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Abstract 
A spinning gyroscope precesses about the vertical due to a torque acting upon 
the wheel. The torque is generated by the shift of moment of force by gravity 
and it points to the vertical instead of the tangential direction of precession. 
This intuition offers an alternative and straightforward view of precession 
dynamics in comparison with the literature. It also presumes a dynamic bal-
ance of momentum between circular motions of the wheel spin and preces-
sion. Accordingly, the gyroscopic dynamics is then applied to the study of 
galactic motion of the solar system in space and the Galactic mass is calcu-
lated with the inclusion of gyroscopic effect of the solar planets. Results indi-
cate that the gyroscopic effect of Mercury orbiting around the Sun can in-
crease the calculated Galactic mass by 23% in comparison with the result ob-
tained by the classic approach. 
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1. Introduction 

Newton’s law of universal gravitation is arguably the first principle in astrophys-
ics. It started with an apple falling down on his head and ended with the Moon 
falling sideways around Earth. Newton’s comparison of acceleration of the apple 
to that of the Moon led to a rational understanding of the nature of gravity that 
came to be the fabric of our universe. All objects attract each other with a force 
that is proportional to the product of their masses and inversely proportional to 
their distance of separation. The laws of mechanics that govern the movement of 
objects on Earth also govern the motion of celestial bodies in space. 

In the study of astrophysics, measuring the mass and motion of galaxies is one 
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of our fundamental tasks. Luminous or baryonic matter in a galaxy such as stars 
and planets can be detected directly using optical and radio telescopes. And we 
can get an estimate of how much mass they contain. However, we cannot direct-
ly measure non-luminous matter, such as black holes that formed from stellar 
collapse, which we cannot see. 

How can we measure the celestial mass that cannot be seen? According to the 
universal gravitational equation and Newton’s second law of motion, if we know 
the mass of a body, we can work out how fast we need to go to orbit at distance. 
For instance, given the mass of the Sun and orbital radius of the solar planets, we 
can calculate the rotation curve of the solar system. Results show that the orbital 
or rotational speeds of the planets are inversely proportional to the square root 
of their orbital radii. The solar rotation curve falls. The calculation result is con-
sistent with that of observation. Inversely, if we know the speed of a star orbiting 
on a circular orbit at distance from a galactic center, we can calculate the galactic 
mass interior to the orbit of the star. The gravitational forces from mass outside 
cancel out, assuming that the mass distribution is spherically symmetric. For in-
stance, given the orbital speed and radius of the Sun orbiting about the Galactic 
center, the Galactic mass can be calculated as an equivalent of 95 billion solar 
masses. Consequently, suppose we measure the speeds of stars at various radii 
from a galactic center. In theory, each star allows us to calculate the mass inte-
rior to the orbit of that particular star. If we observe many stars, we can map out 
the rotation curve of the galaxy. 

Accordingly, when we apply the rotation curve to our Galaxy, we expect re-
sults similar to that of the solar system. Specifically, within the inner galaxy, en-
closed mass rises, so does the rotation speed. There are no stars and no more 
mass beyond the optical edge of the Galaxy, and rotation speed supposedly falls. 
Instead, we observe a flat rotation curve for the Galaxy in which speed virtually 
stays the same as we move further away from the center [1] [2]. 

There can be two ways of reasoning with the observation, as we go back to the 
equation derived from Newton’s universal gravitation and second law of motion. 
If orbital speed is constant with increasing orbital radius, then mass is propor-
tional to radius. Hence, there ought to be more and more mass as we go to larger 
and larger distances from the center, implying that there can be a substantial 
amount of mass like dark matter we do not see in space [3] [4]. 

Alternatively, we can compare the patterns of motion between the solar pla-
nets and galactic stars like the Sun. A solar planet moves along with other pla-
nets in groups around the Sun, while the Sun moves with a group of its planets 
orbiting around it. Orbital rotation of the solar planets produces a combined 
angular motion that would keep the solar plane moving along a straight line due 
to the conservation of angular momentum. In other words, the solar system acts 
like a giant gyroscope in space. Does the law of conservation of angular mo-
mentum affect orbital motion of the solar system in our Galaxy? If so, how? 
Perhaps we want to go back to the basic physics of gyroscopes. 
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2. The gyroscope 

A gyroscope is made of a wheel or rotor on an axle that spins freely, usually 
mounted in a frame body. When spinning, the orientation of the spin axis is un-
affected by tilting or rotating the body. Without its mounting body, a spinning 
gyroscope can stand by its axle like a top and move in counter-intuitive ways. It 
precesses about the vertical as if it defies gravity [5] [6] [7]. 

Newton’s first law of motion tells us that a body in motion continues to move 
at a constant speed along a straight line unless acted upon by an unbalanced 
force. Since a spinning gyroscope precesses and changes its motion, there must 
be a net force acting upon it. And it has to be the force of gravity. Figure 1 
shows a precessing gyroscope with a description of precession dynamics and 
geometric illustration of angular motion [8]. When the wheel is not spinning at 
the shown position, it simply topples over by turning to the right around the 
x-axis, due to the moment of force created by its weight. When the wheel is 
spinning, it precesses by continuously falling sideways around the z-axis without 
actually falling over, tracing an invisible cone standing on its tip. 

 

 
Figure 1. A spinning gyroscope falls sideways. The wheel consists of a solid ring con-
nected to an axle with weightless spokes not shown. The gyroscope precesses counter-
clockwise as the wheel spins in the same direction. Positioned below the wheel for clarity, 
the torque of precession points to the z-axis due to a quarter-turn shift of the moment of 
force by gravity, according to the right-hand rule. The gyroscope will precess clockwise if 
the wheel changes its spin direction and the torque will be pointing away from the z-axis. 
Note that angular momentum and torque change in opposing directions. It points to a 
balance of momentum in horizontal between the wheel spin and precession. 
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How do we interpret precession? Assume our gyroscope is made of a solid 
ring for simplicity instead of a typical disk on an axle. Let’s pick four points of 
mass p, q, p' and q' at top, bottom, left and right on the ring. Without spinning, 
all units of mass produce a total moment of force by gravity, with a moment arm 
being the distance from the wheel center of mass to the z-axis. This moment of 
force turns around the p'-q' horizontal median and the wheel falls. When spin-
ning counterclockwise, all mass units shift in position continuously and the wheel 
precesses counterclockwise around the z-axis by turning around the p-q vertical 
median instead. It seems that the spinning of the wheel makes its turning shift 
by 90 degrees in the direction of precession. Since it is the force of gravity acting 
on the wheel that causes precession, the moment of force must also shift by 90 
degrees due to spinning (see Appendix 1 for reasoning). In other words, the mo-
ment of force turns around the horizontal median without spinning. When spin-
ning, it shifts by a quarter-turn counterclockwise and turns around the vertical 
median instead. The moment of force by gravity thus becomes the torque of pre-
cession, pointing to the z-axis instead of the tangential direction of precession 
[8]. This quarter-turn shift of moment/torque drives the wheel to make a quar-
ter-turn twist in falling: it falls sideways around its vertical median instead of 
around the horizontal. As it continues to fall sideways, the gyroscope precesses. 
And the faster the wheel spins, the quicker the mass units shift in position, and 
inversely the easier and slower it precesses. 

Following the geometric description in Figure 1, the precession of the gyros-
cope and spin of the wheel can be described as, 

dd
sin

d sin d

L
L

L L

α
θ
θ α

≅

=
                        (1) 

where dα and dL are the changes of precession angle and angular momentum. θ 
is the tilt angle of the gyroscope from the vertical. The torque of precession that 
changes the angular momentum can be formulated as, 

d sin d sin
d d p
L L L
t t

θ ατ θω= = =                   (2) 

where τ is the torque and ωp is the rate of precession. Calculation of the preces-
sion rate is derived in Appendix 1. 

In general, without a net force acting on a spinning gyroscope, the orientation 
of its spin axis remains unchanged. When standing by its axle, gravity force ex-
erts on the wheel and turns into a shifting moment for precession. And the wheel 
changes its orientation by turning around its vertical median. When it completes 
a full circle of precession, it also finishes a complete cycle of orientation change 
at a constant speed. It is a result of the dynamic balance of momentum between 
the wheel spin and precession. 

3. The Solar System 

Suppose our solar system revolves around the Galactic center (GC) in a way sim-
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ilar to gyroscopic precession. Planets including Earth rotate around the Sun to 
form the spinning solar plane, which orbits about the GC or precesses like a gy-
roscope wheel around the vertical, as shown in Figure 2 in three descriptive or-
bital positions. In fact, instead of a standing wheel, a spinning bicycle wheel in 
suspension is a better analogy for the solar scenario. The gyroscopic mechanism 
is the same regardless. Using Earth as an example, the rotation of Earth around 
the Sun generates an angular momentum pointing to the upper z-axis. The change 
of precession angle of the solar plane and angular momentum of the solar orbit-
ing Earth follows the gyroscopic model, 

dd
sin

d sin d

L
L

L L

α
β
β α

≅

=
                        (3) 

where dα, L, and β are the change of precession angle, angular momentum of the 
solar orbiting Earth, and tilt angle of the solar plane from the Galactic plane. The 
torque that changes the angular momentum is formulated as, 

d sin d sin
d d p
L L L
t t

β ατ βω= = =                   (4) 

where ωp is the precession rate of Earth or solar plane about the GC, and τ is the 
torque of precession. Earth is treated as a point of mass in our study so the an-
gular momentum generated by its spin around its polar axis is ignored. 

When the solar plane completes a Galactic circle, it also finishes a circle of 
precession around the z-axis and a complete horizontal turn by itself around a  

 

 
Figure 2. The spinning solar plane orbits or precesses about the GC in three select posi-
tions: Earth rotating around the Sun in the solar plane in the Galactic plane on the left; 
angular momentum of the solar orbiting Earth changing with its precession angle on the 
middle right; solar plane tilting from the Galactic plane on the right. The front side of the 
solar plane faces the z-axis at all times. Both the solar plane spin and Galactic rotation are 
shown counterclockwise for a clear geometric view of vectors. The torque of precession 
points upward, according to the right-hand rule. It will point downward if the solar sys-
tem revolves clockwise around the GC. In space, the gravitational pull from Galaxy points 
to the GC, rather than downward, which is different from the case of the gyroscope on 
Earth in Figure 1. 
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moving z’-axis that goes through the solar center (Figure 2), just like a precess-
ing gyroscope. This forced horizontal turn or inclination change of the solar 
plane is presumably due to an additional gravitational pull from the GC. With-
out this gravitational pull, the solar plane would turn its side to face the center in 
every half of its Galactic circle due to its conservation of angular momentum. 
This assumes that the solar plane keeps orbiting in the Galaxy as a point of mass, 
which is the implication in conventional calculations of the Galactic mass. It 
may not be a reasonable assumption as the solar planets would experience a sub-
stantial gravitational change when the solar plane moves into positions where it 
is aligned with the GC: the Galactic gravitational force becomes too strong when 
the planets position between the Sun and GC; the force is too weak when they 
reverse their positions with the Sun. Substantial gravitational changes as such 
can affect and even break the integrity of the solar system. 

Likewise, assuming the solar orbit of Earth effectively forms a ring of uniform 
mass distribution in its rotation around the Sun, this Earth orbit-ring (EOR) 
completes a horizontal turn by itself around the moving z’-axis in one Galactic 
cycle. Therefore, a torque must be acting on the EOR during precession, which is 
generated by the (additional) Galactic gravitational pull. Let’s call it the action 
torque. It exerts on the EOR so that it cannot turn its side while facing the GC in 
precession. In response, the EOR has to generate a reaction torque by its angular 
momentum to counterbalance the action torque. This results in a dynamic bal-
ance of torque on the EOR between its precession in circular motion and inertia 
of moving straight. Unlike gyroscopes on Earth where gravity is the lone force to 
drive precession, the inertia of the EOR drives precession along with the gravita-
tional pull in space. And the precession direction of the EOR is untethered from 
its spin direction. When two torques are equally matched, so are their corres-
ponding forces in opposing directions. The action force that produces the torque 
of precession must be balanced in horizontal with the reaction force generated 
by the angular momentum. And the latter can be formulated as a force pulling 
away from the GC, as shown in Figure 2, 

sinp
s

L
F

r r
ω βτ

= =                        (5) 

where Fs is the force of solar orbiting Earth and r is the solar orbital radius of 
Earth. This reaction force generated by the angular momentum of the EOR must 
be overcome in its Galactic motion and subtracted in calculating the Galactic 
mass using Newton’s law of circular motion as follows, 

2

s
vF F ma m
R

− = =                        (6) 

where F is the gravitational force of the GC, m, a, v and R are the mass, Galactic 
centripetal acceleration, Galactic orbital speed and Galactic orbital radius (dis-
tance to the GC) of Earth. Combining with the equation of universal gravitation, 

2

2

sinpLGMm mv
r RR

ω β
− =                     (7) 
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where G is the universal gravitational constant and M is the Galactic mass or 
mass of bodies interior to Galactic orbit of the solar system. Thus M can be cal-
culated as, 

22 sinpR LRvM
G rGm

ω β
= +                      (8) 

It reduces down to the conventional equation (the first term on the right) 
when the angular momentum of the EOR is treated as zero (in the second term 
on the right). The angular momentum can be estimated by assuming the solar 
orbiting Earth as a ring of uniform mass distribution. 

2L I mrω ω= =                         (9) 

where I and ω are the moment of inertia and spin speed of the EOR. The mass of 
Earth is canceled out in calculation after combining Equations (8) and (9). 

4. Discussion 

In general, the Galactic mass can also be calculated with other solar planets in a 
similar fashion or with the Sun as a solid sphere, assuming that the Sun’s spin 
axis points to the z-axis. It is rather ideal to treat an orbiting body as a ring of 
uniform mass in the calculation. In reality, orbital motion of the solar planets 
produces a non-uniform distribution of their angular momenta, presumably 
causing oscillations within the solar plane. The derivation above is to find the 
Galactic mass with the inclusion of gyroscopic effect. Inversely, given a galactic 
or solar mass, Equation (7) can also be used to calculate the potential orbital 
speed increase of stars or solar planets due to the gyroscopic effect of the planets 
or moons (Appendix 2). 

Results of the Galactic mass increase calculated with gyroscopic motion of 
the solar planets and the Sun are presented in Table 1, shown as a list of 
mass calculated by the second term on the right in Equation (8). Table 2 lists 
the parameters and constants used in the calculation. It appears that the gy-
roscopic effect falls with the solar orbital radius, presumably due to the de-
creasing solar gravitational pull that causes a decrease in the solar orbital 
speed. To calculate the total solar gyroscopic effect, the solar system can be 
approximated as a monolithic rigid plane of mass by adding up the angular 
momenta of all the solar bodies. However, estimation of the average radius 
and angular speed of the plane becomes a complicated issue. Hence, the gy-
roscopic effect is calculated and presented separately with each solar body in 
this study. 

The Sun has a minimal gyroscopic effect on assessing the Galactic gravitation-
al and mass increase as shown in Table 1, which is reasonable due to its small 
angular momentum. Among solar planets, Mercury has the highest precession 
impact on the Galactic gravitational increase that results in an additional 22 bil-
lion solar masses from the value of 95 billion solar masses obtained by the classic 
approach. It suggests that the effective force of gyroscopic precession of the solar  
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Table 1. Galactic mass increase calculated with the gyroscopic motion of each solar body 
in the solar system. 

 
Orbital radius 

m 
Orbital period 

days 
Solar mass equivalent,  

billion 

Mercury 5.79 × 1010 88 22.1 

Venus 1.08 × 1011 224.7 16.1 

Earth 1.50 × 1011 365.2 13.7 

Mars 2.28 × 1011 687 11.1 

Jupiter 7.79 × 1011 4331 6.03 

Saturn 1.43 × 1012 10,747 4.47 

Uranus 2.87 × 1012 30,589 3.15 

Neptune 4.50 × 1012 59,800 2.52 

Pluto 5.91 × 1012 90,560 2.19 

Sun 6.96 × 105 27 0.00042 

 
Table 2. Calculation parameters and constants. 

R, m 2.60 × 1020 

v, m/s 2.20 × 105 

ωp, rad/s 9.06 × 10−16 

G, Nm2/kg2 6.67 × 10−11 

Solar mass, kg 1.99 × 1030 

β, rad π/2 

 
plane is comparable in magnitude to the gravitational force calculated by the 
classic approach. In other words, it is reasonable to assume that our solar system 
revolves around the GC like a precessing gyroscope as shown in Figure 2, in-
stead of being a point of mass as implied in the classic approach. 

5. Concluding Remarks 

A new mechanical model of gyroscopic precession is derived and applied to the 
study of galactic motion of the solar system in space. The Galactic mass is calcu-
lated with the inclusion of gyroscopic effect of the solar planets. Results indicate 
that the gyroscopic effect of Mercury orbiting around the Sun can increase the 
calculated Galactic mass by 23% in comparison with the result obtained by the 
classic approach. In comparison with other theories, the maximal percentage in-
crease of the Galactic mass calculated by the gyroscopic effect in this study is an 
order of magnitude smaller than those obtained by the dark matter models [4]. 
Nevertheless, the effect of gyroscopic precession introduces an empirical variable 
in the study of astrophysics. It can potentially lead to new understandings of our 
Galaxy. 
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Notations 

α, dα—precession angle and its change 
L, dL—spin angular momentum and its change 
θ—tilt angle of gyroscope from the vertical 
τ—torque of precession 
ωp—rate of precession 
β—tilt angle of the solar plane from the Galactic plane 
Fs—force by the angular momentum change of EOR 
F—gravitational force of the GC 
m—mass of the gyroscope wheel or Earth 
a—Galactic centripetal acceleration of Earth 
v—Galactic orbital speed of Earth 
R—Galactic orbital radius of Earth 
G—universal gravitational constant 
M—Galactic mass 
r—radius of the gyroscope wheel or EOR 
I—moment of inertia 
ω—rate of spin 
mg—weight of the gyroscope wheel 
h—length of the gyroscope axle 
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Appendix 1. Interpretation of the Shift of Moment of Force 
and Calculation of the Precession Rate 

As the wheel tends to turn around the p'-q' horizontal median in precession due 
to the moment of force by gravity, the mass of the ring generates transversal ac-
celeration. The upper half of the ring accelerates upward and the lower half does 
downward with the max acceleration at p and q. All mass units accelerate and 
travel along the ring counterclockwise. Unit p accelerates upward while traveling 
to p' and decelerates while continuing to q. Consequently, its upward transversal 
velocity reaches a max at p' and reduces back to zero at q. Similarly, unit q acce-
lerates downward while traveling to q' and decelerates while continuing to p. Its 
downward transversal velocity reaches a max at q' and reduces back to zero at p. 
All mass units experience such a cycle of transversal velocity delay/shift for a 
quarter-turn from acceleration. As a result, the potential of the wheel turning 
around the p'-q' horizontal median becomes turning around the p-q vertical me-
dian instead. And the shift of transversal velocity practically twists the moment 
of force by a quarter-turn counterclockwise. 

A precessing gyroscope does three circular moves at the same time: spinning 
the wheel, turning around its vertical median, and revolving around the vertical 
axis. The first movement makes the second that drives the third. Mechanically, 
the torque of precession comes from the force of gravity by twisting the mo-
ment/torque via shifting mass units on the spinning wheel. Following Equation 
(2), 

sin sinpL mghω θ τ θ= =                     (10) 

where mg and h are the weight of the wheel and length of the axle. Hence, the 
precession rate becomes, 

p
mgh

L
ω =                          (11) 

where L is the angular momentum of the spin wheel, which can be calculated 
based on the wheel shape, a solid ring in this study, 

2L I mrω ω= =                        (12) 

where I and ω are the moment of inertia and spin rate of the wheel. 

Appendix 2. Calculation of Orbital Speed Due to Gyroscopic 
Effect 

Equation (7) is reformulated by replacing the reaction force created by the an-
gular momentum with the action force that creates the torque of precession, 

2

2

sinpLGMm mv
r RR

ω β
+ =                    (13) 

Plug in the moment of inertia, replace the angular speed of precession with 
the linear speed of precession, and let β = π/2, 

2 0Rv r Rv GMω− − =                      (14) 
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Solve for v. The potential orbital speed increase of Earth due to the gyroscopic 
effect of the Moon is calculated accordingly. Without changing its orbital radius 
and flying away from Earth, the Moon would need to increase its orbital speed 
by more than 130 thousand times in order to increase the orbital speed of Earth 
by 1%, provided that the Moon also changes the inclination of its orbit to 
squarely face the Sun. In other words, the gyroscopic effect of the Moon is neg-
ligible in comparison with those of the solar planets. 
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