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Abstract 
An approach to the theory of geometrization of the Universe is proposed. The 
wave function of the Universe is represented by the Clifford number with the 
transfer rules that have the structure of the Dirac equation for any manifold. 
Solutions of this equation may be obtained in terms of the geometric inter-
pretation. A new model is proposed that can explain the manifestation of the 
dark energy and dark matter in the Universe as a geometrical entity with a 
mechanism involving the spontaneous symmetry breaking. 
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1. Introduction 

The problem of origin of the Universe is far from being solved. Modern ideas 
(rather hypotheses) about the cause of the formation of the state of the universe 
suggest the instability of some fundamental scalar fields associated with the 
quantum nature of the matter [1]. The reasons and physical mechanism of the 
Universe origination remain open. In the paper [2] an approach was proposed to 
describe the causes and physical mechanism of the universe origination in terms 
of the first principles of statistical mechanics and quantum field theory. With 
this approach we can answer the question concerning the probable occurrence of 
an additional physical field, but nothing can be said about its geometric nature, 
except the assumption that everything has arose from a state of vacuum that 
corresponds to the lowest value of energy. In the case of spontaneous generation 
of an additional field in vacuum, the energy of the ground state of the “new” va-
cuum for the fields of different nature should be lower than the energy of the 
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ground state of the “initial” vacuum. The interaction of the new field with fluc-
tuations of a field of different nature ensures the decreasing of energy for the 
new state. There may occur a transition from the zero-field state to a state with 
the final spontaneously generated field. The new field interacts with the fluctua-
tions of the vacuum, and in the presence of the nonlinear self-interaction caused 
by the fluctuations of different nature, a nonzero value of this field may occur. 

We make an attempt to describe the fundamental field in terms of some phys-
ical entity, to derive the laws of its changes, and to find a mathematical appara-
tus that would describe these changes. The question arises about the geometric 
nature of this fundamental field. It may be scalar as well as have other geometric 
images. It is natural that its geometric characteristics are determined by the 
space that is created as the result of the distribution of matter. Without matter 
there is no point in talking about the geometry. In terms of physical characteris-
tics, the most suitable at the moment is the Clifford number [2] [3]. The main 
idea of this paper is to describe the origination of the Universe in terms of the 
Clifford numbers and to find a probable explanation for the dark matter and 
energy, as well as to explain the observed meaning of the visible matter. To do 
this, we first focus on the basic properties of the Clifford algebra and show its 
advantages for the physical situation under consideration. 

First of all we suggest that the spinor representation of the wave function of 
the universe as a quantum object is not very suitable for our case [4]. Cartan [5] 
showed that for the dimensional representation of spinors the complete linear 
coordinate transformation does not exist. Dirac spinors do not preserve the 
structure of the ring although they preserve the structure of the linear vector 
space. The allowed states are exhausted because it is impossible to calculate the 
behavior of the wave function during the parallel transfer and, moreover, it is 
impossible to determine the state of the ensemble of particles. In [6], a theorem 
is proved that states that associative algebra with the partition over the field of 
real numbers is real, complex, or Clifford algebra that uses the Clifford numbers 
and has the structure of the ring [7]. This is a vector space over the field of real 
numbers that is represented as an additive group where the multiplication of 
elements is distributive rather than commutative. This ring has ideals that may 
be obtained as a relevant projection on a specially selected element [7]. Such 
ideals are Dirac spinors in the standard approach. The representation of the 
Clifford algebra contains more information about physical properties than spi-
nors. The geometric properties of the Clifford algebra may be naturally intro-
duced into the theory of the Universe [1] [8] [9] [10] and employed to extend its 
physical meaning. We will try to show that the representation of Clifford’s alge-
bra best fits the description of the initial state of the Universe and provides more 
opportunities to explain both dark matter and baryon asymmetry. 

As has been shown earlier [11] [12] [13] [14] [15], the application of the Clif-
ford algebra contains all standard functions of the quantum mechanics and pro-
vides [3] [4] a unified basis for the physical knowledge including the theory of 
general relativity and electromagnetism. When we introduce the Clifford num-
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ber into the scheme of quantum mechanics [13], we should take into account the 
peculiarities of this formulation. In this case, we obtain a quantum-mechanics 
theory that considers only the algebraic structure and does not contain any spe-
cific requirements. The idea of this paper is to present the wave function of the 
universe by a geometric entity, i.e., the Clifford numbers, with the rules of trans-
formation by the Dirac equation for any variety. The solutions of these equations 
may be obtained in terms of the geometric interpretation. Thus, the physical es-
sence is described in terms of a geometric object with relevant transformation 
rules and the structure of the ring with respect to all algebraic operations. This 
makes it possible to highlight the contributions of the fields of different geome-
tric nature in determining the energy and mass of the Universe. 

2. Clifford Algebra. Differentiable Manifold 

First from all we briefly describe the basic principles of Clifford’s algebra with a 
view to their practical use. We use the basic idea [3] [4] [7], of the correspon-
dence between matrices and basic elements of an algebra and thus define the 
space for the Clifford algebra. In the special theory of relativity the Dirac matrixs 

µγ  acts as a unit vectors. An arbitrary linear combined product of these matric-
es has all the properties of the structure of the Clifford algebra with three 
complex units, starting with the time matrix 2

0 1γ =  and three spatial matrices 
2 1µγ = − . Therefore, we may reproduce any element belonging to the induced 

vector space as a direct sum of all probable tensor representations. In this case, 
an arbitrary function may be written in terms of the direct sum of a scalar, vec-
tor, bivector, trivector, and pseudo scalar that is given by  

0
µ

µ µ µν µ ν µνλ µ ν λ µνλρ µ ν λ ρψ γ γ γ γ γ γ γ γ γ γ γΨ = ⊕Ψ ⊕Ψ ⊕Ψ ⊕Ψ       (1) 

When we change the direction of the basis vectors to the opposite, we obtain 

s v b t pΨ = Ψ Ψ ⊕Ψ Ψ ⊕Ψ  . Another element of symmetry is the change of 
multiplication of the basis vectors to the inverse order in the representation of 
Clifford numbers, which yields s v b t pΨ = Ψ ⊕Ψ Ψ Ψ ⊕Ψ    We introduce 
the notation 5 0 1 2 3i γ γ γ γ γ≡ ≡  (we denote the complex number as i ) and then 
we have another symmetry element, i.e., the multiplication by i, presented as 
iΨ  that is not equivalent to iΨ . Having introduced the elements of symmetry, 
we need to propose a mathematical operation over the field of Clifford numbers. 
The direct sum of the tensor subspace may be given a ring structure by means of 
a direct tensor product in the symbolic notation, i.e., ΨΨ = Ψ ⋅Φ +Ψ ∧Φ , 
where Ψ ⋅Φ  is an inner product or convolution that decreases the number of 
basis vectors and Ψ ∧Φ  is an external product that increases the number of 
basis vectors. If each Clifford number is multiplied by a fixed matrix that has one 
column with one element and all other zeros, then we may obtain a Dirac spinor 
with four elements. This column may be used to reproduce the spinor represen-
tation of each Clifford number. There is a complete correspondence between the 
spinor column and the elements of the external algebra introduced here pre-
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viously. 
In the next step we have to find the rule of comparison of two Clifford num-

bers at different points of the probable manifold [4]. To do this, we have to de-
termine the change of the geometric object under the action of a complete linear 
group of coordinate transformations, i.e., the deformation of the coordinate sys-
tem and the rule of parallel displacement on various probable manifolds. An ar-
bitrary deformation of the coordinate system may be expressed in terms of de-
formations of the basis vectors e Xµ µγ= , where X is the Clifford number that 
describes arbitrary changes in the basis (including arbitrary displacements and 
rotations) that do not violate its normalization, i.e., under the condition 1XX = . 
It is not difficult to verify because 2 2

mu mu mu mue X XX X XX Iγ γ γ= = =    and this 
does not violate the definition of the basis norm [7]. Now, for an arbitrary basis, 
we define at each point in the space a single complete linearly independent form 
that is a geometric entity that characterizes this manifold point. Such a geome-
tric entity may be specified using  

0 e e e e e e e e e eµ µ µν µ ν µνλ µ ν λ µνλρ µ ν λ ρΨ = Ψ ⊕Ψ ⊕Ψ ⊕Ψ ⊕Ψ         (2) 

If this point of manifold is occupied by the matter, then its geometric charac-
teristics may be described by the coefficients of this representation, including the 
coordinate basis e dxµ µ= . A product of arbitrary forms of this type is given by a 
similar form with new coefficients, thus providing the ring structure. This ap-
proach makes it possible to consider the mutual relation of fields of different 
physical nature [3] [16]. In what follows we may consider a new concept of the 
description of a particle and the characteristics of a manifold as a geometric entity. 

Defining the characteristics of a manifold as a function of a point implies as-
sociating each point of the set with the Clifford number and its value. If this 
function is differentiated with respect to its argument, then we have to introduce 
a differentiation operation [3]. To determine the transfer operation on an arbi-
trary manifold, we have to determine the operator of derivative. This operation  

may be defined as D
xµ
µ

γ ∂
=

∂
, where 

xµ

∂
∂

 is associated with the change along  

the curves passing through a given point in space. The act of this operator at any 
Clifford number may be represented as  

D D DΨ = ⋅Ψ + ∧Ψ                       (3) 

where D ⋅Ψ  and D ∧Ψ  may be regarded as the “divergence” and “rotor” of 
the relevant Clifford number. According to the definition of the differentiated 
manifold, a single coordinate system is insufficient for covering a manifold whose 
topology differs from the topology of an open set in the Euclidean space 

The structure of such a geometric construction should be supplemented by 
the correlation between the values of the transferred forms at different points of 
the manifold [3]. When assigning internal values to the characteristics of the 
manifold, we should introduce the transformation of Clifford numbers by chang-
ing the coordinate system. It may be identified by displaying the relevant Clif-
ford numbers under the action of a certain group associated with the corres-
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ponding transformation. The conversion is possible if it is caused by any geome-
tric characteristics changing the coordinate system accordingly, as well as by 
transforming the geometric objects. This requires the full use of the Clifford 
algebra as elements of the group of the internal vector space (group ( )Sp n ) 
XY Z= , where , ,X Y Z  have similar preliminary representation. A certain 

group of transformations converts each Clifford number by the law X′Ψ = Ψ , 
where X determines the elements of the reflection of the Clifford algebra in our 
case and satisfies the condition 1XX = . For this algebra, we may write the first 
structure equation that defines the covariant derivative [3] as given by:  

d ωΩ = Ψ − Ψ                          (4) 

with the law of calibration transformation for the connectivity  

X X XdXω ω′ = +                         (5) 

for the conservation co-variant transformation according to the similar law  
Xω ω′ = . This equation is referred to as the first structure equation, but now it 

acquires the meaning in the Clifford algebra. In this case, an arbitrary Clifford 
number may always be reduced to a canonical form though the local deforma-
tions of the eigenbase become, however, unobservant because the Tetrude form 
XdX  corresponds to the second term of the calibration transformation. Then 

the second structure equation that defines the “curvature” form may be written 
as  

F dω ωω= −                          (6) 

with the law of transformation under the algebra being given by F XFX′ =  . 
The transfer equation for the curvature tensor with the transformation law may 
be written in the form  

dF F F Jω ω− + =                       (7) 

where J is the flow form with the analogous general representation that complies 
the transformation J XJX′ =  . The equation thus obtained may be regarded as 
the field equation, its form is apparently similar to the analogous equation for 
the connectivity form obtained in Lie algebra [3] [4]. Those equations possess a 
more general character as their structure contains interrelation of the geometric 
characteristics whose tensor nature is different. In this presentation we may write 
the fourth structure equation that demonstrates the dependence between the 
covariant derivation and the curvature, i.e., 0d FωΩ−Ω +Ψ = . 

It is natural to assume that each elementary formation at an arbitrary point of 
the manifold may be described by a Clifford number. Then the wave function of 
the elementary formation is represented by a complete geometric object, i.e., 
the sum of probable direct forms of the induced space of the Clifford algebra. 
Moreover, by attributing a geometric interpretation to the wave function, we 
may obtain correct transfer rules for an arbitrary manifold [3] and new results 
related to the geometric nature of the wave function [7]. According to [7], each 
even Clifford number Ψ = Ψ  under the condition 0ΨΨ ≠ , in the Euclidean  
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space may be presented in the canonical form, i.e., ( ) ( ){ }
1
2expx i Xρ βΨ = ,  

where 1XX =  describes all coordinate transformations. It is clear that dτΨΨ∫   
is scalar and in the physical interpretation of this geometric entity it is rather 
evident inasmuch as ( )xρ  may be associated with the probability density of 
finding a particle in an arbitrary spatial point, and β  is the angle that deter-
mines the eigenvalue of a particle with positive or negative energy. We can take 

0β =  for the matter and β = π  for the antimatter. Thus it becomes possible 
to describe the intermediate states of the particle since the form of the wave 
function of an arbitrary particle ensemble is similar [10]. It is important that 

( )2 2
s p bρ ≡ ΨΨ = Ψ +Ψ +Ψ  are represented by the products of different tensor 

representations of the general type of the wave function that have different geo-
metric interpretations and correspond not only to the scalar field but may have 
different physical origins of the fields of different nature. It is proved in the book 
[7] that the odd part of the general Clifford number may be presented as the 
even part multiplied by a separate element of this algebra and thus it is not dif-
ficult to manipulate with the full Clifford number. Now for the wave function as 
a geometric entity, we may write the first structure equation in the standard 
form, i.e.,  

d mωΨ − Ψ = Ψ                         (8) 

that formally reproduces the Dirac equation but has wider meaning than in the 
spinor representation. The question of describing the wave function as a geome-
tric entity was considered earlier in the article [4]. Among these results, we indi-
cate that the Dirac equation in the geometric representation in the general 
theory of relativity is nothing but the equation of transfer on an arbitrary mani-
fold, therefore, its solution may be interpreted purely geometrically. Moreover, 
the geometric representation of the wave function yields other results that simp-
ly reveal the geometric nature of the wave function [17]. Next, these equations 
will be derived from the principle of least action in the geometric interpretation. 
The presented equations first of all solve the problem of transformation of a fi-
nite-dimensional representation of the wave function under the action of a com-
plete linear group of coordinate transformations [3] [7]. 

3. Geometrical Origin of the Universe 

Next we assume that the occurrence in the vacuum of the fundamental scalar 
field that is generated spontaneously and interacts with the fluctuations of all 
other fields may be associated with a phase transition that owes to the decrease 
of the vacuum ground state energy [2] [18]. Moreover, evolution of the Universe 
formed by the fluctuations of physical fields may be described in terms of the 
Clifford number Ψ  [4]. The probable stationary distributions of the funda-
mental field are generated by the multiplicative noise produced by the nonlinear 
interaction. After that, the standard cosmological model may be modified. The 
fundamental field in the form of all probable geometric representations interacts 
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with fluctuations through the change of the parameter of coupling of the given 
field with vacuum. Such fluctuations may be considered as a source of the mul-
tiplicative vacuum noise. In this case, such noise not only changes the value of 
the field, but also changes the shape of the effective potential due to the changes 
in the state of the system. This effect, in turn, changes the conditions for the 
formation of bubbles of a new phase and determines the evolution of the Un-
iverse. The generator of this noise is the vacuum itself in the form of a wave 
function for each point of the manifold with the Planck size. This model differs 
from the known scenario of stochastic inflation of the universe [1] that takes in-
to account the fluctuations of the fundamental field but disregards the fluctua-
tions of the unstable vacuum due to the fluctuations in the coupling parameter. 
The internal fluctuations of the manifold generate the stochastic behavior of the 
system that may induce changes of its stationary state. The most significant 
point here is that now the fundamental field is described by the Clifford number 
rather than scalar and contains all the geometric characteristics of the space that 
may be born as the result of the emergence of the matter. Only the distribution 
of the matter can describe the space that arises. 

We start with the assumption that phase transition from the “initial” vacuum 
with only fluctuations of different fields to a new state of vacuum generates a 
new non-zero fundamental field. This means that the presence of a new field 
makes the “new” vacuum different from the “primary” vacuum for any field of 
arbitrary geometric characteristics that may exist. The resulting field should re-
duce the energy of the “new” vacuum with respect to the energy of the “primary” 
vacuum. Therefore, the energy density of the ground state of the “new” vacuum  

may be supplied through 
2
0

2v
µ

ε ε= − ΨΨ , where the second part is the field  

energy in the term associated with the wave function with the geometrical pres-
entation in terms of the Clifford numbers; the coefficient 2

0µ  describes the 
coupling of the new field and the “primary” vacuum, i.e., the self-consistent in-
teraction of the new field with the probable fluctuations that may exist in the 
“primary” vacuum. Here we have to make two remarks. The first one concerns 
the decrease in the initial energy of the ground state with the appearance of the 
new field, and the second one is related to the coupling coefficient that is now 
positive and thus explanations of the appearance of such a sign used in the stan-
dard approach are not required. The energy of the new system may be presented 
in the form given by  

2
0 d ,

2vE E
µ

τ= − ΨΨ∫                         (9) 

If we want to describe the evolution of the system expout iHt in , we still 
need to average all probable fluctuations with which the new field can interact. 
For this purpose it is sufficient to present the nonlinear coupling in the form 

2 2
0µ µ ξ= + , where ( ) ( ) 20tξ ξ σ=  and 2σ  is the dispersion of the coupl-

ing coefficient fluctuations which allows averaging over all possible fluctuations  
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( )

2
2

2

2 22

1 1exp exp
2 2

1exp
2 4

v

v

out iHt in D D i E

D i E

ξξ µ ξ
σ

σµ

 
Ψ − ΨΨ + ΨΨ + 

 
 

Ψ − ΨΨ + ΨΨ 
 

∫ ∫

∫

 

 





    (10) 

This implies that we have a system with the effective energy (averaged over 
the fluctuations of the other field coupled with the wave function) given by  

( )
2 221 d

2 4vE E σµ τ
 

= − ΨΨ − ΨΨ 
 
∫                 (11) 

where ( ) ( )
2 221

2 4
V σµΨ = − ΨΨ + ΨΨ   is the well-known expression for the  

energy of the fundamental field [1] with the nonlinear coupling coefficient de-
termined by the dispersion of fluctuations. This implies that with no new field  

0Φ = , vE E=  while for 
2

2

µρ
σ

= ΨΨ =  the expression for the effective 

ground state energy of the “new” vacuum reduces to 
4

24vE E µ τ
σ

= − . The last  

relation suggests the conclusion that the energy of the “new” vacuum is lower 
than the energy of the primary vacuum, i.e., the phase transition results in the 
formation of a new vacuum ground state with non-zero additional field that has 
new geometric presentations. If 2σ  tends to infinity, then the energy of the 
new state tends to the initial energy of the ground state. The energy of the new  

state can vanish for 
4

24vE µ
σ

= . This relation may be applied to estimate the  

maximum dispersion of vacuum fluctuations. In addition, the effective potential 
can now be given in terms of the probability density of the material field  

( )
2

2 21
2 4

V σρ µ ρ ρ= − + , which may be useful for the interpretation of different  

compositions of energy and matter as a result of spontaneous breaking symme-
try. It should be noted that this is the total probability density of the material 
field, and whether it is “dark” depends on the tensor characteristics of the field 
in which we feel it. It may be invisible in the vector electromagnetic field but will 
definitely be felt in the gravitational and possibly in the fields of another tensor 
presentation. 

4. Geometrical Description Evolution of the Universe 

Now we can offer a slightly different manifestation of the birth of the universe 
based on the representation of its wave function in terms of geometric essence. 
What arises as a result of the birth of matter must contain a geometric image. 
From the point of view of geometry, only the distribution of matter can be in-
terpreted. This role can be played by Clifford’s number with the appropriate 
physical interpretation. An additional field is required for the emergence of 
matter, the spontaneous excitation of which leads to the emergence of elemen-
tary particles. In our case, such a field is the wave function Ψ  in terms of dif-
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ferent tensor representations, i.e., it has all probable tensor representations with 
the dimension of the space to be created. That is, the geometry is laid down from 
the very beginning in the characteristics of the point of the variety on which we 
describe it. 

Having minimized the expression for the energy of the system 9 by indepen-
dent functions Ψ  and Ψ , we obtain for the wave function in the homogene-
ous case the Gross-Pitaevskii equation with all the physical consequences for 
solving such an equation.  

( )2 2 0Eδ µ σ
δ

 = − + ΨΨ Ψ = Ψ




                 (12) 

Equations similar in content but richer in nature may be obtained from the 
dynamics of changes of the wave function in the geometric interpretation. To do 
this, we consider the dynamical action recorded for the wave function of the un-
iverse in the presence of matter. As has been mentioned earlier [3], the action in 
terms of the geometric invariant may be presented as  

( )1
2

S d FF FF mτ  = + + ΨΨ 
 ∫                    (13) 

The Lagrange multiplier m takes into account the normalization condition for 
the wave function { } 1dτ ΨΨ =∫  . The “general” curvature in the presentation of 
Clifford numbers takes the form; F d λ= Ψ − ΨΨ  where the coefficient λ  
takes into account the dependence of the connectivity field on the wave function 
itself ω λ= Ψ . Minimization of this functional yields an equation that is at the 
same time the second structure equation for the Clifford algebra, i.e., 

dF F F Jλ λ− Ψ + Ψ =                     (14) 

for the change of the “curvature” under the parallel transfer under the influence 
of the full group of transformations of the coordinate system. In the homogene-
ous case 0dΨ =  such equation reduces to the above Gross-Pitaevskii equation: 

( )2 2 0µ σ − + ΨΨ Ψ = 
  with 2 mµ =  and 2σ λλ=   . 

To apply this approach to the description of the universe, we have to make a 
natural assumption. The new vacuum contains nothing except the born forma-
tion. For this reason, all changes associated with the wave function are due only 
to its changes in the vacuum in its presence. Therefore, its behavior can be in-
fluenced by only one characteristic of the new vacuum, namely this wave func-
tion. In this case, the wave function itself acts as a field that changes its characte-
ristics, or as a connectivity of the space with the new vacuum. The equation re-
quired for the wave function is natural in the form  

,d F dF F F Jλ λ λΨ − ΨΨ = − Ψ + Ψ =              (15) 

when the first structure equation is at the same time the second structure equa-
tion for the “curvature” F. It is assumed that ω λΨ , which corresponds to 
our previous assumption where λ  determines the relationship of the wave 
function to manifold. 

On the other hand, it is easy to verify that if we consider odd Clifford numbers 
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under the assumption Aµ µΨ   and µνρ µνρΨ Γ , then we simultaneously 
reproduce both Maxwell and Einstein equations for the curvature for different 
components of the last equation, provided that the covariant derivative of the 
even part gµν µνΨ   yields zero. As example  

, , ,F A A A A g Aµν µ ν ν µ µ ν µνλ λ µνρσ ρσ µνρ ρρ λ λ= − + + Γ +Ψ + Γ  where  
( ) , , ,1 s g g g g A g A g A Aµνρ νλ µ λµ ν µν ρ µν ρ ρν µ ρµ ν µνρσ σλ λ λ+Ψ Γ = + + + + + + Ψ . All 
these elementary calculations are not given here because of their cumbersome-
ness [3]. 

It should be noted that the physical entity described by the wave function in 
the form of the Clifford number does not belong to certain quantum statistics 
and contains elements of both fermions and bosons. In the case of spontaneous 
symmetry breaking, a part of such an object turns into particles and a part re-
mains a field, each of which corresponds to certain elements of symmetry. It is 
possible that in Clifford’s algebra it is possible to write a more general relation 
which will take away information on a condition of the condensed part but at 
present it could not be found though it is possible to use the approach offered in 
article [19]. 

5. Conclusions 

As the result, we propose a probable scenario for the formation of the universe. 
We assume that in the presence of a spontaneously generated fundamental field 
with different geometric presentation, the vacuum energy is lower than the 
ground state energy of the primary vacuum and that the ground field energy is 
influenced by its nonlinear interactions with the fluctuations of the physical 
fields of different nature. To avoid the problem of the influence of gravity on the 
evolution of the universe at the stage of spontaneous emergence of the funda-
mental field, we note that the energy of the primary vacuum is not contained in 
the Einstein equation and the evolution of the universe is determined only by the 
energy of the fundamental field. 

Only the distribution of matter in turn determines the geometry. The birth of 
matter is determined only by a non-zero fundamental field that contains contri-
butions of fields of different physical and thus geometric nature. The presenta-
tion of probability densities of material entities contains fields whose geometric 
characteristics do not overlap and therefore cannot be observed within the beha-
vior of individual components. For example, the change in the electromagnetic 
field may not be affected by the field connectivity described by the tensor cha-
racteristic of the third rank. For our universe, the vacuum is different from the 
primary one and its state depends on the fundamental field that possesses dif-
ferent tensor representation. In addition to the scalar part of the fundamental 
field, there are fields of other tensor dimensions that may be involved in the in-
fluence of the dark matter. 
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