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Abstract 
This paper investigates the usefulness of the Hierarchical Equal Risk Contri-
bution algorithm to exploit correlation structure in China’s equity market 
over 2001-2020. By running a horse race of different combinations of metrics 
and linkages, we demonstrate that the winner strategy always beats traditional 
portfolio construction techniques. Better-performing risk-based hierarchy strate-
gies vary with stock-sorting methods by size, mean return, volatility, and 
Sharpe ratio. However, our treatment results in extremely imbalanced asset 
allocation, implying that we capture information other than the standard 
Chinese industrial classification. 
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1. Introduction 

Equity investment exhibits many attributes, such as size, liquidity, region, in-
dustry, etc. A key aspect of equity-market complexity is the hierarchical way via 
which stocks correlate with each other. While the correlation matrix lacks the 
notion of hierarchy [1], there exists an urgent need for characterizing such 
structure long recognized in other areas ([2] [3]) for the financial markets, espe-
cially for investment diversification in less efficient ones. At any level of the hie-
rarchy in a portfolio, stocks within a given attribute group compete for alloca-
tion [4]. For example, when adjusting for capital allocated to a large-cap finan-
cial stock, managers will buy or sell another big bank, rather than some small- 
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cap shares, foreign assets, or real estate holdings. 
Given the above said, one strand of recent literature seeks to quantitatively 

exploit the complementary role of hierarchical correlations in conventional asset 
allocation techniques like the Critical Line Algorithm (CLA) [5]. However, these 
techniques still rely on classical portfolio optimization ([5] [6] [7]). Introducing 
hierarchy will completely change the classical setting. The ultimate goal is to de-
velop more efficiently diversified portfolios that can address CLA caveats and 
thus outperform out-of-sample. The seminal work by López de Prado [1] intro-
duces the Hierarchical Risk Parity (HRP) algorithm consisting of three imple-
mentation steps: hierarchical tree clustering, matrix seriation, and recursive bi-
section. Theoretically speaking, HRP could overcome the drawbacks of quadratic 
optimizers such as the instability, concentration, and under-performance problem 
([4] [8]). Up-to-date HRP application research also suggests that the use of hie-
rarchy identified by clustering is indeed helpful in achieving an optimal weight 
allocation ([9] [10] [11]). Particularly, Raffinot [11] proposes the Hierarchical 
Clustering based Asset Allocation (HCAA), which agrees with the waterfall idea 
of HRP and, is inspired by DeMiguel et al. [12], features in dividing capital 
equally among hierarchical clusters and computing an equal-weighted allocation 
within each stock cluster. Yet, without incorporating sophisticated risk measures, 
HCAA’s naive treatment of equal distribution suffers from over simplicity and 
subjectivity. 

Via integrating the HRP and HCAA method, the Hierarchical Equal Risk 
Contribution (HERC) algorithm adopts machine learning to allocate weights 
across and within asset clusters ([13] [14]). HERC resembles HRP since both of 
them start by reorganizing the covariance matrix to place similar investments 
together. But HERC differs from HRP in that HRP makes no further use of clus-
tering after an inverse-variance weighting allocation based on the number of as-
sets. HERC has the advantage of HCAA’s double-layer weighting scheme and 
alternative risk metrics allowed for investors. Not limited to standard deviation 
and expected shortfall, one can extend HERC to include downside risk measures 
such as Conditional Value at Risk (CVaR) and Conditional Drawdown at Risk 
(CDaR). According to Raffinot [14], although the “Hierarchical 1/N” perfor-
mance of HCAA is hard to beat on a return-only viewpoint, HERC-CDaR port-
folios can attain better risk-adjusted returns statistically. 

Extending from the general ideas of HERC, we attempt to digest in detail how 
HERC performs in China’s equity market using variant implementations of 
HERC strategies built on portfolio quantiles of stocks sorted according to size, 
return, variance, and Sharpe ratio. We argue that the motivation of these endea-
vors is attributable to the fact that stocks are not only correlated hierarchically 
but also affected by investors’ reliance on sorting and rotation to attain higher 
risk-adjusted returns. Following the line of research on hierarchical correlation 
with a focus on evaluating its usefulness for sorted Chinese equities, this paper 
first shows that the best HERC strategy is sensitive to different ways of con-
structing portfolios. Second, we discover that the clusters suggested by HERC 
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are imbalanced due to many portfolios included in one stock cluster and the ab-
normal high weight assigned to a single portfolio. Thus, we conclude that the 
HERC-based portfolios are unlikely to capture the industry structures in China. 
This implies the clustering trees of the Chinese stock market depart considerably 
from the common industry classification, and data-driven approaches are needed 
for the China case. Another contribution of our research is that investors should 
expect distinct clusters compared to regional or sectoral categories when apply-
ing HERC approaches at the individual-stock level. While whether HERC is su-
perior to simple diversification across sectors, regions, or style factors under all 
scenarios is still an open question, our finding adds to the literature by pointing 
out the limitations of frequently-used classifications employed over a top-down 
portfolio construction process. 

The remainder is organized as follows. Section 2 introduces the methods and 
data used. Section 3 presents and discusses the corresponding empirical results. 
Section 4 concludes by summarizing the contribution and pointing out possible 
future extensions. 

2. Methodology and Data 

Aiming at diversifying risk allocation, HERC is an algorithmic approach of using 
tree clustering to explicitly consider hierarchical structure in the investment un-
iverse by grouping assets and determining weights. The implementation of HERC 
consists of four steps. First, we calculate hierarchical clusters that can graphically 
represent real-life interactions between assets in a portfolio [1]. Second, we iden-
tify the optimal number of stock clusters by trimming the tree formed previously 
according to the Gap Index ([15]) and Optimal Number of Clusters (ONC) al-
gorithm ([8] [16]).1 Third, we determine the weights of each cluster using Top- 
Down Recursive Bisection. At each level of recursion in a tree, the following 
equal risk contribution weights are adopted: 

1
1 2 1

1 2

1 ; 1 ,
RC

RC RC
α α α= − = −

+
 

where 1α  and 2α  are the weights of the left and right clusters, respectively, 
and 1RC  and 2RC  represent the corresponding risk contributions of these 
two clusters.2 

Fourth, final weights are assigned to assets residing in every cluster under 

 

 

1ONC detects the optimal number of K-Means clusters using a correlation matrix as input. See 
López de Prado [17] for a brief description of the logic behind the ONC algorithm and López de 
Prado [18] for the reason why the angular distance metric can be used to obtain distances between 
elements. 
2Asset weights in the cluster are computed as ( ) ( )( )1 1w diag tr diag− −

= Σ Σ , where Σ  denotes the 

covariance matrix for assets in the same cluster, diag the matrix diagonal, and tr the trace. Then, we 

can write the risk contribution of asset i as ( )
iw i i

RC w w w w′= Σ Σ . Lastly, we have  

ij wRC N RC= ⋅ , where N means the total number of assets in cluster j. It merits a note that we adopt 

variance to be the risk measure for illustration. However, when implementing the HERC, the way to 
compute w can be different if alternative risk metrics other than the variance are selected. 
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naive risk parity allocation. Particularly, an initial set of asset weights NRPw  
within the same cluster is adjusted in proportion to the inverse of assets’ respec-
tive risk—higher risk assets will receive lower portfolio weights and lower risk 
assets will receive higher weights. The risk here can be quantified by a range of 
proxies such as variance, CVaR, CDaR, maximum daily loss, etc. These final as-
set weights are: 

final NRP , Clusters,i i iw w C i= ∈  

where NRP
iw  refers to native parity weights of assets in the 𝑖𝑖th clusters and iC  

is the weight of the ith cluster. 
Given the above-mentioned four steps, HERC allocates capital within and 

across the right number of clusters of assets at multiple hierarchical levels. What 
matters most in such a portfolio construction process are the linkage criteria 
employed and risk metrics chosen. Recall in the first step, two similar (or least 
dissimilar) clusters are merged into one to produce a single cluster at the next 
higher level. Therefore, hierarchical clustering requires a suitable distance meas-
ure of dissimilarity between two clusters. There are four common linkage crite-
ria including single, complete, average, and ward’s linkage ([11] [13]), this paper 
begins analysis with the simplest distance shown below [19]: 

( ), ,2 1 ,i j i jD ρ= −  

where ,i jD  is the correlation-distance index between the ith and jth asset, and 

,i jρ  is the respective Pearson’s correlation coefficient.3 
At last, there remain open questions of choosing what measures for equity 

risks and which performance evaluation criteria. On the one hand, concerning 
risk metrics needed for computing risk contribution and final asset weights in 
the above third and fourth steps, this paper considers variance, standard devia-
tion, expected shortfall, and conditional drawdown risk to be risk metrics, and 
we adopt market value instead of equal asset allocation as the weighting scheme. 
On the other hand, to compare the out-of-sample performance of investment 
strategies established with variants of HERC algorithms, we resort to the ad-
justed Sharpe ratio (ASR), certainty-equivalent return (CER), and maximum 
drawdown (MDD) as comparison indicators. In specific, ASR incorporates a 
penalty factor for negative skewness and excess kurtosis [20]: 

23 4 3
ASR SR 1 SR SR ,

6 24
µ µ − = + −  

 

where 3µ  and 4µ  are, respectively, the skewness and kurtosis of return dis-
tribution and SR denotes the traditional Sharpe ratio with a risk-free rate set at 3. 

Besides, CER is defined as [12]: 

( ) 2CER ,
2fr γµ σ= − −  

where 1γ =  means risk aversion. The above quadratic utility represents the 

 

 

3Other distance measures based on non-linear codependency can also be used, e.g., see López de 
Prado [8]. 
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level of expected utility of a mean-variance investor, hence playing a crucial role 
in building profitable portfolios [21]. MDD indicates a permanent loss of capital, 
which purportedly measures the largest single drop from the peak to the bottom 
of portfolio value, i.e., the worst-case scenario. 

The historical daily prices of Chinese stocks used in this study are sourced 
from China Stock Market & Accounting Research Database. We collect the daily 
closing prices for all A-share Chinese stocks listed in the Shanghai and Shenzhen 
stock markets during the sample period from January 1st, 2000 to January 1st, 
2020. Then, we create a “rebalancing window” which starts one year before the 
rebalancing day and ends one month after that day. The portfolio is rebalanced 
monthly on the first trading day of each month. On the rebalancing day, the last 
year’s daily trading prices are used to calculate portfolio weights and those prices 
in the following month are used to compute the future portfolio return. Thus, 
we keep in our sample stocks that have at least one year’s trading record before 
and a month’s trading record after the portfolio rebalancing day.4 The minimum 
and the maximum number of stocks in all rebalancing days during the twenty 
years are 132 and 2515, respectively.5 

Turning to the sort procedure, we divide sample stocks into twenty quantiles 
by either their sizes (market values) evaluated on the trading day right before 
rebalancing or their mean returns, volatilities and Sharpe ratios during the last 
year prior to the rebalancing day. The value-weighted returns (equally-weighted 
returns are adopted as a robustness check; the corresponding main conclusions 
are similar thus not reported) are then computed at the quantile level. Finally, 
we apply variants of the HERC algorithm one by one to these twenty quantile 
portfolios. The reason HERC is not implemented directly at the individual stock 
level is that rotating among single stocks is unrealistic due to high transaction 
costs. Nevertheless, we run the exercise without sorting. And the results stay al-
most the same except for two differences. On the one hand, the optimal number 
of clusters becomes twice larger. On the other hand, the number of single stocks 
included in each cluster turns out to be extremely imbalanced. Specifically, in 
many cases, we observe one cluster including almost all stocks but there are only 
a few stocks and even one stock included in each of the other clusters. For these 
reasons, we study HERC performance using portfolios instead of individual 
stocks hereinafter. The present paper takes advantage of the HERC python 
package “portfoliolab” provided by Hudson & Thames. The “HierarchicalEqua-
lRiskContribution” and “CriticalLineAlgorithm” class in this package are em-
ployed to compute the portfolio weights based on different combinations of risk 
measures and linkage criteria.6 

 

 

4Note that before constructing the rebalancing window we fill forward the dataset for missing values. 
This could potentially lead to columns of many duplicates. We hence drop stocks with more than 
five duplicated prices in each of their rebalancing windows. This treatment is equivalent to dropping 
stocks with prices unchanged for a week. 
5The minimum is very small because during 2006-2007 many stocks are not traded continuously. 
And given our selection criteria, these stocks are excluded. 
6This paper adopts the 5% confidence level for calculating the expected shortfall and conditional 
draw-down at risk. For simplicity, the risk-free rate is set to be zero without the loss generality. 
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3. Empirical Results 

In this section, we present and interpret the performance of HERC investment 
strategies relative to benchmark returns in Table 1, with HERC portfolio cha-
racteristics reported in Table 2. Notice that these strategies are built on twenty 
portfolios of stocks in Table 3 sorted by size, mean return, volatility, and Sharpe 
ratio. In these tables, different HERC strategies are denoted by letting the first 
several letters in their name represent the risk metric used (e.g., V, SD, ES, and 
CDR stand for variance, standard deviation, expected shortfall, and conditional 
drawdown risks, respectively) and letting the last letter represent the type of lin-
kage used (e.g., S, C, A, and W stand for single, complete, average, and ward’s 
linkage, respectively). Benchmark returns are calculated using CLA portfolios 
which are established based on weights from maximum Sharpe ratio, inverse- 
variance portfolios (IVP), equal-weighted (EW) portfolios, and Shanghai Stock 
Exchange (SSE) Composite Index. 

 
Table 1. Comparing the performance of different investment strategies. 

 
Size Mean Return Volatility Sharpe Ratio 

ASR CER MDD ASR CER MDD ASR CER MDD ASR CER MDD 
CLA 0.28 0.04 0.90 −0.38 −0.18 0.97 0.14 −0.00 0.90 −0.30 −0.14 0.95 
ESS 0.24 0.03 0.90 0.18 0.01 0.91 0.21 0.02 0.92 0.25 0.03 0.93 
SDS 0.23 0.03 0.89 0.16 0.00 0.90 0.20 0.02 0.92 0.23 0.02 0.93 
IVP 0.23 0.02 0.93 0.23 0.02 0.93 0.23 0.02 0.93 0.23 0.02 0.93 
EW 0.21 0.02 0.93 0.21 0.02 0.93 0.21 0.02 0.93 0.21 0.02 0.93 
VS 0.21 0.02 0.89 0.17 0.00 0.90 0.21 0.02 0.92 0.23 0.02 0.93 

EWS 0.21 0.02 0.89 0.18 0.01 0.91 0.22 0.02 0.92 0.22 0.02 0.93 
SSE 0.21 0.02 0.83 0.21 0.02 0.83 0.21 0.02 0.83 0.21 0.02 0.83 
ESW 0.19 0.01 0.86 0.16 −0.00 0.91 0.18 0.01 0.91 0.19 0.01 0.94 
CDRS 0.19 0.01 0.88 0.18 0.01 0.91 0.20 0.01 0.92 0.22 0.02 0.93 
SDW 0.18 0.01 0.85 0.15 −0.00 0.91 0.16 0.00 0.90 0.18 0.01 0.93 
EWW 0.17 0.01 0.85 0.15 −0.00 0.91 0.15 0.00 0.90 0.16 0.00 0.93 
ESC 0.17 0.01 0.88 0.21 0.02 0.91 0.23 0.02 0.91 0.24 0.03 0.93 
VW 0.16 0.01 0.84 0.16 0.00 0.91 0.17 0.01 0.90 0.17 0.01 0.93 
SDC 0.16 0.01 0.87 0.19 0.01 0.91 0.22 0.02 0.91 0.23 0.02 0.93 

SDRC 0.14 0.00 0.87 0.15 −0.00 0.90 0.20 0.02 0.91 0.23 0.02 0.93 
CDRW 0.14 0.00 0.85 0.15 −0.00 0.91 0.17 0.01 0.91 0.20 0.02 0.93 
EWC 0.14 0.00 0.87 0.20 0.01 0.91 0.26 0.03 0.92 0.22 0.02 0.92 
VC 0.14 0.00 0.86 0.18 0.01 0.91 0.23 0.02 0.91 0.22 0.02 0.93 

CDRA 0.10 −0.01 0.85 0.15 −0.00 0.89 0.22 0.02 0.92 0.23 0.02 0.93 
SDA 0.09 −0.01 0.84 0.12 −0.01 0.88 0.24 0.03 0.92 0.23 0.03 0.93 
EWA 0.09 −0.01 0.85 0.14 −0.00 0.88 0.26 0.03 0.92 0.23 0.02 0.93 
ESA 0.06 −0.02 0.85 0.13 −0.01 0.88 0.24 0.03 0.92 0.24 0.03 0.93 
VA 0.05 −0.02 0.86 0.12 −0.01 0.87 0.24 0.03 0.92 0.23 0.02 0.93 

Note: The rows are sorted by values reported in the first column in descending order. Non-HERC benchmark strategies are in 
bold. For each performance indicator, the top five best-performing strategies according to the ASR criteria are underlined and in 
bold. 
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Table 2. Optimal clustering. 

 
Size Mean Return Volatility Sharpe Ratio 

ONC N W Nth ONC N W Nth ONC N W Nth ONC N W Nth 

CLA - - - - - - - - - - - - - - - - 

ESS 3 16 0.4 16 5 11 0.2 10 5 12 0.3 7 5 15 0.5 9 

SDS 3 16 0.5 17 5 11 0.2 10 4 13 0.3 8 5 15 0.5 9 

IVP - - - - - - - - - - - - - - - - 

EW - - - - - - - - - - - - - - - - 

VS 3 16 0.4 17 5 12 0.2 10 4 12 0.3 7 5 15 0.5 10 

EWS 3 16 0.4 17 5 11 0.2 10 4 13 0.3 6 5 15 0.5 10 

SSE - - - - - - - - - - - - - - - - 

ESW 3 16 0.5 16 6 15 0.8 8 6 15 0.8 11 6 14 0.8 8 

CDRS 3 16 0.4 16 5 11 0.2 8 4 13 0.3 9 4 15 0.4 9 

SDW 3 16 0.5 16 6 15 0.8 8 6 15 0.8 11 6 15 0.8 8 

EWW 3 16 0.5 16 6 15 0.8 8 6 15 0.8 11 6 15 0.7 8 

ESC 3 17 0.6 17 4 15 0.5 8 4 16 0.6 8 4 12 0.3 10 

VW 3 16 0.5 16 6 15 0.8 8 6 15 0.8 11 6 15 0.8 8 

SDC 3 17 0.6 17 4 16 0.5 8 4 16 0.6 8 4 12 0.2 10 

SDRC 3 17 0.5 17 4 15 0.4 8 4 16 0.4 8 4 12 0.2 8 

CDRW 3 16 0.4 16 6 15 0.5 8 6 15 0.5 11 6 15 0.5 8 

EWC 3 17 0.6 17 4 15 0.5 8 4 16 0.6 8 4 12 0.2 10 

VC 3 17 0.6 17 4 15 0.5 8 4 16 0.6 8 4 12 0.2 10 

CDRA 5 16 0.5 16 4 14 0.3 9 4 15 0.3 8 4 14 0.3 8 

SDA 5 16 0.8 16 4 13 0.3 10 4 15 0.4 7 4 14 0.3 9 

EWA 5 16 0.8 16 4 13 0.3 10 4 15 0.4 6 4 14 0.3 10 

ESA 5 16 0.7 16 4 13 0.3 9 4 15 0.4 7 4 13 0.3 9 

VA 5 16 0.8 16 4 13 0.3 10 4 15 0.4 7 4 14 0.3 10 

Note: For each investment strategy in our sample period, ONC denotes the average optimal number of clusters; N is the total 
number of sorted portfolios included in the cluster with the maximal number of portfolios; Nth is the rank of the sorted portfolio 
with the maximal weight, and W represents the maximal weight associated to the Nth ranked portfolio. 

 
Table 3. Performance of portfolios sorted by size, return, volatility, and Sharpe ratio. 

 
Size Mean Return Volatility Sharpe Ratio 

ASR CER MDD ASR CER MDD ASR CER MDD ASR CER MDD 

0 0.48 0.11 0.98 0.28 0.04 0.94 0.33 0.05 0.93 0.27 0.04 0.93 

1 0.47 0.10 0.98 0.37 0.07 0.96 0.34 0.06 0.94 0.37 0.07 0.95 

2 0.40 0.08 0.97 0.37 0.07 0.96 0.25 0.03 0.91 0.34 0.06 0.95 

3 0.37 0.07 0.96 0.30 0.05 0.95 0.33 0.05 0.95 0.31 0.05 0.95 

4 0.32 0.05 0.97 0.35 0.06 0.95 0.28 0.04 0.95 0.39 0.07 0.96 

6 0.28 0.04 0.96 0.34 0.06 0.96 0.36 0.06 0.96 0.40 0.08 0.97 

5 0.28 0.04 0.95 0.40 0.08 0.97 0.31 0.05 0.95 0.38 0.07 0.96 

SSE 0.21 0.02 0.83 0.21 0.02 0.83 0.21 0.02 0.83 0.21 0.02 0.83 
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Continued 

9 0.20 0.01 0.94 0.32 0.05 0.96 0.25 0.03 0.94 0.28 0.04 0.95 

10 0.19 0.01 0.93 0.28 0.04 0.95 0.26 0.03 0.95 0.27 0.03 0.95 

7 0.18 0.00 0.94 0.39 0.07 0.96 0.27 0.03 0.94 0.37 0.07 0.96 

8 0.17 0.00 0.94 0.38 0.07 0.97 0.19 0.01 0.93 0.30 0.05 0.95 

13 0.14 −0.01 0.89 0.17 0.00 0.92 0.19 0.01 0.93 0.14 −0.01 0.92 

17 0.12 −0.01 0.97 0.02 −0.04 0.87 0.06 −0.04 0.85 −0.03 −0.06 0.87 

12 0.10 −0.02 0.91 0.17 0.00 0.92 0.21 0.02 0.93 0.19 0.01 0.91 

11 0.08 −0.03 0.86 0.23 0.02 0.93 0.18 0.01 0.92 0.28 0.04 0.95 

14 0.07 −0.03 0.86 0.16 0.00 0.91 0.20 0.01 0.93 0.18 0.01 0.92 

15 0.05 −0.03 0.86 0.07 −0.03 0.86 0.14 −0.01 0.90 0.05 −0.03 0.85 

19 0.04 −0.02 0.85 −0.40 −0.18 0.97 0.03 −0.05 0.85 −0.30 −0.14 0.96 

18 0.04 −0.03 0.85 −0.13 −0.09 0.87 0.01 −0.05 0.87 −0.13 −0.09 0.86 

16 −0.00 −0.05 0.87 0.05 −0.03 0.87 0.04 −0.05 0.85 0.04 −0.04 0.87 

Note: Recall that SSE denotes the Shanghai Stock Exchange Composite Index for China’s stock market. “0” and “19” indicate the 
lowest- and highest-ranked portfolio quantile, respectively. “1” - “18” are portfolio quantiles lying between these two extremes. 
 

Figure 1 gives an illustration of the dendrograms in different sorting setups. 
In specific, the upper-left sub-graph shows the best way to allocate Chinese 
stocks to hierarchical clusters according to stock size. The key to interpreting the 
dendrogram is to focus on the height at which any two clusters are joined to-
gether. Take the up-per-right sub-graph for example. Stock clusters 5 and 7 are 
most similar in terms of return averaged across time, as the height of the link 
that joins them together is the smallest. Heights in an informative dendrogram 
can reflect the distance between the clusters. In the lower-left sub-graph of Fig-
ure 1, it shows us that the big volatility difference between clusters is between 
the stock cluster of 0 and 1 versus that of 2, 3, 4, and 5. Finally, it is important to 
appreciate that the dendrogram is a summary of the distance matrix, and, as oc-
curs with most summaries, information is lost. For example, the dendrogram of 
clustering stocks according to Sharpe ratio suggests that stock clusters 17 and 11 
are much closer to each other than is 17 to 18, but the original data may tell a 
different story. Hence, we should be careful when using dendrogram. It is accu-
rate given that data satisfies the ultrametric tree inequality, and this is unlikely 
for any real-world data. 

Focusing on the Size panel of all exhibits, Table 1 indicates that CLA per-
forms the best and several HERC portfolios outperform the IVP, EW, and SSE 
benchmark. Table 2 tells us that better-performing HERC portfolios usually 
have a smaller Optimal Number of Clusters (ONC). To be more specific, The 
ONCs for the top four HERC portfolios, i.e., ESS, SDS, VS, and EWS, (refer to 
the Size panel of Table 1) all equal to 3 (see the Size panel of Table 2), which are 
significantly smaller than the peer portfolios such as VA, ESA, EWA, and SDA 
which have an ONC of 5. Similarly, as for the Mean Return panel, the three 
best-performing HERC portfolios of ESC, EWC, and SDC (indicated by the 
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Mean Return panel of Table 1) only have an ONC as large as 4 (derived from 
the Mean Return panel of Table 2), but SEW and EWW which perform worse 
have a higher ONC of 6. The mean of N equates to roughly sixteen, meaning 
that about sixteen out of the twenty size-sorted portfolios are included in one 
cluster. On average, the maximum weight allocated to size portfolios is close to 
60%. Larger maximum weights are assigned to portfolios of higher market value. 
For each HERC strategy, we use Nth to denote which one in the sequence of 
twenty size-sorted portfolios admits the highest weight W. As can be also seen in 
Table 2, worse-performing HERC strategies (e.g., VA, ESA, EWA, SDA, and 
CDRA) tend to allocate very large weights (up to 80%) to larger-size portfolios. 
Average linkage is used to calculate the present results. After repeating all the 
above exercises using alternative types of linkage, the single linkage turns out to 
deliver the best performance. 

 

 
Size 

 
Mean Return 
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Volatility 

 
Sharpe Ratio 

Figure 1. An illustration of dendrograms based on HERC algorithm. Note: This 
figure gives an example of HERC-based dendrograms using expected shortfall 
and ward’s linkage calculated with data ranging from 2000-01-05 to 2000-12-29 
(i.e., the first year of our sample). The structure of dendrograms changes over 
time. The optimal number of clusters is set at 5 for different sorting methods for 
illustration. Graphically speaking, the number of intersections between the ho-
rizontal dashed line and all vertical lines should equal the ONC. 

 
Note that the average ONC for all HERC portfolios across time is slightly be-

low four as shown in the top-left of Figure 2. That is, the twenty size-sorted 
portfolios are grouped into four clusters on average. However, in these clusters 
there exists a large cluster that generally contains sixteen portfolios. This leads to 
unbalanced numbers of portfolios across clusters. Further analysis implies that 
maximum weights (more than 50% and close to 60%) are on average allocated to 
portfolios with a large size, making weights on size-sorted portfolios even more 
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imbalanced. In conclusion, portfolios with smaller ONC, W, and Nth seem to 
generate higher returns than others with larger ONC, W, and Nth. Consider the 
smallest-size portfolio labeled as 0, it displays an ASR of 0.48, which is in com-
parison to the largest-size portfolio labeled as 19 which has an ASR of 0.04. For 
size-sorted portfolios, the ONC decreases over time as shown in Figure 2, but all 
N, W, and Nth indicators increase over time. These trends disappear when we 
sort portfolios by the mean return, volatility, or Sharpe ratio as we have done 
below. 

 

 
Size 

 
Mean Return 
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Volatility  

 
Sharpe Ratio 

Figure 2. The optimal number of clusters and maximal weights of portfo-
lios. Note: The horizontal dash-and-dot line denotes the mean. 

 
Next, we continue to analyze the Mean Return panel of all exhibits. Results in 

Table 1 show that all HERC portfolios could not beat IVP, EW, and SSE. We 
have to point out that CLA performs worst this time. In contrast to size-sorted 
portfolios, the average ONC increases from three to five, N decrease from six-
teen to fourteen, and W also decreases as shown in Figure 2. Besides, the re-
turn-sorted portfolio with the maximum weight is not the portfolios with ex-
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treme values but not the ones with medium returns of about 10. The top three 
HERC portfolios allocated about 50% weights to the eighth-high-return portfo-
lio. Such good performance is consistent with the attractive characteristics of the 
8th portfolio illustrated by Table 3. 

In general, HERC portfolios with lower historical returns would outperform 
in the coming month, which follows the prediction of the mean-reverting theory. 
Like before, strategies using the average linkage perform not so well and those 
using either single or complete linkage tend to perform better. Then we look at 
the Volatility panel of all exhibits. In Table 1, there exist HERC portfolios that 
can outperform the IVP, EW, SSE, and CLA benchmarks. Strategies at the bot-
tom have higher ONC and allocate very high maximum weights (80%) to port-
folios of high volatility. 

In Table 3, the eighteenth-high-volatility portfolio produces the worst per-
formance by ASR, and portfolios with lower volatility, in general, have per-
formed much better. Table 2 says that HERC clusters are again imbalanced, es-
pecially so for top-performing strategies. This is evident that fifteen to sixteen 
volatility portfolios are included in one cluster. All in all, the ONC, N, W, and 
Nth of portfolios sorted by volatility are similar to those of portfolios sorted by 
mean returns. The only exception is that the Nth seems to decrease over time as 
can be seen from the Volatility panel of Figure 2. The maximum weights are al-
located to portfolios with low volatility in the first ten years. Afterward, most 
weights are shifted to portfolios with high volatility in the second ten years. It 
merits a note that strategies with average linkage such as EWA, SDA, ESA, and 
VA stand out with excellent performance in this case. This is opposite to the case 
of return-sorted portfolios where strategies using the average linkage lie at the 
bottom of the ranking. Strategies with ward’s linkage perform worst here. 

Finally, results in the Sharpe Ratio panel of all exhibits are explained as fol-
lows. We notice in Table 1 that many HERC portfolios, especially those estab-
lished based on the expected shortfall and standard deviation risk metric, out-
perform the IVP, EW, SSE, and CLA. Strategies employing ward’s linkage per-
form worst in the Sharpe ratio setup of sorting, just like the case for volatility 
sort. We can tell that N is high, implying imbalanced clusters (see Table 2). The 
bottom-right of Figure 2 shows no trends for the time-series of the ONC, N, W, 
and Nth. Table 3 shows that portfolios with a lower past Sharpe ratio tend to 
perform better in the future. Although volatility-sorted HERC strategies outper-
form their benchmarks, the best combination of risk metric and linkage varies a 
lot with portfolio sorting. The clusters resulting from the HERC algorithm turn 
out to be imbalanced once again. In particular, many portfolios are incorporated 
into one cluster and very high weights are assigned on one portfolio. 

By integrating the results from all four sorting setups, we conclude that the 
portfolios sorted by different variables constitute a collection of “anomalies”. 
The most noticeable anomaly is the imbalanced structure that emerged from 
portfolios sorted by size. These “anomalies” are meant for future exploration in 
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the non-traditional classification of Chinese stocks rather than concurrent re-
turns. Based on the above conclusions, we hence add to the current literature in 
the following three aspects. First, this paper tests the HERC allocation technique 
in an extensive horse race based on Chinese stock market data, ultimately pro-
viding empirical evidence on the superiority of 1/N investing or Ward-linkages 
over other linkage criteria in HRP-style allocations. Besides digesting a multi-
tude of HERC variants, our results enlighten how such techniques have appeal in 
the context of the Chinese market. It is learned that there exist new forms in the 
Chinese market’s hierarchical structure that we would otherwise miss, and, more 
importantly, we can exploit such knowledge in constructing more diversified 
portfolios by way of running corresponding HERC strategies. 

Second, we enrich the benchmarks used in this research field. Whilst 1/N or 
inverse volatility acts as common choices for benchmarking, the most important 
market portfolio benchmark is also reported in the paper. Obviously, a mar-
ket-cap weighted investment is a natural choice to invest in Chinese equities and 
it would be important to learn about the benefits of departing from such market 
cap weights in terms of a HERC allocation. In addition to reporting basic strate-
gies performance figures such as annualized return or volatility statistics, this 
paper also juxtaposes the reported maximum drawdown figures to those of the 
markets (as measured by the SSE composite index). This comparison suggests 
the market has a considerably lower maximum drawdown than most of the pre-
sented risk-based strategies. In turn, this evidence is suggestive that a simple 
market portfolio might be a strong contender in market downtrends, warranting 
further comparisons under extreme scenarios. In a similar vein, we add the two 
classic strategies of HRP and HCAA to the list of benchmarks as the HERC 
strategies ultimately are derivatives thereof. 

Third, this paper contributes by describing the nature and characteristics of 
various HERC strategies. As we all know, a common way to rationalize a given 
equity investment strategy is to look for its salient style factor exposures. For in-
stance, a 1/N equity strategy typically shows a positive size bias, a negative mo-
mentum exposure, and usually, some value tilts as well. Conversely, minimum- 
variance strategies have been documented to mostly exploit the low-volatility ef-
fect [22]. Our findings document similar notions for the HERC strategies in 
Chinese markets. In other words, we show that HERC investing is not just a 
complex way of running existing equity factor strategies. It reveals a non-indus- 
try classification structure. 

4. Conclusions 

This article evaluates the effectiveness of HERC in the Chinese stock market. By 
applying this clustering and weighting algorithm with different combinations of 
risk metrics and linkage criteria to portfolios sorted by market value, return, vo-
latility, and Sharpe ratio and compared to CLA, IVP, EW, and SSE benchmarks, 
we find the following regularities. First, HERC performance is sensitive to dif-
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ferent portfolio sorting. That is, the best HERC strategy is portfolio-dependent 
and is not robust to alternative sorting methods. Second, HERC clusters are un-
balanced regarding the fact that one cluster includes almost all sorted portfolios 
while others include just a few portfolios and the fact that a single portfolio may 
receive very high weight. Third, consider sorting portfolios by size, the return of 
HERC-based portfolios seems to be negatively associated with the optimal number 
of clusters and the maximal weight of portfolios. Lastly, the size- and volatili-
ty-sorted portfolios which have the maximal weight allocation vary over time. 
All four findings imply that the imbalanced HERC strategies have captured in-
formation different from the common Chinese industry structure where every 
sector contains many stocks. 

As a result, our paper can be further improved in the following two directions. 
On the one hand, we suggest investigating alternative clustering trees of the 
Chinese stock market. If these new classifications considerably depart from the 
common sector or industry clusters, one could readily make the case for turning 
to such data-driven approaches. In addition, it is important to figure out the 
added benefit of using these techniques at the single-stock level. In other words, 
are HERC methods superior to simply diversifying across sectors, industries, or 
style factors? On the other hand, to make the topic of this paper relevant to prac-
titioners, future studies need to report turnover numbers and strategy perfor-
mance net of transaction costs associated with the turnover. This is particularly 
relevant given that the allocation step uses naïve risk parity allocation based on 
different risk measures including standard deviation, variance, expected short-
fall, conditional drawdown risk. One would expect these measures to have dif-
ferent stability which will, in turn, translate into portfolio turnover. 
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