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Abstract 
Asian options are generally priced using arithmetic or geometric averages of 
the underlying stock. However, these methods are not suitable when stock’s 
volatilities are very low. The motivation to develop derivative prices based on 
averaging the underlying asset stems from the robust features associated with 
Asian options which suggest that they are more suited to African markets where 
prices can be dormant for long periods resulting in low volatilities in stock 
prices. We propose the use of the modal average as the measure of the under-
lying stock price when stocks have low volatilities instead of the more popular 
arithmetic and geometric averages. In particular, the stock price is assumed to 
follow Geometric Brownian Motion and using the concept of maximum of a 
function, a model for the modal average of the underlying stock is derived. A 
process of obtaining the price of a call option is subsequently developed. 
Theoretically, we prove further that for very low volatilities the modal average 
model is a better estimator of the expected average of the stock price and 
consequently produces cheaper option prices than geometric and arithmetic 
average models. Using data from the Ghana Stock Exchange and the Nasdaq, 
the proposed model is used to price options sold on selected stocks on the 
exchange. The numerical results consistently show that for underlying stocks 
with volatility less than 3%, the modal average model provides cheaper call 
options than the arithmetic or geometric averages pricing models. 
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1. Introduction 

Average value options or as it is known elsewhere, Asian options, are options 
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whose price is determined based on the average price of the underlying stock 
or asset. Compared to European options, Asian options are cheaper and better 
suited to hedging purposes. In addition, they can also reduce the risk of price 
manipulations especially near the option’s maturity date. The use of averages 
of the underlying asset to price options has seen considerable investigation by 
researchers and different methods have been suggested to analyze the average. 
Averaging includes discrete and continuous averages. Currently, no general ana-
lytical solution to price arithmetic average option is known and as such several 
numerical methods have been proposed to obtain arithmetic averages. The prob-
lem is that even in cases where analytical or numerical solutions exist, arithmetic 
or geometric averaging is still unsuitable to obtain the average of the path of the 
underlying asset especially in cases where stocks have very low volatilities and in 
many cases averaging by geometric or arithmetic averages usually results in 
overpricing of the option. Unfortunately, many African stocks (Ghana, Kenya 
and Nigeria, for example) exhibit low volatilities as a result of the tendency of 
some stock prices to remain dormant or change marginally for long periods. 
This study thus examines the use of a modal average as the average for underly-
ing asset in pricing options. The main objective is to develop a new option pric-
ing model based on the modal average of the underlying asset. Specifically, the 
paper will 
• Develop an option pricing model based on the modal average of the under-

lying asset; 
• Use the model to price options on stocks listed on some stock exchanges; 
• Compare the option prices obtained from the modal average to option prices 

obtained using arithmetic and geometric averages models; 
• Analytically show that for low volatility assets the modal average model of-

fers cheaper options compared to the arithmetic and geometric averages 
models. 

Literature Review 

The mathematical theories underpinning the rigorous treatment of Asian op-
tions are well rooted in stochastic calculus, measure theory, martingales and 
largely partial differential equations. Currently, the averaging the underlying as-
sets of Asian options have primarily been realized through the use of arithmetic 
and geometric averages. Geometric average options can be priced analytically 
since the product of lognormal random variables are also lognormally distri-
buted. Thus, explicit closed-form expressions of geometric average options exist 
and have been derived by Kemna and Vorst [1], Angus [2]. Arithmetic average 
options however, do not have closed form solutions. This is because in the dis-
crete case, if the binomial model approach is used to price the option, it is ne-
cessary to keep track of 2n  possible paths or has cardinality of 2n , where n is 
the number of periods. This makes it very difficult to examine the paths if n is 
large. In the continuous case, if the underlying stock is assumed to have a log-
normal distribution, that is, following Geometric Brownian Motion as in Samu-
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elson [3] and Black, Scholes [4], then the arithmetic average does not have a 
known distribution since the sum of lognormal random variables are not 
lognormally distributed. For this reason, several approximations methods that 
produce closed form expressions have been proposed. These methods are based 
on approximating the underlying asset by some standard probability distribution 
with known parameters and density. Turnbull and Wakeman [5] used the log-
normal distribution of the generalized Edgworth to approximate the underlying 
asset. Vorst [6] achieved an approximation using adjusted strike price which is 
given as the difference in expectation of the arithmetic average. Curran [7] con-
ditioned on the geometric average by integrating with respect to its lognormal 
distribution. In the discrete case where approximations of the underlying are not 
available, Boyle [8], Broadie and Glasserman [9] have employed various numer-
ical methods. Shreve [10] established a method which included replication and 
self-financing strategies. Other authors have priced Asian options using Partial 
Differential Equations (PDEs). This approach involves solving two PDEs; one 
for the underlying stock and the other for the average stock price. But this ap-
proach is unreliable as solving two dimensional PDEs is subject to oscillations. 
Rogers and Shi [11] reduced the two dimensional problem to one dimensional 
problem but Vecer [12] showed that the resulting one-dimensional problem is 
difficult to solve numerically. Semi-analytic techniques have also been developed 
by Hoogland and Neumann [13] using scale invariance methods. Recent studies 
have primarily focused on novel computational applications and testing effi-
ciency and speed of convergence of the models. Monte Carlo simulation for in-
stance, has gained prominence and has widely been employed as an effective si-
mulation technique. Rubinstein and Kroese [14], Kechejian et al. [15] have ex-
amined these methods in pricing arithmetic Asian options. Although the geo-
metric and arithmetic average options have been widely accepted as model ap-
proaches in pricing Asian options, the pricing of options on low volatility assets 
continue to remain problematic. For instance, Geman and Yor [16] derived the 
Laplace transform for a continuous arithmetic Asian option, but the numerical 
inversion of the Laplace transform is not suitable when volatility is low. Linesky 
[17] employed Monte Carlo methods to obtain numerical solutions of arithmetic 
average options but in low volatility stocks convergence remain slow. Fu et. al 
[18] showed that there is a problem of slow convergence especially for low vola-
tility stocks.  

2. Methodology 
2.1. Option Pricing Modeling 

The pricing of Asian options is primarily based on the use of expectations in 
which the price of the option is valued as a replicating portfolio, its value equal 
to the price of its discounted expected payoff at maturity.  

Theorem 1  
Let ( )X t  satisfies the stochastic differential equation  
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( ) ( ) ( ) ( )d d dX t rX t t X t W t= +σ , where ( )W t  is Wiener process under the 

measure  . Let ( )( ),V X t t  be the value of a contingent claim on ( )X t , then 

by Itô formula 

( )( ) ( )( ) ( )( ) ( )( )
2

2
2

, , ,1 , 0
2

V X t t V X t t V X t t
r rV X t t

t x x
∂ ∂ ∂

+ + − =
∂ ∂ ∂

σ  

and ( )( ),V X t t  has the solution 

( )( ) ( )( ) ( )( )( ), d, e ,
T
t r X u u u

tV X t t V X T T−∫=               (1) 

Pricing Asian Options 
Two averages are used to price Asian options: Geometric and Arithmetic aver-
ages. Assume that the stock price is given by S(t), then the arithmetic average is 
given by 

( )1 d
T

t
S u u

T t
=

− ∫                       (2) 

and the geometric average is given by 

( )
0

1exp ln d
T

S u u
T t
 =  − ∫                    (3) 

In the arithmetic case, ( )1 d
T

t
S u u

T t
=

− ∫  is not analytically tractable and 

so numerical methods are employed.  
In the geometric case we have Fixed-Strike Geometric Asian call and Float-

ing-Strike Geometric Asian call.  
The Fixed-Strike Geometric Asian call option price is given by  

( )( ) ( ) [ ]( ), e max ,0r T tC S t t K−= −


 


            (4) 

Similarly, the Floating-Strike Geometric Asian call option has payoff 

( )( ) ( ) ( )( ), e max ,0r T tC S t t S T−= −  

 


          (5) 

2.2. The Modal Average Option Price 

In this paper a systematic algorithm is derived to price an option from the pre-
mise of probability spaces using a stock price as the underlying asset. The fun-
damental view is to derive the option price based on an underlying stock whose 
price movement is captured as a realization of the price event in a measurable 
space, Intuitively, the measurable space admits a level of uncertainty in an 
economy equipped with a filtration, viewed as information available at time t 
and on which is defined a probability measure. Throughout the text we will as-
sume an efficient market with continuous trading, more specifically, we assume 
that our model is applied in the Black-Scholes world. Thus, we are basically 
concerned with an European style option whose underlying stock is averaged 
over a specified time period. In particular, we will assume the stock price to 
follow a stochastic process and modeled by the Geometric Brownian motion. In 
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developing the modal average model, we use the concept of maximum of a 
function we derive a method to average of the underlying stock and proceed to 
test the model using data from GSE and the Nasdaq. We further show analyti-
cally that for low volatility stocks the derived model based on modal average 
produces cheaper option when compared to the arithmetic and geometric av-
erage models. 

2.3. The Stock Price Process 

Consider a stock with prices 0 1, , , nω ω ω  at times 0 10 nt t t T= < < < = . Let 

0 1, , , nf f f  denote the frequencies of 0 1, , , nω ω ω . Define Ω  such that 
{ }0 1, , , nf f fΩ =  . Let A be a subset of Ω  and let   denote a collection of 

subsets of i s′ω  on Ω . Then surely   forms a σ-algebra of frequencies if s′  
on Ω  with measure space given by ( ),Ω  . Let   denote a probability meas-
ure defined on this space, then ( ), ,Ω   is the probability space for the fre-
quency of stock prices. To develop the continuous process let ω  be the realiza-
tion of a stock price on ( ), ,Ω   and let ( )X ω  be a random variable defined 
on ( ), ,Ω   such that :X Ω→  , then ( )X ω  is a measurable function on 
( ), ,Ω  . By considering the frequencies of ( )X ω  we are now interested in 
some function of ( )X ω . The distribution of the frequency of ( )X ω  is thus a 
composite of some function f  and ( )X ω , where :f →  . Let’s denote 
this as ( )( )f X ω . Since the pre-images ( )( ) ( )1 , ,f X− ∈ Ω ω , it follows that 

( )( )f X ω  are measurable in ( ), ,Ω   and consequently ( )( )f X ω  are ran-
dom variables. If there are n random variables defined on ( ), ,Ω  , it follows 
that ( ) ( ) ( )( )1 2, , , nf X X Xω ω ω  is a random variable on ( ), ,Ω  . Thus, we 
have some random variables from some probability space being mapped onto 
some vector space n , such that for any Borel set ( )n∈    the preimages 

( ) ( )1
1 2, , , , ,nf X X X− ∈ Ω  . The frequency distribution of X is now a map-

ping of X from n  onto some vector space n . Since f  is Borel measurable 
it follows that ( )1 2, , , nf X X X  is a random variable.  

Figure 1 shows the random variable ( )X ω  from some underlying probabil-
ity space ( ), ,Ω   mapped onto some vector space  . The pre-images of 

( )X ω  of some Borel sets in   are measurable in ( ), ,Ω  . The function f  
maps ( )X ω  onto some space in another space  . Let f  be a measurable 
function in ( ), ,Ω  , then the pre-images of ( )( )f X ω  are also measurable 
in ( ), ,Ω  . For this study we are interested in the value of x∈  corres-
ponding to the maximum frequency. Let 1 2, , , nX X X  be random variables de-
fined on ( ), ,Ω  . Let ( ) ( ) ( )1 2, , , nx x x    be the frequency (probability) 
distribution of 1 2, , , nX X X  then the function :f →   represents the prob-
ability distribution of 1 2, , , nX X X . The mode of this distribution is the value 
of X corresponding to the maximum of the probabilities in the distribution. If 

iX x=  represent the stock price and ( )ix  represents frequency of occurrence 
of ix  or the probability that ix  occurs, then we seek for the numerical value 
of X corresponding to ( )max ix .  
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Figure 1. Spatial distribution of the stock price process. 

 
This approach explains the maximum frequency when stock price events are 

discrete. Now in the event of increase in trading activity the number of steps of 
the discrete process increases and the process can generally be approximated by 
a continuous process. In limiting function of the discrete activities described by 
the random walk process is now inherited by the Brownian motion process 
which then assumes all the properties of the random walk with increments nor-
mally distributed with mean zero and variance t. 

2.3.1. Mode of a Random Variable  
Let 0iX ≥  be a random variable. Let ( ) 0iX ≥  be the frequency distribution 
of iX  then function :f →   represents the probability distribution of iX . 
The mode of this distribution is the value of X on the real line   correspond-
ing to the maximum frequency of the distribution. If X represents the stock price 
and ( )iX  represent the frequency that the stock will assume the price iX  
then we seek for the value of X that corresponds to the maximum frequency. 

2.3.2. Mode of a Discrete Probability Distribution Function 
Let 1 2, , , nX X X  be random variables defined on ( ), ,Ω  . Let  

( ) ( ) ( )1 2, , , nx x x    be the probability distribution of 1 2, , , nX X X  then 
the function :f →   represents the joint probability distribution of  

1 2, , , nX X X . The mode of this distribution is the value of X corresponding to 
the maximum of the probabilities in the distribution. If X represents the stock 
price and ( )1x  frequency of occurrence of x or the probability that x occurs, 
then we seek for the numerical value of X corresponding to maximum  .  

2.3.3. Mode of a Continuous Probability Distribution Function 
Let ( )x  be the function that assigns values to the distribution of a random 

variable iX  such that ( ) max
iX =   where max  is the maximum of the prob-

ability distribution of the random variable. iX  is the mode of ( )x . That is, 

{ modeX x=  such that max  is the maximum probability}. If ( )f x  is a proba-

bility distribution function then the maximum of ( )f x  is given by finding the 
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stationary points of ( )f x , conditioned by 
2

2

d 0
d

f
x

< .  

Theorem 2 
Let X be a continuous random variable such that ( )f x  is the probability 

density function of X. Suppose ( )f x  is smooth enough such that the first and 

second derivative exists. Let x be the value of X that maximizes ( )f x . That is, 

the value of x at d 0
d
f
x
= . If 

2

2

d 0
d

f
x

<  then X x=  is the mode of the distribu-

tion function ( )f x  and we write  

2

2

d d0 : 0
d d

M M

M
X X

f fX
x x

= = <                   (6) 

or 

2

2
d 0
d

d 0
d

M

XM

M
fX

x

fX
x

<

= =                     (7) 

where MX  is the mode of ( )f x . 

2.3.4. Numerical Algorithm to Determine the Mode 
To determine the maximum of ( )f x , numerical methods are employed. In ef-
fect, the mode is the value of the random variable X corresponding to the max-
imum of the ( )f x , provided the ( )f x  satisfies the axioms of a probability 
density function and smooth enough such that the first and second derivatives 
exist. The problem thus reduces to solving the optimization problem of maxim-
ize ( )f x  on [ ],a b . That is  

( )max f x  

subject to a x b≤ ≤  
If the first and second derivatives of ( )f x  exists and is continuous on [ ],a b  

then it can be to solved as follows: 
• Compute all distinct zeros of ( )f x′  in the interior of the interval [ ],a b ;  
• Evaluate ( )f x  at zeros and at the endpoints a and b;  
• Test if ( ) 0f x′′ < .  

Other numerical approximation methods can be used to determine the max-
imum for both continuous as well as the discrete case. A typical example is the 
Golden Section Search Optimization Method that searches for the extremum 
(minimum of maximum) of a strictly unimodal function. The algorithm is the 
limit of the Fibonacci search.  

2.3.5. The Equation of the Modal Average Option Price 
Let MX  be the modal value of the stock price with diffusion 

( ) ( ) ( ) ( )d d dS t S t t S t W t= +µ σ  

in a given time interval [ ]0,T . Under the measure   the discounted call op-
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tion price is 

( )( ) ( ) ( ), exp d max ,0
t

T
Mt

C S t t s X K  = − −    ∫ 
µ          (8) 

But 
2

2
d 0
d

d: 0
d

M

XM

M
fX

x

fX
x

<

=  and so the price of a call option on ( )S t  is 

given by 

( )( ) ( )
2

2
d 0
d

d, exp d max : 0
d

M

XM
t

T
Mt

fX
x

fC S t t s X K
x

<

         = − = −      
     

∫



µ  (9) 

Given an indicator random variable   defined as  

2

2

2

2

d 0
d

d 0
d

d: 01, if

0, i

d

: 0f d
d

M

XM

M

XM

M
fX

x

M
fX

x

fX K
x

fX K
x

<

<




=

= >

= ≤







  

Then the condition to exercise the option is  

( )( ) ( )
2

2
d 0
d

d, exp d max : 0 ,0
d

M

XM
t

T
Mt

fX
x

fC S t t s X K
x

<

         = − = − ×      
     

∫  



µ (10) 

3. Proof That the Modal Average Is the Most Efficient Pricing  
Model for Low Volatility Stocks 

The modal average has been proposed as a measure of the average of the under-
lying asset and we will now proceed to prove that for low volatility stocks, the 
modal average is indeed a better estimator of the average stock than the arith-
metic or geometric averages. This is achieved by proving that, in theory, for suf-
ficiently small value of x, the mode is a better estimator of the expected value 
(stock mean) than geometric or arithmetic averages. 

Theorem 3 
Let ( )f x  be a probability function of a random variable X whose maximum 

value is given as ( )Mf ξ , where Mξ  is the random variable defining the max-
imum of ( )f x  at X x= . Then for a sufficiently small Δx the modal average is 
the best estimate of the expected value of ( )f x , for all 0x >  

3.1. Proof 

Consider a probability density function ( )f x  which describes the graph in 
Figure 2. 

https://doi.org/10.4236/jmf.2022.121012


O. Antwi, F. T. Oduro 
 

 

DOI: 10.4236/jmf.2022.121012 204 Journal of Mathematical Finance 
 

 
Figure 2. Probability density function of the random process f(x). 

 
Suppose there are n partitions of the interval [ ],a b . By construction the up-

per and lower Riemann sums, denoted by nU  and nL  respectively are defined 
as 

( ) ( )
1,1

sup
i i

n

n i
xi

U f f x x
+=

 
= ∆ 

 
∑  

( ) ( )
1,1

inf
i i

n

n ixi
L f f x x

+=

 = ∆ 
 

∑  

By Riemann theorem, as n increases in a manner such that each ix∆  de-
creases to zero, it can be seen that nL  is monotone increasing, while nU  is 
monotone decreasing. So, as n →∞  it follows that nL  and nU  will both con-
verge and f is integrable if and only if 

( ) ( )lim ( ) lim d
b

n n n n a
U f x L f x f x x→∞ →∞= = ∫   

By the Mean Value Theorem (MVT) 

( )
( )d Area under the curve

b

a
f x x

f x
x x

= =
∆ ∆

∫  

where 1i ix x x+∆ = −  

( ) Area under the curvef x x∆ =  

Let ξ  be a random variable and a function of x such that [ ],a b∈ξ , then by 
the Mean Value Theorem 

( ) ( )db

a
xf f x∆ = ∫ξ ξ   

Now let [ ],M a b∈ξ  such that M ≥ξ ξ  for all [ ],a b∈ξ , then by the Ex-
treme Value Theorem Mξ  is the value of x corresponding to the maximum 
value of ( )f x . Thus, for any small interval x∆  the area under the curve esti-
mated using ξ  and Mξ  is such that 

( ) ( )Mxf xf∆ ≤ ∆ξ ξ  
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If ( )f x  is a pdf then the maximum area under the curve equals 1 and hence 
by the squeeze theorem 

( ) ( )0 1Mxf xf≤ ∆ ≤ ∆ ≤ξ ξ  

The deduction here is that for any small interval Δx the distribution of the 
area under the curve is a probability density function and its maximum at any 
point on the curve cannot exceed that at the apex of the curve.  

In estimating the mean by the arithmetic average, the area under the curve is 
obtained using i s′ξ , and the area under the curve is obtained as ( )xf∆ ξ . Simi-
larly, the area under the curve when estimating by the modal average is  

( )Mxf∆ ξ . It therefore follows from the squeeze theorem that in the limit as 
0x∆ → , the area under the curve approaches the maximum 1 only if i M→ξ ξ  

and ( ) ( )i Mf f→ξ ξ . Thus, we can write that 

( ) ( )0lim x Mf f∆ → =ξ ξ   

Hence for sufficiently small x∆  the area under the curve ( )xf∆ ξ , corres-
ponding to the mean value of the probability density function is bounded by 

( )Mxf∆ ξ . It must be noted that this situation is possible only for a small value 
of x∆ , as x∆  becomes large the area under the curve increases and collapses 
into a uniform distribution. ∎ 

Let the stock volatility σ  be the function of the random variable  
[ ]0,100∈ξ , then from Theorem 3 we can conclude that for sufficiently low vo-

latility, the best estimate of the expected value of the stock price since  
( ) ( )Mx x∆ > ∆σ ξ σ ξ  for all 0>ξ . In this case the modal average is the best es-

timate of the expected price of the stock. However, as x∆  increases the area 
under the curve no longer has a maximum and the curve in Figure 1 collapses 
into a uniform distribution. In this case the arithmetic and geometric averages 
are the best estimates of the expected value of the stock price. We confirm this in 
the simulation process in 3.2. 

3.2. Numerical Results 

To simulate the sample path of the stock we discretize the path of the stock price 
by generating sample paths ( ) ( ), ,i nS t S t  at fixed times , ,i nt t . The proce-
dure begins by assuming the stock price follows the GBM so that  

( ) ( ) ( ) ( )d d dS t rS t t S t B t= +σ                   (11) 

In a short time period t∆  the change in Brownian motion  
( ) ( )B t t t∆ = ∆ξ  where ( ) ( )~ 0,1t Nξ .  

Hence  

( ) ( ) ( ) ( )S t rS t t S t t t∆ = ∆ + ∆σ ξ                 (12) 

( )
( ) ( )

S t
r t t t

S t
∆

= ∆ + ∆σξ  

Thus, the percentage rate of return of the stock price is normally distributed 
with mean r t∆  and variance 2 t∆σ . That is, 
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( )
( ) ( )2~ ,

S t
N r t t

S t
∆

∆ ∆σ  

Now given a function ( )( ),f S t t , we know by Ito process that  

( )( ) ( )
( )( )
( ) ( )

( )( )
( )

( )( )

( )
( )( )
( ) ( )

2
22

2

, , ,1d , d
2

,
d

f S t t f S t t f S t t
f S t t rS t S t t

S t tS t

f S t t
S t B t

S t

 ∂ ∂ ∂
 = + +
 ∂ ∂∂ 
 ∂

+   ∂ 

σ

σ

 

Applying the process to a stock price with ( )lnf S t=  gives  

( ) ( )
( ) ( )

( ) ( )
( ) ( )22

2

1 1d ln 0 d d
2

rS t S t
S t S t t B t

S t S tS t

    
  = + + − +         

σ
σ  

( ) ( )21d ln d d
2

S t r t B t = − + 
 

σ σ  

In discrete time this becomes ( ) ( )21ln
2

S t r t t t ∆ = − ∆ + ∆ 
 

σ σξ  

This gives ( )( ) ( ) ( )21ln ln
2

S t t S t r t t t + ∆ − = − ∆ + ∆ 
 

σ σξ  

( ) ( ) ( )21exp
2

S t t S t r r t t t
   + ∆ = − ∆ + ∆      

σ σξ          (13) 

Equation (13) is the path constructing formula for the Monte Carlo simula-
tion of the stock price. For the modal average we will simulate the paths of 
( ) ( ), ,i nS t S t  and then compute the value of x corresponding to  

{ }0 1max , , , nf f f , where if  denote the frequency of the stock prices at times 
, ,i nt t . The arithmetic and geometric averages are obtained similarly using 

Equations (2) and (3) respectively. 

The Option Price 
After simulating the path of the stock price, the average stock price ( avgS ) is de-
termined as either arithmetic, geometric or modal average. We proceed to price 
a 3-month Asian call option using the modal, arithmetic or geometric average of 
the stock price as the underlying asset. Whichever average is used we obtain 
large samples of option prices ( )( ),C S t t ’s at times , ,i nt t  and determine the 
average. 

( )( ) ( )( ) ( )( ) ( )( )1 2, , ,
, nC S t t C S t t C S t t

C S t t
n

+ + +
=



 

( )( ) ( )( )
1

1, ,
n

i
i

C S t t C S t t
n =

= ∑                    (14) 

Appendix A shows the simulated stock prices and corresponding option pric-
es computed for stocks listed on the Ghana Stock exchange and on the Nasdaq 
using geometric, arithmetic and modal averages.  

Figures 3-6 show the graphs of modal average option prices against arithmet-
ic and geometric average option prices on GSE and Nasdaq. 

https://doi.org/10.4236/jmf.2022.121012


O. Antwi, F. T. Oduro 
 

 

DOI: 10.4236/jmf.2022.121012 207 Journal of Mathematical Finance 
 

4. Discussion of Results 

Figure 3 and Figure 4 shows the plots of option price of stocks against volatili-
ties of stocks on GSE and the Nasdaq when the underlying stock is averaged us-
ing the arithmetic and modal averages. Figure 3 shows that on GSE, for stocks 
with volatilities between 0% to 3%, the graph of the modal average options prices 
consistently lies below the graph of options prices of arithmetic average. This 

 

 

Figure 3. Comparison of Modal average option prices and Arithmetic average options 
prices on Ghana Stock Exchange. 

 

 

Figure 4. Comparison of Modal average option prices and Arithmetic average options 
prices on Nasdaq. 

 

 
Figure 5. Comparison of Modal average option prices and Geometric average options 
prices on Ghana Stock Exchange. 
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Figure 6. Comparison of Modal average option prices and Geometric average options 
prices on Nasdaq. 

 
means that the arithmetic average overprices the option when volatility is less 
than 3%. On the other hand, when volatility is above 3%, we realise that the 
graph of the modal average options prices consistently lies above the graph of 
options prices of arithmetic average 

Figure 4 also shows with data from Nasdaq, if volatility is less than 3%, the 
graph of the option price using the modal average model consistently lies below 
that of the arithmetic average model graph. Similarly, on Nasdaq if volatility is 
more than 3% the graph of the options prices for the modal average model is al-
ways lies above the arithmetic averaged options graph. 

Figure 5 and Figure 6 also shows the plots of option prices against volatilities 
of stocks from GSE and Nasdaq respectively for modal and geometric averages. 
We realise that when modal average is used, the graph of the option prices con-
sistently lies below that of the geometric averaged option prices when stock vola-
tility is less than 3%. However, above 3% the graph of geometric average option 
prices always lies below the graph of the modal average option price although 
the price differences are not significant.  

The results show that: 
• For stocks with volatilities less than 3%, the modal average model gives lower 

option prices than the arithmetic and geometric average models on both GSE 
and the Nasdaq. This shows that for stocks with volatility of less than 3%, is 
more accurate as the arithmetic and geometric average models overprice the 
option.  

• For stocks with volatilities between 3% and 5%, the modal average model still 
gives slightly lower option prices than the arithmetic average model. Howev-
er, the difference in option prices using the modal average model is not 
significantly different from the prices obtained by using geometric average 
prices.  

• For stock volatility greater than 5%, the arithmetic and geometric average 
models give lower option prices or are more accurate than the modal average 
model. In essence, the modal average model overprices the option when vo-
latility is greater than 5%.  
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The numerical results presented here validates the theoretical assertion that 
for stocks with very low volatilities, that is, less than 3%, averaging over the life 
of the option using the modal average of the stock produces a more accurate 
price for the option. 

5. Conclusion 

This study examined the use of the modal average of the underlying asset in 
pricing an Asian option. The study introduced a new model and established a 
new mathematical framework for the valuation of options with the modal aver-
age stock price. We made the assertion that for low volatility options the modal 
average model is accurate in pricing options when compared to models using 
geometric and arithmetic averages. In furtherance, an analytical prove is devel-
oped to establish this claim. Numerical confirmation to this assertion is ad-
vanced using Monte Carlo simulations. It is established that the modal average 
model gives an accurate price and suitable for pricing options in the case where 
the underlying stock has very low volatilities ranging from 0% to 3%. This ap-
proach would be particularly useful for the valuation of options in low volatility 
regimes such as on Ghana Stock Exchange and many other African stock ex-
changes.  
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Appendix A 

Table 1. Simulated stock prices using Geometric, Arithmetic and Modal Averages on 
GSE. 

 
Stock Parameter Average Stock Price 

Stock/Equity Strike Price Volatility Geometric Arithmetic Modal 

Benso 4.10 1.50 4.1394 4.1385 4.1385 

CAL Bank 1.02 1.64 1.0256 1.0259 1.0259 

Ecobank Bank GH 7.70 1.11 7.6535 7.654 7.654 

Enterprise GP 1.75 1.99 1.7727 1.7733 1.7733 

Fan Milk 5.25 1.22 5.2885 5.2909 5.2909 

GCB 5.30 1.71 5.3489 5.3519 5.3519 

Guinness 3.20 1.73 3.2353 3.2379 3.2379 

GOIL 1.05 0.10 1.0562 1.0562 1.0562 

Golden Star 2.34 1.02 2.3529 2.3503 2.3503 

HFC 1.50 2.07 1.5157 1.5166 1.5166 

Standard Chartered 20.35 1.00 20.4685 20.4809 20.4809 

Societe General 1.00 5.49 1.0273 1.0225 1.0287 

TOTAL GH. 6.10 2.10 6.1638 6.1634 6.1634 

Tallow Oil 34.99 2.10 35.3911 35.356 35.356 

Unilever 10.70 8.77 10.7929 10.7877 10.7877 

Mega Africa 4.50 1.33 4.5363 4.5432 4.5432 
 

Table 2. Option prices on GSE using geometric, arithmetic and modal average stock 
prices. 

 
Stock Parameter Option Price 

Stock/Equity Strike Price Volatility Geometric Arithmetic Modal 

Benso 4.10 1.50 0.0391 0.0449 0.0385 

CAL Bank 1.02 1.64 0.0156 0.0187 0.0159 

Ecobank GH 7.70 1.11 0.0535 0.0583 0.0540 

Enterprise GP 1.75 1.99 0.0227 0.0298 0.0233 

Fan Milk 5.25 1.22 0.0385 0.0464 0.0409 

GCB 5.30 1.71 0.0497 0.0585 0.0519 

Guinness 3.20 1.73 0.0353 0.0408 0.0379 

GOIL 1.05 0.10 0.0062 0.0076 0.0062 

Golden Star 2.34 1.02 0.0129 0.0161 0.0103 

HFC 1.50 2.07 0.0157 0.0185 0.0166 

Standard Chartered 20.35 1.00 0.1185 0.1345 0.1309 

Societe General 1.00 5.49 0.0273 0.0225 0.0287 

TOTAL Ghana 6.10 2.10 0.0638 0.0740 0.0634 

Tallow Oil 34.99 2.10 0.4011 0.3801 0.3660 

Unilever 10.70 8.77 0.0929 0.0877 0.0966 

Mega Africa 4.50 1.33 0.0363 0.0386 0.0432 
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Table 3. Simulated stock prices using Geometric, Arithmetic and Modal Averages on 
NASDAQ. 

 
Stock parameter Average Stock Price 

 
Stock/Equity Strike Price Volatility Geometric Arithmetic Modal 

Barclays 2.68 3.32 2.7120 2.7167 2.7136 

1347PIH 7.80 0.70 7.8418 7.8416 7.8344 

Amazon 749.87 5.33 770.5815 771.8901 768.0482 

Apple 115.82 3.44 117.7973 117.8611 118.6621 

AT&T 42.53 1.39 43.7633 43.7203 43.3087 

BCOM 20.18 1.18 20.7807 20.7763 20.5957 

Facebook 115.05 4.83 117.6367 118.0125 118.1533 

Ford Motors 12.13 4.39 12.4536 12.3851 12.3730 

General Electric 31.60 18.20 34.3291 35.2814 33.9188 

General Motors 34.84 4.12 35.5684 35.5536 35.4175 

Intel Corp 36.27 32.40 41.3124 41.3478 41.4441 

Microsoft 62.14 3.24 63.2238 63.0061 62.8056 

NY Times 13.30 2.75 13.4765 13.4862 13.4398 

ODML 85.79 4.53 87.7146 88.5126 87.6008 

Starbucks 55.52 5.00 56.7970 56.4879 56.6176 

Tesla 213.69 9.30 223.2820 220.8227 221.0606 

Verizon 51.40 16.53 54.8668 54.7580 55.3195 

American Airlines 51.40 12.00 53.7148 53.3479 53.7916 

Airbus 66.25 15.00 71.2220 69.4272 71.3456 

Boeing 155.68 13.68 165.0347 162.9145 164.1845 

 
Table 4. Option prices on NASDAQ using Geometric, Arithmetic and Modal average 
stock prices. 

Stock Parameter Option Price 

Stock/Equity Strike Price Volatility Geometric Arithmetic Modal 

Barclays 2.68 3.32 0.03202 0.03674 0.03360 

1347PIH 7.80 0.70 0.04176 0.04155 0.03444 

Amazon 749.87 5.33 20.70967 18.17659 22.01807 

Apple 115.82 3.44 1.97717 2.04097 2.83951 

AT&T 42.53 1.39 1.23223 1.18919 0.77802 

BCOM 20.18 1.18 0.60016 0.59578 0.41535 

Facebook 115.05 4.83 2.58647 2.96227 3.10304 

Ford Motors 12.13 4.39 0.32357 0.25509 0.24300 

General Electric 31.60 18.20 2.72882 2.31861 3.68109 

General Motors 34.84 4.12 0.72830 0.57745 0.71351 
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Continued 

Intel Corp 36.27 32.40 5.04190 5.07738 5.17368 

Microsoft 62.14 3.24 1.08371 0.86606 0.66550 

NY Times 13.30 2.75 0.17648 0.18617 0.13975 

ODML 85.79 4.53 1.92443 1.80971 2.72019 

Starbucks 55.52 5.00 1.27686 0.96778 1.09748 

Tesla 213.69 9.30 9.59110 7.13202 9.70333 

Verizon 51.40 16.53 4.23520 3.50626 4.51593 

American Airlines 51.40 12.00 2.69403 1.82698 2.82816 

Airbus 66.25 15.00 4.97160 3.17687 5.09510 

Boeing 155.68 13.68 9.35389 7.23382 9.88606 
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