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Abstract 
In this paper, we study the asymptotic behavior of dynamic coherent risk 
measures in general settings regardless of specific representations of the risk 
measures. In particular, we develop three different types laws of large num-
bers (LLN) for the average values of portfolios. These LLNs capture the li-
miting behavior of time-consistent dynamic coherent risk measures under 
appropriate conditions. Our results apply to general probability spaces with a 
sequence of financial returns characterized by a set of probability measures. 
We show that the limit of these averages will generally be multivalued within 
an identified set. We give examples to illustrate the potential applicability of 
our results and derive asymptotic results on estimation for the risk of returns 
of financial assets using a time-consistent dynamic coherent risk measure in-
duced by a class of g-expectations. 
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1. Introduction 

Risk measures are important for investments and many other decision-makings 
in economics and finance. There is a long history of measuring and managing 
risk, and various risk management tools have been developed in recent decades. 
Together with the development of economic and financial theory related to risk 
and uncertainty, various concepts, quantitative models and estimators to quan-
tify risk have been proposed and studied. These include models and methods for 
estimating Value-at-Risk, Expected Shortfall, volatility, probability of default, 
exposure at default and loss given default, etc. 

Among these existing risk measures, variances, the Value-at-Risk (VaR) and 

How to cite this paper: Chen, Z.J., Lin, 
Y.W., Xiao, Z.J. and Zhang, G.D. (2022) 
Laws of Large Numbers for Dynamic Co-
herent Risk Measures. Journal of Mathe-
matical Finance, 12, 301-323. 
https://doi.org/10.4236/jmf.2022.121017 
 
Received: January 13, 2022 
Accepted: February 25, 2022 
Published: February 28, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2022.121017
https://www.scirp.org/
https://doi.org/10.4236/jmf.2022.121017
http://creativecommons.org/licenses/by/4.0/


Z. J. Chen et al. 
 

 

DOI: 10.4236/jmf.2022.121017 302 Journal of Mathematical Finance 
 

the Expected Shortfall (ES) are arguably the most popular risk measures in prac-
tice. The VaR is defined as the loss in market value of a security over a given 
time horizon that is exceeded with probability τ , where τ  is often set at a 
small number, say 0.01 or 0.05. However, despite of its popularity, VaR as a risk 
measure has also been criticized. An important criticism to VaR is that it is not a 
“coherent” risk measure. 

Following the axiomatic approach, Artzner et al. [1] define a coherent risk 
measurement from a regulator’s point of view. 

Definition 1.1 A mapping { }0 :ρ ρ χ= → ∪ +∞  is called a coherent mea-
surement of risk if it satisfies the following conditions for all ,X Y χ∈ . 
• Monotonicity: if X Y≤ , then ( ) ( )X Yρ ρ≥ . 
• Translation Invariance: if a∈ , then ( ) ( )X Xρ α ρ α+ = − . 
• Positive Homogeneity: if 0λ ≥ , then ( ) ( )X Xρ λ λρ= . 
• Sub-additivity: ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + .  

Their starting point is that although we all have an intuitive sense of what fi-
nancial risk entails, it is difficult to give a good assessment of financial risk un-
less we specify what a measurement of financial risk actually means. The four 
axioms have clear meaning in the finance context: Monotonicity says the risk 
increases when the return decreases; a risk measurement satisfies the translation 
invariance axiom if adding alpha dollars of capital to an asset reduces the risk 
measure by alpha dollars; Positive Homogeneity says that the risk exposure of a 
financial position grows in a linear way as the size of the position increases; 
Sub-additivity specifies that the risk of the sum never exceeds the sum of the risks, 
which closely related to the concept of risk diversification in a portfolio of risky 
assets. 

According to the definition of Artzner et al. [1], both the standard deviation 
(variance) and the VaR are not coherent risk measurements (CRM). However, 
while volatility and VaR don’t fall into the category of coherent risk measure-
ment, Expected Shortfall (ES), a coherent risk measurement, has been suggested 
as an alternative (remedy) for VaR based risk measurement. ES is defined as the 
expected loss exceeding VaR. These risk measures are mandated in many cur-
rent regulatory contexts. 

Risk measurement and management have returned to the top of the agenda in 
the wake of the subprime meltdown in 2007-2008. Quite clearly, risk manage-
ment systems failed to deliver enough information during the recent crisis, and 
the price paid by the global economy has been heavy. It is evident that govern-
ment administrators, financial institutions and companies all need robust risk 
measures and integrated risk management framework that can inspire the con-
fidence of people and prevent extreme events. 

In practice, existing methods assume that the underlying distribution of data 
can be characterized by certain class of probability measures, and there exists a 
true model that can be consistently estimated. Consequently, risk measures are 
obtained based on the estimated model. 
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An important practical issue in economics and finance that has attracted a 
growing amount of research attention in recent years is model uncertainty—the 
uncertainty of data generating process. In recent years, researchers demonstrat-
ed cumulated evidence that many economic decisions and activities often con-
front model uncertainty or model misspecification. For example, Chen, Hansen 
and Hansen [2] argue that in many GMM models, there is potentially a very 
large set of subjective beliefs/distributions for which the moment conditions will 
be satisfied. 

Model uncertainty or model ambiguity provides additional challenge when we 
consider risk under such circumstances. Delbaen [3] provides a representation 
of coherent risk measures in general probability spaces. The definition and early 
study of such risk measures are static. In practice, financial returns are usually 
observed over time. As time goes by, changes are made to the position and new 
information is released. On the next period, the decision-maker wishes to re- 
consider the risk of its changed position taking into account the new informa-
tion in a proper way. For this reason, there has been an increasing interest in ex-
tending these static risk measures to dynamic environments in recent years. 

In this paper, we study dynamic risk measures that can accommodate model 
uncertainty. The risk measures that we consider in this paper are coherent and 
can be constructed based on general probability spaces which allows for a set of 
probability measures that characterizes the stochastic behavior of the economic 
activity. We develop laws of large numbers for dynamic coherent risk measures. 
These limiting results provide tools to analyze the risk of average of market val-
ues of portfolios. The asymptotic results represent a recognition of the potential 
effects of the complexities in real-world phenomenon to produce a robust analy-
sis on statistical estimators based on sample averages. 

Arguably one of the most fundamental forms of a statistic in practice is the 
sample average—many statistical estimators can be constructed in the form of a 
sample average of random variables or transformations of them. The dynamic 
coherent risk measures of the portfolios can be estimated based on the sample 
average. For this reason, we focus our attention on the limiting behavior of sam-
ple average. 

When we study risk measures in a dynamic setting, it is important not to con-
tradict oneself over time in one’s risk assessments. This basic idea is summarized 
as the property of dynamic consistency in the literature. In this paper, we devel-
op three different laws of large numbers for time-consistent dynamic coherent 
risk measures. The resulting laws of large numbers show that the limit of average 
returns of portfolios over time will generally be multivalued, with their limit 
point confined in a deterministic set. We give conditions that parallel to those 
used in conventional laws of large numbers and provide a robust analysis that 
works relatively well regardless of the specific representation of dynamic cohe-
rent risk measures. 

Our result provides some theoretical foundation that can be applied to many 
research problems in economic and financial applications. To highlight the im-
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portance of our results, we study two important examples of time-consistent 
dynamic coherent risk measures and apply our asymptotic results to evaluate the 
risk of financial assets. In particular, we study dynamic coherent risk measures 
on a stable set of probabilities in the first example, then apply our limiting re-
sults to the g-expectations. 

From the perspective of probability theory, coherent risk measures can be re-
garded as appropriate nonlinear expectations, with a connection to numerous 
papers use non-additive probabilities or nonlinear expectations (for example 
Choquet expectation, upper expectation, G-expectation) to describe and interp-
ret uncertainty in mathematical economics, statistics and finance, and develop 
limit theorems under different frameworks. Related literature includes Walley 
and Fine [4], Marinacci [5], Epstein and Schneider [6], Maccheroni and Mari-
nacci [7], Cooman and Miranda [8], Chen et al. [9], Chen [10], Peng [11] and 
the references therein. 

This paper is organized as follows. Section 2 introduces some important pre-
liminary definitions and results for time-consistent dynamic coherent risk meas-
ures. Section 3 establishes the laws of large numbers for risk capacities and time- 
consistent dynamic coherent risk measures. In Section 4, we give examples 
where asymptotic behavior of the risk of returns in financial assets using a time- 
consistent dynamic coherent risk measure induced by a class of g-expectations is 
investigated. Section 5 gives a summary of these results. 

2. The Model and Some Preliminary Results 

Let { }0,1,2,=  , we consider a filtered probability space { }( ), , ,i i
P

∈
Ω    

with { }0 ,= ∅ Ω , where i  models the information available at date i. Let 
( ): , ,L L P∞ ∞= Ω   be the space of bounded random variables defined on  

( ), , PΩ  , and ( ): , ,i iL L P∞ ∞= Ω   defined similarly for each i∈ . For each 
1p ≥ , let ( ) {: , , :p pL L P ξ ξ= Ω =  is an  -measurable random variable with 

}p
PE ξ  < ∞  , and ( ): , ,p p

i iL L P= Ω   defined similarly for each i∈ . { } 1i i
X ∞

=
 

is a sequence of random variables with i iX L∞∈ , where iX  describes the mar-
ket return of portfolios at date i or a random net payoff to be delivered to an 
agent at that date. In this paper, all inequalities and equalities applied to random 
variables are meant to hold P-a.s.. 

We first introduce some concepts, which extends the original definition of 
coherent risk measure to the dynamic setting. 

Definition 2.1 A dynamic risk measure on { }( ), , ,i i
P

∈
Ω    is a family 

( )i i
ρ

∈  of maps, where for each i∈ , the map :i iL Lρ ∞ ∞→  satisfies the fol-
lowing properties: 

1) Monotonicity: For each ,X Y L∞∈ , if X Y≤ , then ( ) ( )i iX Yρ ρ≥ ; 
2) Translation invariance: For each X L∞∈  and iZ L∞∈ , 

 ( ) ( )i iX Z X Zρ ρ+ = − .  
Definition 2.2 A dynamic risk measure ( )i i

ρ
∈  is called a dynamic cohe-

rent risk measure if for each i∈ , iρ  satisfies the following additional prop-
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erties: 
3) Sub-additivity: For each ,X Y L∞∈ , ( ) ( ) ( )i i iX Y X Yρ ρ ρ+ ≤ + ; 
4) Positive homogeneity: For each X L∞∈  and 0λ ≥ , ( ) ( )i iX Xρ λ λρ= .  
Definition 2.3 A dynamic risk measure on { }( ), , ,i i

P
∈

Ω    is called a time- 
consistent dynamic risk measure, if for each i∈ , iρ  satisfies the following 
property: 

5) Time consistency: For each X L∞∈  and j i> , ( ) ( )( )i i jX Xρ ρ ρ= − .  
Remark 2.1 Time consistency requires that judgements based on the risk 

measure are not contradictory over time. It means that the risk of each financial 
position can be indifferently evaluated directly or iteratively via some interme-
diate time. In some literature, Property 5) is also called recursiveness, and time 
consistency is defined as: for each ,X Y L∞∈ ,  

( ) ( ) ( ) ( )1 1 , .i i i iX Y X Y iρ ρ ρ ρ+ += ⇒ = ∈  

When we consider a dynamic coherent risk measure, these two definitions are 
equivalent, see, e.g. [12].  

Note that for a dynamic coherent risk measure ( )i i
ρ

∈ , when 0i = ,  

0 : Lρ ∞ →   is a coherent risk measure. We can define a pair of risk capacities 
( ),v  on ( ),Ω   based on a coherent risk measure 0ρ  as follows: 

Definition 2.4 Given a coherent risk measure 0ρ , for each A∈ , let  

( ) ( ) ( ) ( )0 0: , : ,A AA I v A Iρ ρ= − = −  

then ( ),v  is a pair of risk capacities generated by 0ρ .  
According to the properties of 0ρ , it is easy to check that this pair of risk ca-

pacities ( ),v  satisfies the following properties 1)-2): for each ,A B∈ , 
1) ( ) ( ) 0v∅ = ∅ = , ( ) ( ) 1vΩ = Ω = ; 
2) If A B⊂ , then ( ) ( ) ( ) ( ),A B v A v B≤ ≤  ; 
3) ( ) ( ) ( )A B A B∪ ≤ +   ; 
4) ( ) ( ) 1cA v A+ = , where cA  is the complement set of A. 
Example 2.1 A very important leading case of the above concept of coherent 

risk measure is the following dynamic risk measures on a general set of proba-
bilities. Given a measurable space ( ),Ω  , we denote the corresponding set of 
probability measures on this space by ( ),∆ Ω  . If two probability measures de-
fine the same null sets, we say that these two measures are equivalent. Let  

{ }( ), , ,i i
P

∈
Ω    be the filtered probability space as we introduced in the be-

ginning of this paper, we consider the following set   of probability measures:  

( ){ }, |   .Q Q is equivalent to P= ∈∆ Ω   

For any random variable X L∞∈ , we define 0ρ
  on { }( ), , ,i i

P
∈

Ω    as 
follows,  

( ) [ ]0 : sup .Q
Q

X E Xρ
∈

= −


 

It is easy to check that 0ρ
  is a coherent risk measure that can be applied to the 

case with model uncertainty on the probability measures that characterizes the 
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stochastic behavior of the economic activity.  
Example 2.2 Notice that the well-known conventional coherent risk measure 

Expected Shortfall—can be treated as a very special case of our general repre-
sentation of risk measure. Given a probability space ( ), , PΩ  , for any  

( )0,1τ ∈ , let ( ){ }1
XA X Fτ τ−= ≤ , where XF  is the CDF of X, we consider the 

following Choquet probability distortion:  

( ) ( )| .Aτ τ⋅ = ⋅   

This type Choquet distorted probability measure reflects pessimism. The least 
favorable events receive increased weight and the most favorable events are dis-
counted. In particular, the probabilities of the τ  least favorable outcomes are 
inflated and the 1 τ−  proportions of most favorable outcomes are discounted 
entirely. The corresponding CDF is 

( ) ( ) ( ) ( )1 d .XX x A
F x X x F

τ
τ τ τ ≤ ∩

= ≤ = ⋅∫  

In particular, let the distortion function 

( ) min ,1 ,ttτν τ
 =  
 

 

then the distorted Choquet expected value is given by 

( ) ( ) ( )( ) ( ) ( )1
0

1d d | ,X XX X x F x F t t X A
τ

τ
τ τ τν

τ
∞ −

−∞
= = = =∫ ∫    

corresponding to the τ-th expected shortfall (ES). We consider a class of proba-
bility measures generated based on this type distortions. For any given  

( )0,1α ∈ , consider the following class of probability measures 

{ }: ,τ τ α= ≥   

i.e. 

{ } ( ){ }: | : .Aτ ττ α τ α= ≥ = ⋅ ≥   

Then a coherent risk measure is given by 

( ) ( ) ( )

( )( )
( )( )

1

1

sup inf

inf |

| ,

X

X

X X X

X X F

X X F

τ ττ ατ α

τ α

ρ

τ

α

≥≥

−

≥

−

= − = −

= − ≤

= − ≤

  





 

which corresponds to the α-th expected shortfall (ES).  
The following two propositions are basic tools in the proof of our main re-

sults, and the first one extends the Proposition 1 in [12]. 
Proposition 2.1 Let ( )i i

ρ
∈  be a dynamic coherent risk measure, then for each 

i∈ , iρ  satisfies that for each iZ L∞∈  and X L∞∈ ,  

( ) ( ) ( ) ,i i iZX Z X Z Xρ ρ ρ+ −= + −  

where { }0: ZZ ZI+
>=  and { }0: ZZ ZI−

≤= .  
Proof. When 0i = , this proposition can be deduced by the properties of 0ρ . 
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When 1i ≥ , we prove this proposition in the following three steps. 
Step 1: We show that for each iA∈  and ,X Y L∞∈ ,  

( ) ( ) ( ).c ci A A i iA A
XI YI I X I Yρ ρ ρ+ = +  

By monotonicity and translation invariance of iρ ,  

( ) ( ) ( ).cA i A i A A i AL A
I X I XI X I I XIρ ρ ρ∞≤ − =  

Similarly, ( ) ( )A i A i AI X I XIρ ρ≥ , thus ( ) ( )A i A i AI X I XIρ ρ= . Then  

( ) ( ) ( )
( ) ( ).

c c c c

c

i A A i A i AA A A A

A i iA

XI YI I XI YI I XI YI

I X I Y

ρ ρ ρ

ρ ρ

+ = + + +

= +
 

Step 2: Suppose that Z is a simple function, i.e. 1 j

n
j AjZ x I

=
= ∑ , where jx ∈  

and { } 1

n
j j

A
=

 is an i -partition of Ω . We have  

( ) ( )

( ) ( )

( ) ( )

1 1

1

.

j j

j

n n

i i j A A i j
j j

n

A j i j i
j

i i

ZX x I X I x X

I x X x X

Z X Z X

ρ ρ ρ

ρ ρ

ρ ρ

= =

+ −

=

+ −

 
= = 

 

 = + − 

= + −

∑ ∑

∑  

Step 3: Let iZ L∞∈ , then there exists a sequence { } 1n n
Z

≥
 of i -measurable 

simple functions such that nZ  uniformly converge to Z. Then we have  

( ) ( ) ( )
( )

0.

i i n i n

i n L

nL

ZX Z X Z Z X

Z Z X

X Z Z

ρ ρ ρ

ρ ∞

∞

− ≤ − −

≤ − −

= −

→

 

That is,  

( ) ( )

( ) ( )

( ) ( )

lim

lim

.

i i nn

n i n in

i i

ZX Z X

Z X Z X

Z X Z X

ρ ρ

ρ ρ

ρ ρ

→∞

+ −

→∞

+ −

=

 = + − 

= + −

 

Proposition 2.2 Let ( )i i
ρ

∈  be a dynamic coherent risk measure, then for 
each i∈ , iρ  satisfies that for each ,X Y L∞∈ ,  

( ) ( ) ( ).i i iX Y X Yρ ρ ρ− ≤ − −  

Proof. For each i∈ , by sub-additivity of iρ ,  

( ) ( ) ( ) ( ) ,i i i iY X X Y X Yρ ρ ρ ρ− − ≤ − ≤ −  

then  

( ) ( ) ( ) ( ){ }max , .i i i iX Y X Y Y Xρ ρ ρ ρ− ≤ − −  

Since ( ) ( ) 0i iX Y Y Xρ ρ− + − ≥ , by monotonicity of iρ ,  

( ) ( ) ,i iX Y X Yρ ρ− ≤ − −  

( ) ( ) ( ) ,i i iX Y Y X X Yρ ρ ρ− ≥ − − ≥ − − −  
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thus, ( ) ( )i iX Y X Yρ ρ− ≤ − − . Similarly, we have ( ) ( )i iY X X Yρ ρ− ≤ − − . 
Therefore,  

( ) ( ) ( ).i i iX Y X Yρ ρ ρ− ≤ − −  

For a sequence of random variables { } 1i i
X ∞

=
, we now give the definition of 

risk independence with respect to a dynamic risk measure ( )i i
ρ

∈  on  
{ }( ), , ,i i

P
∈

Ω   . 
Definition 2.5 Let { } 1i i

X ∞

=
 be a sequence of random variables with i iX L∞∈ . 

For a dynamic risk measure ( )i i
ρ

∈ , 1iX +  is said to be risk independent of 
( )1, , iX X , if  

( ) ( ) ( ) ( )1 0 1 1 0 1, .i i i i i iX X X Xρ ρ ρ ρ+ + + += − = −  

{ } 1i i
X ∞

=
 is said to be a sequence of risk independent random variables, if 1iX +  

is risk independent of ( )1, , iX X  for each 1i ≥ .  
Remark 2.2 If { } 1i i

X ∞

=
 is a sequence of risk independent random variables 

for a time-consistent dynamic risk measure ( )i i
ρ

∈ , we can easily obtain that 
for each 0 j i< < ,  

( ) ( ) ( ) ( )0 0, .j i i j i iX X X Xρ ρ ρ ρ= − = −  

3. The Laws of Large Numbers 

Let ( )i i
ρ

∈  be a time-consistent dynamic coherent risk measure on  
{ }( ), , ,i i

P
∈

Ω   , we consider a sequence { } 1i i
X ∞

=
 of risk independent random 

variables with i iX L∞∈ . In this section, we develop the asymptotic behavior of 
dynamic coherent risk measures based on the sample average of { } 1

n
i i

X
=

. 
Assume that ( )1 0supi iXρ≥ − < ∞ , and there exist two constants ,µ µ ∈  

such that for each 1i ≥ ,  

( ) ( )0 0, ,i iX Xρ µ ρ µ≡ − − ≡  

then, by risk independence of { } 1i i
X ∞

=
, we have, for each 1i ≥ ,  

( ) ( )1 1, .i i i iX Xρ µ ρ µ+ += − − =  

In addition, we further assume that, for any given 0ε > ,  

{ }( )0
1

1lim 0.
i

n

i X nn i
X I

n ερ >→∞ =

− =∑                   (1) 

For notational convenience, we denote 0 0S =  and 1: m
m iiS X

=
= ∑ , for 1m ≥ . 

Let ( )bC   be the collection of bounded and continuous functions, and 
( )2

bC   be the subset of ( )bC   of twice differentiable functions with bounded 
derivatives of all orders. We first give some preliminary results that are impor-
tant for the derivation of our main Theorem 3.1. 

Lemma 3.1 Let ( )i i
ρ

∈  be a time-consistent dynamic coherent risk measure 
defined on L∞ . Assume that { } ( )2

1m bm
f C

≥
∈   is a sequence of functions and 

there exists a constant 0c >  such that  

( ) ( )
1 1

supsup ,  supsup .m m
m x m x

f x c f x c
≥ ∈ ≥ ∈

′ ′′≤ ≤
 

                 (2) 
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1) If mf  are increasing, then  

1 1
0 0

1
lim 0.

n
m m m

m m mn m

S S S
f f f

n n n n
µ

ρ ρ − −

→∞ =

       ′− + =       
        

∑         (3) 

2) If mf  are decreasing, then  

1 1
0 0

1
lim 0.

n
m m m

m m mn m

S S S
f f f

n n n n
µρ ρ − −

→∞ =

        ′− + =        
        

∑         (4) 

Proof. We only give the proof of (3), the proof of (4) is similar. 
By time consistency of ( )i i

ρ
∈  and Proposition 2.1, it is easy to show that  

1 1
0

1 1
0 1

1 1
0

1

.

m m m
m m

m m
m m m m

m m
m m

S S X
f f

n n n

S S
f f X

n n n

S S
f f

n n n

ρ

ρ ρ

µ
ρ

− −

− −
−

− −

    ′+    
    

     ′= −     
     

    ′= +    
    

 

So, it suffices to prove  

1 1
0 0

1
lim 0.

n
m m m m

m m mn m

S S S X
f f f

n n n n
ρ ρ − −

→∞ =

        ′− + =        
        

∑  

By the Taylor expansion of mf  and the assumption (2), we have for each 
0ε > , there exist 0δ >  (δ  depends only on c and ε ) such that for any 

,x y∈ , and 1m ≥ ,  

( ) ( ) ( ) { } { }2 .m m m y yf x y f x f x y y I c y Iδ δε ≤ >
′+ − − ≤ +         (5) 

Set 1mS
x

n
−=  and mX

y
n

= , by Proposition 2.2 and monotonicity of 0ρ , we 

obtain  

( ) ( )

1 1
0 0

1

1 1
0

1

1 2

 

 , , ,

n
m m m m

m m m
m

n
m m m m

m m m
m

S S S X
f f f

n n n n

S S S X
f f f

n n n n

L n L c n

ρ ρ

ρ

ε

− −

=

− −

=

        ′− +        
        

      ′≤ − − −      
      

≤ +

∑

∑  

where ( )1 ,L nε  and ( )2 ,L c n  are denoted by  

( ) { }( )1 0
1

, : ,
m

n

m X n
m

L n X I
n δ

εε ρ ≤
=

= −∑  

( ) { }( )2 0
1

2, : .
m

n

m X n
m

cL c n X I
n δρ >

=

= −∑  

Since ( )1 0supi iXρ≥ − < ∞ , by the arbitrary of ε  and condition (1), it’s easy to 
prove that  

( ) ( )( )1 20
lim lim , , 0.

n
L n L c n

ε
ε

→ →∞
+ =  
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The proof is complete.  
Lemma 3.2 Let ( )i i

ρ
∈  be a time-consistent dynamic coherent risk measure 

defined on L∞ , then 
1) For each increasing function ( )2

bCϕ ∈  ,  

( )0lim .n

n

S
n

ρ ϕ ϕ µ
→∞

   = −  
  

                    (6) 

2) For each decreasing function ( )2
bCϕ ∈  ,  

( )0lim .n

n

S
n

ρ ϕ ϕ µ
→∞

   = −  
  

                    (7) 

Proof. We only prove (6), the proof of (7) is similar. Note that  

( )( )

( )( )

0

0 0

1
0 0

1 2
0 0

 

1 

1 2

n

n

n n

n n

S
n

S
n

S S
n n n

S S
n n n n

ρ ϕ ϕ µ

ρ ϕ ρ ϕ µ

ρ ϕ ρ ϕ µ

ρ ϕ µ ρ ϕ µ

−

− −

   − −  
  
  = −  

  
      = − +      

      
      + + − + +      

      


 

( )( )

1
0 0

1
0 0

1
0 0

1

1

1

1 .

m m

n
m m

m

S Sn m n m
n n n n

S n
n n

S Sn m n m
n n n n

ρ ϕ µ ρ ϕ µ

ρ ϕ µ ρ ϕ µ

ρ ϕ µ ρ ϕ µ

−

−

=

   − − +   + + − + +      
      

 − + + −  
  

    − − +    = + − +       
        

∑



 

Let  

( ) 1: , 1, 2, , 1,m
n mf x x m n

n
ϕ µ− + = + = + 
 

  

then  

( )( )0

1
0 1 0

1

1 1
0 1 0 1 1

1

1 1
0 1 1

1

n

n
m m

m m
m

n
m m m

m m m
m

n
m m

m m
m

S
n

S S
f f

n n

S S S
f f f

n n n n

S S
f f

n n n

ρ ϕ ϕ µ

ρ ρ

µ
ρ ρ

µ
ρ

−
+

=

− −
+ + +

=

− −
+ +

=

   − −  
  
        = −       

        
         ′= − +        

          

  ′+ +  
  

∑

∑

∑ 1
0

1 2: .

m
m

n n

S
f

n

I I

ρ −
       −      

      
= +

 

Since ( )2
bCϕ ∈  , we have ( )2

m bf C∈   and ( )supx mf x∈ ′  and  
( )supx mf x∈ ′′  are both bounded uniformly for all m. By Lemma 3.1, we have, 
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1 1
1 0 1 0 1 1

1
0, as .

n
m m m

n m m m
m

S S S
I f f f n

n n n n
µ

ρ ρ − −
+ + +

=

       ′≤ − + → →∞       
        

∑  

Furthermore, by Proposition 2.2,  

( ) ( ) ( )

( ) ( )

1 1 1
2 0 1 1

1

1 1
1

1 1 1
1

sup

sup

0, as .

n
m m m

n m m m
m

n

m m m
xm

n

m m m
xm

S S S
I f f f

n n n n

f x f x f x
n

f x f x f x
n n

n

µ
ρ

µ

µ µ

− − −
+ +

=

+ +
∈=

+ + +
∈=

      ′≤ − + −             

′≤ + −

 
′= + − − 

 
→ →∞

∑

∑

∑





 

Then, we complete the proof.  
With the above preliminary results, we can now prove our main result. 
Theorem 3.1 (Law of Large Numbers) Let ( )i i

ρ
∈  be a time-consistent dy-

namic coherent risk measure defined on L∞ , and { } 1i i
X ∞

=
 be a sequence of risk 

independent random variables such that for each 1i ≥ , i iX L∞∈  and satisfies 
( )1 0supi iXρ≥ − < ∞ ,  

( ) ( )0 0, , .i iX Xρ µ ρ µ µ µ≡ − − ≡ ≤ ∈  

Assume further that for each 0ε > ,  

{ }( )0
1

1lim 0.
i

n

i X nn i
X I

n ερ >→∞ =

− =∑                  (8) 

Then we have, 
1) For each 0ε > ,  

lim 0.n n

n

S S
n n

µ ε µ ε
→∞

    ≥ + ≤ − =    
    

  

2) For each 0ε >  and ,h µ µ ∈   ,  

lim 1.n

n

S
h h

n
ε ε

→∞

 − < < + = 
 

  

3) For each ( )bCϕ ∈  ,  

( )0lim inf .n

n x

S
x

n µ µ
ρ ϕ ϕ

→∞ ≤ ≤

   = −  
  

 

Proof. 1) For each 0ε > , let ( ) ( )2
bx Cφ ∈   be an increasing function with 

( ) 1xφ = −  when x µ ε≤ − , ( ) 0xφ =  when 
2

x εµ≥ − , and ( )1 0xφ− < <  

when 
2

x εµ ε µ− < < − , then { } ( )xI xµ ε φ
≤ −

− ≥  and ( ) 0φ µ = , combine with 

Lemma 3.2, we have  

( )00 0, as .n nS S
n

n n
µ ε ρ φ φ µ

    ≤ ≤ − ≤ → − = →∞    
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Similarly, we have lim 0n

n

S
n

µ ε
→∞

 ≥ + = 
 

 , then  

0 lim

lim lim

0.

n n

n

n n

n n

S S
n n

S S
n n

µ ε µ ε

µ ε µ ε

→∞

→∞ →∞

    ≤ ≥ + ≤ −    
    
   ≤ ≥ + + ≤ −   
   

=



   

2) For each 0ε >  and ,h µ µ ∈   , by the monotonicity of  , we only need 
to prove  

liminf 1.n

n

S
h h

n
ε ε

→∞

 − < < + ≥ 
 

  

Construct a function ( ) ( )2
bx Cψ ∈   such that, ( ) 0xψ =  when x h ε≤ −  or 

x h ε≥ + , and ( )1 0xψ− ≤ ≤  when h x hε ε− < < + , and ( ) 1hψ = − . It’s 

easy to check that { } ( )h x hI xε ε ψ− < < +− ≤  and  

0 .n nS S
h h

n n
ε ε ρ ψ

    − < < + ≥     
    

  

Since ( )2
bCψ ∈  , there exist a constant 0c >  such that ( )supx x cψ∈ ′ ≤ , 

( )supx x cψ∈ ′′ ≤ . By the Taylor expansion of ψ , for each 0ε > , there exist 
0δ >  (δ  depends only on c and ε ) such that for any ,x y∈ ,  

( ) ( ) ( ) { } { }2 .y yx y x x y y I c y Iδ δψ ψ ψ ε ≤ >
′+ − − ≤ +  

Let 1: m
m

S n mT h
n n
− −

= + . By time consistency and coherency of ( )i i
ρ

∈ , and 

using condition (8), we have,  

( )( )

( ) ( ) { } { }

0 0

1
0 0

1

0 0
1

0
1

1

2
m m

n

n
m m

m

n
m

m m
m

n
m

m m m mX n X n
m

S
h

n

S Sn m n mh h
n n n n

X hT T
n n

X cT T X I X I
n n nδ δ

ρ ψ ρ ψ

ρ ψ ρ ψ

ρ ψ ρ ψ

ερ ψ ψ

−

=

=

≤ >
=

   −  
  
    − − +    = + − +       

        
       = + − +             
  ′≥ + + +  

 

∑

∑

∑

( ) ( ) { } { }0
2

m m h n h n
h cT T h I h I
n n nδ δ

ερ ψ ψ ≤ >


 ′− + − −  

 

 

( ) ( )( ) ( )( ) ( ) ( )

{ } { } { } { }

( ) { }( ) { }

0 0
1

0

0 0
1

2 2

2 2

0, as , 0.

m m

m

n

m m m m m
m

m m h n h nX n X n

n

m m h nX n
m

hT T T T T
n n n

c cX I X I h I h I
n n n n

c cX X I h h I
n n n n
n

δ δδ δ

δδ

µ µρ ψ ψ ψ ρ ψ ψ

ε ερ

ε ερ ρ

ε

+ −

=

≤ >≤ >

>>
=

    ′ ′ ′≥ + − − +    
   

 − − − − −  
  

 ≥ − − − − − − 
 

→ →∞ →

∑

∑
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Then we have  

( )( )0liminf 1.n

n

S
h h h

n
ε ε ρ ψ

→∞

 − < < + ≥ = 
 

  

3) If ( )bCϕ ∈  , then for any 0ε > , there exists ( )2
bCϕ ∈   such that  

( ) ( )sup .
x

x xϕ ϕ ε
∈

− <


 

So we only need to prove the result for the case where ( )2
bCϕ ∈  . 

First, as a consequence of 1), for each 0ε > ,  

( )

( )

0 0 0

inf

inf ,

n n n

n n n
S S S
n n n

n n

x

x

S S S
I I

n n n

S S
x

n n
x

µ ε µ ε µ ε µ ε

µ ε µ ε

µ ε µ ε

ρ ϕ ρ ϕ ρ ϕ

ϕ ϕ µ ε µ ε

ϕ

     − < < + ≤ − ≥ +     
     

− ≤ ≤ +

− ≤ ≤ +

            ≤ +                   
    ≤ − + ≥ + ≤ −    
    

→ −



  

where ( )supx R xϕ ϕ∈= . With the arbitrariness of 0ε >  and the continuity 

of ϕ , we have  

( )0limsup inf .n

xn

S
x

n µ µ
ρ ϕ ϕ

≤ ≤→∞

   ≤ −  
  

                 (9) 

On the other hand, let *x  be the point in ,µ µ   , such that  

( ) ( )* inf
x

x x
µ µ

ϕ ϕ
≤ ≤

= . By the Taylor expansion of ϕ , for each 1n ≥ , there exists a 

random variable nθ  valued in [ ]0,1  such that  

( )* * * * .n n n
n

S S S
x x x x

n n n
ϕ ϕ ϕ θ

      ′− = + − −      
      

 

Thanks to 2), for each ε , we have  

( )

( )

( ) ( )
* *

*

0

*
0

* *
0

* * *
0

inf

n n

n

n

x

n

n n
S S

x x
n n

n n
n S

x
n

S
x

n

S
x

n

S S
x I x I

n n

S S
x x x I

n n

µ µ

ε ε

ε

ρ ϕ ϕ

ρ ϕ ϕ

ρ ϕ ϕ ϕ ϕ

ρ ϕ θ

≤ ≤

      − < − ≥   
      


− <

    − −       
  = −  

  
        = − + −              

    ′= + − −    
     *

*( )
n

n
S

x
n

S
x I

n ε
ϕ ϕ     − ≥  

      

    + −      

 

*0

* *

2

2 < < 1

.

nS
x

n

n

I

S
x x

n

ε
ρ ϕ ε ϕ

ϕ ε ϕ ε ε

ϕ ε

  − ≥ 
  

 
 ′≥ +
 
 

  ′= − + − + −  
  

′→ −
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By arbitrariness of 0ε > ,  

( )0liminf inf .n

n x

S
x

n µ µ
ρ ϕ ϕ

→∞ ≤ ≤

   ≥ −  
  

 

Combine the above result with (9), we obtain  

( )0lim inf .n

n x

S
x

n µ µ
ρ ϕ ϕ

→∞ ≤ ≤

   = −  
  

 

4. Examples 

The asymptotic results in Section 3 can be applied to a wide range of settings. In 
this section, we give two specific examples of time-consistent dynamic coherent 
risk measures to illustrate the potential of our previous results. Our first example 
provides some additional investigations to the dynamic risk measure giving in 
Example 2.1 of Section 2. The second example considers the g-expectations.  

4.1. Dynamic Coherent Risk Measures in the Presence of Model  
Uncertainty 

We first consider the risk measure given in Example 2.1 in Section 2 in the 
presence of model uncertainty. As mentioned in Section 2, we can verify that 

0ρ
  is a coherent risk measure. Next, we show that, under appropriate condi-

tions, there exits a unique time-consistent dynamic coherent risk measure  

( )i i
ρ

∈
  on { }( ), , ,i i

P
∈

Ω   .  
Artzner et al. [13] and Delbaen [14] prove that a dynamic coherent risk meas-

ure defined from a set of probability measures is time-consistent if and only if 
this set satisfies the stability condition. Riedel [15] calls this condition also “con-
sistency”, Roorda et al. [16] uses “product property”, and Epstein and Schneider 
[6] name it “rectangular” in decision theoretic framework. 

Bion-Nadal ([17]) gives the following definition of stable set  , which is 
weaker than that of [14]. 

Definition 4.1 Let   be a set of probability measures on ( ),Ω   all equiv-
alent to P.   is stable if the following conditions hold. 

1) Stability by composition: For each 0 m n≤ ≤  and ,R S ∈ , there is a prob-
ability measure Q∈  such that for each random variable X L∞∈ ,  

[ ] [ ]| | | ;Q m R S n mE X E E X =      

2) Stability by bifurcation: For each n∈ , ,R S ∈  and nA∈ , there is a 
probability measure Q∈  such that for each random variable X L∞∈ ,  

[ ] [ ] [ ]| | | .cQ n A R n S nA
E X I E X I E X= +    

Proposition 4.1 If   is stable, there exists a family ( )
1i i

ρ
≥

  such that  

( )i i
ρ

∈
  is a time-consistent dynamic coherent risk measure defined on L∞ . 

Moreover, if   is weakly compact in 1L  norm, the existence is unique under 
P-equivalence.  

Proof. 1) Existence: For any random variable X L∞∈ , define a family ( )
1i i

ρ
≥
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as follows,  

( ) [ ]: esssup | , 1.i P i
P

X E X iρ
∈

= − ∀ ≥


  

It is easy to check that ( )i i
ρ

∈
  satisfies the conditions 1)-4) given in Definition 

2.1. So we only need to prove that  

( ) ( )( ) , 0 .j j iX X j iρ ρ ρ= − ≤ <                   (10) 

Fix some X L∞∈  and 1i ≥ . For any 1 2,P P ∈ , let  

[ ] [ ]{ }1 2
| | .P i P i iA E X E X= − > − ∈    

From stability by bifurcation, we can construct a probability measure 3P ∈  
such that  

[ ] [ ] [ ]
3 1 2

| | | ,cP i A P i P iA
E X I E X I E X− = − + −    

that is [ ]{ }| |Q iE X Q− ∈   is a lattice upward directed. According to Appen-
dix A.4 in [18],  

( ) [ ]lim | ,
ni P in

X E Xρ
→∞

= −   

where nP ∈  and [ ]{ }|
nP iE X−   is an increasing sequence of random va-

riables. 
Similarly, we can prove that for any given 0 j i≤ < , there exists a sequence 

{ } 1m m
Q

≥
, mQ ∈ , such that ( )( )j i Xρ ρ−   is the increasing limit of  
( ) |

mQ i jE Xρ  
  . 

Then by monotonic convergence theorem,  

( )( ) [ ]

[ ]

( )

,

lim lim | |

lim | |

esssup |

,

m n

m n

j i Q P i jm n

Q P i jm n

Q j
Q

j

X E E X

E E X

E X

X

ρ ρ

ρ

→∞ →∞

→∞

∈

 − = − 
 = − 

 ≤ − 

=

 





 

 


 

the inequality dues to the stability by composition of  . Conversely,  

( )

[ ]

[ ]

( )( )

esssup |

esssup | |

esssup esssup | |

,

j Q j
Q

Q Q i j
Q

Q R i j
Q R

j i

X E X

E E X

E E X

X

ρ

ρ ρ

∈

∈

∈ ∈

 = − 

 = − 

 ≤ −  

= −







 

 



 

 
 

Thus,  

( ) ( )( ) , 0 .j j iX X j iρ ρ ρ= − ≤ <    

2) Uniqueness: Suppose there exist two families ( ){ }1,
0 1

, i i
ρ ρ

≥

   and  

( ){ }2,
0 1

, i i
ρ ρ

≥

   are time-consistent dynamic coherent risk measures. 
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Fix some 1i ≥ . By Proposition 2.1 and Equation (10), for each iA∈  and 
X L∞∈ , we have A iI L∞∈  and  

( )( ) ( )( )1, 2,
0 0 .A i A iI X I Xρ ρ ρ ρ− = −     

In particular, let ( ) ( )1, 2, 1
n i iA X X

n
ρ ρ = > + 

 
  , 1n ≥ , then nA  is i

-measurable, and we have  

( )( ) ( )( )1, 2,
0 0 .

n nA i A iI X I Xρ ρ ρ ρ− = −     

Since  

( )( ) ( )

( )( )

1, 2,
0 0

2,
0 0

1

1 ,

n n

n n

A i A i

A i A

I X I X
n

I X I
n

ρ ρ ρ ρ

ρ ρ ρ

  − ≥ − +  
  

 ≥ − −  
 

   

  

 

we have  

( )0 0.
nAIρ =  

Furthermore, there exist a sequence { } 1m m
P

≥
 such that  

( )0lim .
m n nP A Am

E I Iρ
→∞

 − = 
                   (11) 

If   is weakly compact in 1L  norm, then for this sequence { } 1m m
P

≥
, there 

exist a subsequence { }
1km k

P
≥

 with Radon-Nikodym derivatives 
d
d

kmP
P

 such 

that  

d d 0, as ,
d d

km
P

P QE k
P P

 
− → →∞ 

  
 

for some probability measure Q∈ . Then  

d d , as .
d d

k
m n n n nk

m
P A P A P A Q A

P QE I E I E I E I k
P P

      − = − → − = − →∞        
 

This combines with (11) to obtain  

( )0 0.
n nQ A AE I Iρ − = = 

  

Therefore, ( ) 0nQ A =  and  

( ) ( )( ) ( )1, 2, lim 0.i i nn
Q X X Q Aρ ρ

→∞
> = =   

By the equivalence of  , we have ( ) ( )1, 2,
i iX Xρ ρ≤  . Similarly, we can ob-

tain ( ) ( )1, 2,
i iX Xρ ρ≥  . That is ( )( )

1i i
Xρ

≥

  is unique under P-equivalence.  

Theorem 4.1 Let   be stable and { } 1i i
X ∞

=
 be a sequence of random va-

riables such that for each 1i ≥ , i iX L∞∈  and satisfies  

1sup supi P P iE X≥ ∈   < ∞  , and [ ]1esssup |Q Q i iE X µ∈ − =  ,  
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[ ]1ess inf |Q Q i iE X µ∈ − =  , µ µ≤ ∈ . Assume that for each 0> ,  

{ }
1

1lim sup 0.
i

n

P i X nn Pi
E X I

n >→∞ ∈=

  = ∑ 


 

Then we have, for each ( )bCϕ ∈  ,  

( )0lim inf .n

n x

S
x

n µ µ
ρ ϕ ϕ

→∞ ≤ ≤

   = −  
  

  

4.2. Dynamic Risk Measures Based on g -Expectations 

g-expectations are introduced by Peng [19] via a class of nonlinear Backward 
Stochastic Differential Equations (BSDEs). They are classical examples of time- 
consistent dynamic risk measures. Rosazza Gianin [20] provides some sufficient 
conditions for a g-expectation to be a dynamic coherent risk measure 

Given an integer n∈  and let ( )0t t n
W

≤ ≤
 be an 1-dimensional standard 

Brownian motion defined on a completed probability space ( ), , PΩ  . Suppose 
{ }0t t n≤ ≤
  is the natural filtration generated by ( )0t t n

W
≤ ≤

, i.e.  
{ },0t sW s tσ= ≤ ≤ ∨  , where   is the collection of P-null subsets. We also 

assume n =  . Consider the following BSDE  

d d ,
n n

t s s st t
Y X s Wκ σ σ= + −∫ ∫                (12) 

where 2X L∈  and κ +∈  (refer to [21] κ -Ignorance). Pardoux and Peng 
[22] show that BSDE (12) has a unique adapted solution  

( ) ( ) ( )2 2
0

, 0, , 0, ,t t t
Y L n L nσ

≥
∈ ×  , where ( ) {2 0, , : :t tL n X X=  is a  -valued 

and { }t -adapted process with }2

0
d

n
P sE X s  < ∞  ∫ . 

The g-expectation of X is defined by  

[ ] 0: ,g X Y=  

and for each [ ]0,t n∈ , the conditional g-expectation of X under t  is defined 
by  

[ ]| : .g t tX Y=   

For some n∈  large enough, consider the finite set of dates  
{ }, 0, ,n i i n= =   when the risks of market values are assessed, and a discrete 

filtration { } ni i∈  models the information available at date i. For each random 
variable 2X L∈ , we define a family ( ) n

g
i i

ρ
∈

 on ( )( ), , ,ni i
P

∈
Ω    as fol-

lows,  

( ) [ ]0 : ,g
gX Xρ = −  

( ) [ ]: | , 1 .g
i g iX X i nρ = − ≤ ≤   

By Peng [19] and Chen et al. [23], we know ( ) n
g
i i

ρ
∈

 is a time-consistent dy-
namic coherent risk measure defined on 2L . 

Lemma 4.1 For each ni∈ , g
iρ  satisfies that for each iZ L∞∈  and  

2X L∈ ,  
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( ) ( ) ( ) ,g g g
i i iZX Z X Z Xρ ρ ρ+ −= + −  

where { }0: ZZ ZI+
>=  and { }0: ZZ ZI−

≤= .  

Proof. Fix some 2X L∈ . First, consider any simple function  

1:
j

m
j A ijZ x I L∞

=
= ∈∑ , where jx ∈  and { } 1

m
j j

A
=

 is an i -partition of Ω . 
By Lemma 2 in Chen and Peng [24] and positive homogeneity of g

iρ , we have  

( ) ( )

( )

( ) ( )( )
( ) ( )

1

1

1

.

j

j

j j

m
g g
i A i

j

m
g

A i j
j

m
g g

j A i j A i
j

g g
i i

ZX I ZX

I x X

x I X x I X

Z X Z X

ρ ρ

ρ

ρ ρ

ρ ρ

=

=

+ −

=

+ −

=

=

= + −

= + −

∑

∑

∑

            (13) 

Next, consider any random variable iZ L∞∈ , there exists an increasing se-
quence { } 1m m

Z
≥

 of i -measurable simple functions such that mZ  uniformly 
converge to Z and mZ Z

∞
≤ . Since mZ X ZX→ , P-a.s. and mZ X Z X

∞
≤ , 

by dominated convergence theorem, we have  
2 0, as .P mE Z X ZX m − → →∞   

From standard estimates of BSDEs [25], we have  

( ) ( )
2 2 0, as ,g g

P i i m P mE ZX Z X CE Z X ZX mρ ρ   − ≤ − → →∞    
 

where C is a constant independent of m. Then there exists a subsequence  

{ }
1k k

m m
Z

≥
 of { } 1m m

Z
≥

 satisfying  

( ) ( )lim .
k

g g
i m ik

Z X ZXρ ρ
→∞

=  

According to Equation (13), we have  

( ) ( ) ( )( ) ( ) ( )lim lim .
k k k

g g g g g
i m m i m i i ik k

Z X Z X Z X Z X Z Xρ ρ ρ ρ ρ+ − + −

→∞ →∞
= + − = + −  

Thus,  

( ) ( ) ( ).g g g
i i iZX Z X Z Xρ ρ ρ+ −= + −  

Remark 4.1 By this lemma, the condition i iX L∞∈ , 1i ≥ , in Theorem 3.1, 
can be extended to 2

i iX L∈ .  
The next example illustrates how our law of large numbers works in evaluat-

ing the risk of a financial asset by ( ) n
g
i i

ρ
∈

. 
Theorem 4.2 Let ( ) n

g
i i

ρ
∈

 be defined as above and tS  be the value process 
of some financial asset having the following geometric Brownian motion cha-
racterization,  

0 0d d d , ,t t t tS S t S W S sµ σ += + = ∈                (14) 

where µ  and 0σ > . Then we have for each ( )bCϕ ∈  ,  

( )0
ln

lim inf ,g n

n x A

S
x

n
ρ ϕ ϕ

→∞ ∈

   = −  
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where 
2 2

,
2 2

A σ σµ σκ µ σκ
 

= − − − + 
 

.  

Proof. By solving the SDE (14),  
2

0 exp ,
2t tS s t Wσµ σ

  
= − +  

   
 

and 
2

0ln ln
2t tS s t Wσµ σ

 
= + − + 

 
 satisfies normal distribution  

2
2

0ln ,
2

N s t tσµ σ
  

+ −     
. Let 2

1: ln lni i i iX S S L−= − ∈ , 1 i n≤ ≤ . We can veri-

fy the conditions in Theorem 3.1 as follows. 

1) ( )1 0sup g
i iXρ≥ − < ∞ , and for each 0 i n≤ ≤ , ( )

2

1 2
g
i iX σρ µ σκ+ = − + + , 

( )
2

1 2
g
i iX σρ µ σκ+− = − + . 

For each random variable 2X L∈ , by Chen and Epstein [21], we have  

( ) [ ]0 sup ,v
v

g
Q

Q
X E Xρ

∈

= −


 

where  
2

0 0
1 d d
2d: : : e , .

d

t t
s s s

v v s v Wv
t

QQ E v
P

κ
− +∫ ∫   = = ≤  

    
   

For each process tv  bounded by κ , i.e. v κ≤ , let 
0

: d
t

t t sW W v s= − ∫ ,  

0t ≥ , then by Girsanov’s theorem tW  is a vQ -Brownian motion under  
vQ ∈ . Therefore,  

( ) ( )
2

0 1
1 1

2

1
1

2

1 11

2

sup sup sup
2

sup sup
2

sup sup d
2

.
2

v
v

v
v

v
v

g
i i iQi i Q

i iQi Q

i
i i sQ ii Q

X E W W

E W W

E W W v s

σρ µ σ

σµ σ

σµ σ

σµ σ σκ

−
≥ ≥ ∈

−
≥ ∈

− −≥ ∈

 
− = − + − 

  

 ≤ − + − 

 = − + − +  

≤ − + +

∫ 







 

Since 1iX +  is independent of i , we have  

( ) ( ) [ ]1 0 1 1sup .v
v

g g
i i i iQ

Q
X X E Xρ ρ+ + +

∈

= = −


 

Since 

[ ] ( )
2 1

1 1

2

sup sup d
2

,
2

v
v v

i
i v i i sQ iQ

Q Q
E X E W W v sσµ σ

σµ σκ

+

+ +
∈ ∈

 − = − + + − − +  

≤ − + +

∫ 
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meanwhile, for tv κ≡ − , 0t ≥ , we have [ ]
2

1 2v iQ
E X σµ σκ+− = − + + . Then  

( )
2

1 .
2

g
i iX σρ µ σκ+ = − + +  

Similarly, consider 1iX +− , we have  

( )
2

1 .
2

g
i iX σρ µ σκ+− = − +  

2) For each 0ε > ,  

{ }( )0
1

1lim 0.
i

n
g

i X nn i
X I

n ερ >→∞ =

− =∑  

Fix some 0ε > , we also have, for n large enough,  
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1 1
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n
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n
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− − − −
= ∈ − >

∫

−

 =  
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∑

∑
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2 2
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122 1
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2 2 2
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2 2 2
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−
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Therefore, the sequence { }iX  satisfies all conditions assumed in Theorem 
3.1, and we can obtain that for each ( )bCϕ ∈  ,  

( )0
ln

lim inf ,g n

n x A

S
x

n
ρ ϕ ϕ

→∞ ∈

   = −  
  

 

where 
2 2

,
2 2

A σ σµ σκ µ σκ
 

= − − − + 
 

.  

5. Summary 

One of the most important properties of dynamic coherent risk measures is the 
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time consistency, which guarantees judgements of agents based on the risk meas-
ure which are not contradictory over time. By this feature, we study the asymp-
totic behavior of general dynamic coherent risk measures regardless of the spe-
cific representations and propose three types of law of large numbers (LLN) for 
the average values of portfolios, which describe the limit behavior of portfolio 
risks, and provide a new theoretical basis for the numerical calculation of portfo-
lio risks. 

Theorem 3.1 shows that the limit of average returns of portfolios over time 
will generally be multivalued, with their limit point confined in a deterministic 
set. 
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