k) ¢<k)(x))+(5<k>) A (x)K, (5% ¢<k)(x))
. ()(1+5<) <>)(5<k>) ¢(k)(x)K2(a(k)5(k) ¢<k>(x))+(5<k> ¢(")(x))3 Ka(a(k)é‘(k) ¢(k)(x))
+1
V: =
i 3
(a(k)) (1+5< )y k>)Ko(a<k>5<k) ¢(k)(x))+<a(k)) 5® ¢(k)(x)Kl(a(k 50 ¢(k)(x))
These can be used to obtain the (kX + 1)-th values as follows
3+26M% ol 1o 1
7<k>(1+5<k)y<k))+5 1+Hzi:11+5<k>7(k>+si<k>
) = 5 (5.38)
— +50
(7(k)) +1
2
ns® (7,(k+1)) (k+1)zn 1
74_7/ T
R (k) (k+1) i=1 (), (+1)
5(k+1)= 1+0%y — 1+6y +5 (5.39)
nw
The (k+ 1)-th iteration of the log-likelihood function becomes
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n
I (k+1) -3n Iog;/ (k+1) + né‘(kﬂ) (k+1) +ﬂ (k+1) zxi _ nﬂ(k+l)ﬂ(k+l)

i=1

—nlog (a(kﬂ)n((}/ (k+2) ) +1)(1+5 (k+1), (k+1) )j
(5.40)

+ z": |og |:a(k+1) (1+ 5(k+1)7/(k+1) ) KO (a(k+1)5(k+1) ¢(k+1) (X))

L stk ¢(k+1)(X)Kl(a(k+1)5(k+1) ¢(k+1)(x)):|

5.7.For Model 6
5.7.1. M-Step for the Mixing Distribution

Consider Formula (3.33)

I, =3nlog s +3n Iogy+n5y—ﬂlog(2n)—

+i|og(zii+zij——z|09( )~ %izu—%ziz_

Maximizing with respectto d and y we have the following representation

3
36° (1+6y) (5.42)

37°(1+6y) (5.43)

5.7.2. E-Step
The posterior expectations for the 4-th iteration are

T TR e T,

)m( )(5<k))3(¢<k>(x))§ Kl(a(k)é(k) ¢(k)(x))

Kz(a

K3(06 )+a()((5(k) ¢(k)(x))3 Ko(a(k)5(k) ¢(k>(x))
(5.45)

Wi(k)_ :
( )\/ ™ ( ( (x))+((5(k))2¢(k)(x)) Kl(a(k)(g(k) ¢(k)(x))

From Equations (5.42) and (5.43), we obtain the following iterative scheme

o) _ 3(6") (1+6) (5.46)
A o) a5 (o) )
e 3(r" ) (187" (5.47)

R

and the 4-th iteration for the loglikelihood is given by
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n

1 =3nlog ) +nlog 5™ +ns™ ) + gt Z::(xi—y(k))
_n|09( n((é )3+ 7 )3 (1+§ )j Zlogqﬁ (%)
\ = (5.48)
+Zlog{ Kz(a K o (X.))
+(5<> 5 (x )SKl(a \J§ —)}

Remarks:

>

1) For all the proposed models, the g, x and o parameters of the condi-

tional distribution are updated as follows:
n - k
B — 2ia(% _X)Wi( )

l n k n k
n _HZizlsi( )Zi:lwi( )

Gl _ {(7(1“1) )2 +(ﬂ(k+1) )Zf

2) The stopping criterion is when
() _ (k-2

where tol is the tolerance level chosen; e.g 107.
3) Initial values used are moment estimates of NIG distribution as proposed
by Karlis (2002).

6. Application
6.1. Fitting of the Proposed Models

The data used in this research is the Shares of Chevron (CVX) weekly returns for
the period 3/01/2000 to 1/07/2013 with 702 observations. The histogram for the
weekly log-returns in shows that the data is negatively skewed and exhibiting
heavy tails. The Q-Q plot shows that the normal distribution is not a good fit for
the data especially at the tails.

Table 1 provides descriptive statistics for the return series in consideration.
We observe that the excess kurtosis of 2.768252 indicates the leptokurtic beha-
viour of the returns. The log-returns have a distribution with relatively heavier
tails than the normal distribution. We observe skewness of —0.1886714 which
indicates that the two tails of the returns behave slightly differently.

Table 1. Summary Statistics for CVX weekly log-returns.

Minimum Standard.dev skewness  exc.kurtosis Maximum Mean N
—13.76000 1.480436 —-1.297339 8.10113 6.71400 0.08711 702
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The proposed models are now fitted to CVX weekly log-returns. Using the

sample estimates and the NIG estimators to the RRC data we obtain the follow-

ing estimates as initial values for the EM algorithm Karlis (2002).
& = 0.4190067, 3 = —0.1054991, 5 = 0.8324058, /2 = 0.3036691 .

The initial values were used in all the proposed models to obtain the maxi-

mum likelihood estimates as shown in Table 2 below

The parameter estimates from Table 2 are now fitted to RRC weekly log-

returns. Figures 1-6 show the histogram and Q-Q plots of the RRC returns fit-

ted with the

proposed models.

Figures 1-6 show that the proposed model fit the data well.

Table 2. Estimates for the proposed models.

Parameter a ) B i
Model 1 1.124238 1.574226 -0.2517274 0.572402
Model 2 1.612872 2.805817 -0.4751398 0.9361947
Model 3 0.976286 0.9163648 -0.1451396 0.4193146
Model 4 1.167188 1.631209 -0.2491203 0.5691122
Model 5 1.395091 1.480994 —-0.2974406 0.6455598
Model 6 1.426388 1.767935 -0.2627765 0.5908363

Density
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.00

Figure 1.

proposed Model & Normal

—— Proposed Model
— |\ = Normal

‘ I

[ T I 1
-10 -5 0 5

RRC weekly log-returns

Fitting Model 1 to CVX weekly log returns.
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0.00
|
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[ I T ]
-10 -5 0 5

CVX weekly log-returns

Figure 2. Fitting Model 2 to CVX log-weekly returns.
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0.4

- =—— Proposed Model
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0.0

[ I T 1
-10 -5 0 5
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Figure 3. Fitting Model 3 to CVX log-weekly returns.
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Figure 4. Fitting Model 4 to CVX log-weekly returns.
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Figure 5. Fitting Model 5 to CVX log-weekly returns.
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Figure 6. Fitting Model 6 to CVX log-weekly returns.

Table 3 presents values of Alkaike Information Criterion (AIC), Bayesian In-
formation Creterion (BIC) and Log-likelihood. The values illustrate that the
models are alternative to each other.

Remark:

Model 6 has the lowest AIC and BIC with the highest log-likelihood. It is the
best fit for the data. Using Karlis [21] formulation, the Normal Inverse Gaussian
(NIG) parameter estimates for the EM-algorithm are: & =0.9265284,
5=0.9265284, j=-0.2429664, ji=0.5578459. The
loglikelihood = —1221.667 at tol =10 with 119 iterations. Therefore a finite

mixture of GIG[—%,&', 7) and GIG(%,&, 7/) is versatile compared to In-

verse Gaussian (IG) distribution.

6.2. Risk Estimation and Backtesting

We use the parameter estimates for our proposed model to determine the VaR
and ES at levels o €{0.001,0.01,0.05} as given in Table 4 and Table 5 respec-
tively. The three level are used to measure the risk of long position, We apply the
Kupiec Likelihood Ratio (LR) test (Kupiec, [14]) which test the hypothesis that
the expected proposition of violations is equal to « . The method consist of
calculating 7(«) the number of times the observed returns, X falls below the
VaR, estimates at level o as given in Table 6; ie, X <VaR,, and compare

the corresponding failure rate to « .
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The likelihood ratio statistic is given by
7(a) n-z(a)
2log (@J (1_@j _2|Og(ar(a) _(1_a)n—r(a)) 6.1)

where 7(a) is the number of violations. Under the null hypothesis this statistic
is distributed as x° distribution with one degree of freedom.

Model 3 has the highest VaR and ES value indicating that it perform well than
the other models at the tails. Table 7 gives the P-value for the Kupiec Test for
Each Distribution.

Remark: At 5 percent level of significant, the Normal distribution is rejected
at levels at the level 0.001. The Normal weighted Inverse Gaussian distributions

were all effective and well specified on all levels of VaR.

Table 3. AIC, BIC and Log-likelihood values.

Model Model 1 Model 2 Model 3 Model 4
AIC 2453.276 2461.924 2473.254 2453.912
Log-likelihood -1222.638 -1226.962 -1232.627 -1222.956
Model Model 5 Model 6
AIC Model 5 Model 6
Log-likelihood —1223.504 -1191.753

Table 4. VaR values of CVX log-returns based on normal and proposed models.

0.001 0.01 0.05
Normal —4.487787 -3.356904 —2.347995
Model 1 -6.373158 —4.008336 —2.376487
Model 2 -5.603337 —-3.706563 —-2.321636
Model 3 —6.6614465 —4.1473175 —2.4303994
Model 4 —6.1845506 -3.9279027 —2.3550354
Model 5 —6.005398 —-3.881535 —2.358399
Model 6 -5.618886 —3.685542 —2.286172

Table 5. ES values of RRC log-returns based on normal and proposed models.

0.001 0.01 0.05
Model 1 —7.417996 —5.033958 —3.392502
Model 2 -6.417102 —4.532881 -3.181197
Model 3 —7.776542 —-5.236823 —-3.499916
Model 4 —-7.177348 —4.907374 —3.333809
Model 5 -6.918954 —4.805581 -3.304015
Model 6 —6.450259 —4.527236 -3.154907
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Table 6. Number of violations of VaR for each distribution at different levels.

0.001 0.01 0.05
Normal 3 10 42
Model 1 1 5 41
Model 2 1 6 42
Model 3 1 4 39
Model 4 1 6 42
Model 5 1 6 42
Model 6 1 6 42

Table 7. P-value for the Kupiec test for each distribution at different levels.

0.001 0.01 0.05
Normal 0.04222549 0.2879388 0.245805
Model 1 0.7381375 0.4191802 0.3190668
Model 2 0.7381375 0.691514 0.245805
Model 3 0.7381375 0.2126411 0.5066538
Model 4 0.7381375 0.691514 0.245805
Model 5 0.7381375 0.691514 0.245805
Model 6 0.7381375 0.691514 0.245805

7. Conclusions

In this work we constructed a class of weighted inverse Gaussian Distribution by

considering a finite mixture of two special cases of Generalized Inverse Gaussian

. . . 1 1 3
distribution. We considered the cases when the indexes are > 5 Ty and

2 2

7" These special cases are also weighted inverse Gaussian distributions.

We further used the class as mixing distributions to construct the Normal Va-
riance-Mean Mixtures. The parameter estimates were obtained using the Expec-
tation Maximization (EM) algorithm. We obtained a monotonic convergence for
the iterative schemes of the models using the method of moments estimates of

NIG as initial values.
We used AIC, BIC and loglikelihood for model selection. The model with

the mixing distribution based on a finite mixture for GIG[—%,&)‘, )/j and

GIG(%,&' ,7) was found to be the best model. The results show that the six

models are sufficient for VaR computation.
Further work can be done on Normal Mixtures when the mixing distributions

are Finite mixtures of higher indexes.
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