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Abstract 
Forl a 1-D conservative system with a position depending mass within a dis-
sipative medium, its effect on the body is to exert a force depending on the 
squared of its velocity, a constant of motion, Lagrangian, generalized linear 
momentum, and Hamiltonian are obtained. We apply these new results to the 
harmonic oscillator and pendulum under the characteristics mentioned about, 
obtaining their constant of motion, Lagrangian and Hamiltonian for the case 
when the body is increasing its mass. 
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1. Introduction 

Variable mass problems without dissipation have a long history and are known 
as Gylden-Meshcherskii problems [1] [2] [3] [4] [5]. As it is known, Newton’s 
equation with position mass depending is not invariant under Galileo’s trans-
formation [6] [7], and Sommerfeld gave a modification of this equation to over-
come this problem [8]. However, this modification has a fundamental problem 
when external force is zero, and that is why one considers Newton’s equation of 
motion as a good equation of motion for these types of problems [9] [10]. This 
approach was used for 1-D conservative systems with position depending mass 
[11], binary stars with mass exchanged [12] [13], binary galaxies with mass ex-
changed [14], and fluid dynamics [15]. On the other hand, 1-D systems with 
constant mass and quadratic dissipation have also been studied [16]. Therefore, 
in this paper both situations are considered at the same time, position mass de-
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pending and quadratic dissipation on 1-D conservative systems, and for these 
systems one will find a Constant of Motion, Lagrangian, Generalized Linear Mo-
mentum, and Hamiltonian. The results will be applied to the study on the dy-
namics of the harmonic oscillator and pendulum systems with this dissipation and 
with increasing of mass behavior.  

2. Analytical Approach 

Newton’s equation for 1-D conservative systems, characterized by an external 
force ( )F x , with position depending mass, ( )m x , and a quadratic dissipation 
force, 2vα−  (being α  a nonnegative real constant, and 0v ≥ ), is given by  

( )( ) ( ) 2d , 0,
d

m x v F x v v
t

α= − ≥                  (1) 

where v represents the velocity, d dv x t x= =  , of the body, and α  is a con-
stant. One will consider that ( )0 om m=  represents the initial mass of the sys-
tem at the point 0x = . Equation (1) can be written as an autonomous dynami-
cal system defined in 2ℜ  as  

,x v=                            (2a) 

( ) ( )
( )

2

= ,xF x m v
v

m x
α− +

                    (2b) 

where xm  has been defined as d dxm m x= . A constant of motion for this sys-
tem is a function ( ),K K x v=  such that d d 0K t = , that is, it must satisfy the 
following first order partial differential equation  

( ) ( )
( )

2

0,xF x m vK Kv
x m x v

α− +∂ ∂
+ =

∂ ∂
                (3) 

which can be solved by the characteristics method [17], where the equations for 
the characteristics are  

( )
( ) ( ) 2

dd d .
0x

m x vx K
v F x m vα
= =

− +
                 (4) 

The last term just tell us that the function K must be an arbitrary function of 
the characteristic C obtained from the others two terms, ( )K G C=  where G is 
arbitrary. From the others two terms, one can write the following equation  

( ) ( ) ( )
2

2d .
2 d x

m x v m v F x
x

α+ + =                  (5) 

Defining a new variable ξ  as 2vξ =  and rearranging terms, this equation is 
written as  

( )
( )

( )
( )

2 2d .
d

xm F x
x m x m x

αξ ξ
+

+ =                    (6) 

Now, multiplying this equation by 
( )

( )
2

exp d
x xm

s
m s
α +

  
 
∫ , the resulting equa-
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tion can be written as  

( )
( ) ( )

( )

( )
( )

2 d 2 d
2d e e ,

d

x xx xm s m s
m s m sF x

x m x

α α

ξ
+ +

∫ ∫ 
  =
 
 

                (7) 

which can easily be integrated, and one gets the following expression in terms of 
the variable v  

( )
( ) ( )

( )

( )
( )

2 d 2 d
2e 2 e d ,

x xx xm s m s
m s m sF x

v x A
m x

α α+ +
∫ ∫

= +∫               (8) 

where A is the constant of integration. Then, one chooses the characteristic curve 
as oC m A A=  and chooses the function G as ( )G C C=  to get the constant 
of motion  

( ) ( )
( )

( ) ( )
( )

( )
( )

2 d 2 d2

, e e d .
2

x xx xm s m s
m s m so

o

F xm v
K x v m x

m x

α α

α

+ +

+ ∫ ∫
= − ∫        (9a) 

Using the following identity  
( )
( ) ( )2 d 2

e ,
x xm s s

m s

o

m x
m

∫  
=  
 

                     (9b) 

the expression (9a) is written finally as  

( ) ( ) ( ) ( ) ( ) ( ) ( )
d d2 2 2 21, e e d .

2

x xs s
xm s m s

o o

m x v
K x v m x F x x

m m

α α

α
+ ∫ ∫

= − ∫     (10) 

This expression is of the form  
( ) ( ) ( ) ( ), ,K x v T x v V xα α α
+ = +                   (11) 

where Tα  is some type of effective kinetic energy of the system,  

( ) ( ) ( )
d2 2 2

, e
2

x s
m s

o

m x v
T x v

m

α

α

∫
=                   (12) 

and Vα  is just the effective potential  

( ) ( ) ( ) ( )
d21 e d .

x s
x m s

o

V x m x F x x
m

α

α

∫
= − ∫                (13) 

Then, one can say that ( )Kα
+  represents the effective energy of the system.  

2.1. Special Cases 

Let us note the following: 
First, one has the following limit  

( ) ( ) ( ) ( ) ( )
2 2

0

1lim , d ,
2

x

o o

m x v
K x v m x F x x

m mαα

+

→
= − ∫          (14a) 

which is the expression obtained in reference [11]. 
Second, assuming the mass as constant, ( ) om x m= , one gets  
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( ) ( ) ( )
2

2 2, e e d ,
2

o o
xx m x mom v

K x v F x xα α
α
+ = − ∫             (14b) 

which is the expression obtained in references [16] [18] (for the non relativistic 
case). 

Third, for 0α =  and ( ) om x m= , one gets the usual energy of a conservative 
system  

( ) ( )2, ,
2

om
K x v v V x= +                     (14c) 

where ( )V x  is the potential of the system, ( ) ( )dV x F x x= −∫ .  

2.2. Lagrangian and Hamiltonian 

Now, since ( ) ( ),K x vα
+  is a constant of motion, a Lagrangian of the system can 

be found through the relation [19] [20] [21] 

( ) ( )
( ) ( )

2

, d
, .

v K x
L x v v α
α

ξ ξ
ξ

+
+ = ∫  

In this way and considering (13), one gets  

( ) ( ) ( ) ( ) ( )
d2 2 2

, e
2

x s
m s

o

m x v
L x v V x

m

α

α α
+ ∫

= −                (15) 

The generalized linear momentum is  

( ) ( ) ( ) ( )
d2 2

, e .
x s

m s

o

m x v
p x v

m

α

α
+ ∫

=                    (16) 

With this expression and the Legendre’s transformation,  
( ) ( ) ( )( ), , , ,H x p v x p p L x v x p= − , the Hamiltonian of the system is given by  

( ) ( ) ( )
( ) ( )
d2 2

, e
2

x s
m som p

H x p V x
m x

α

α α

−
+ ∫

= +               (17) 

If we apply the above observations (11) on the expressions (10), (15), (16), and 
(17), one gets the corresponding correct expression for these cases. 

Let us notice from (1) that the dissipation for 0v <  can be obtained by making 
the change α α→ −  on the expressions already found. Therefore, the constant 
of motion, Lagrangian, generalized linear momentum, and Hamiltonian when 

0v <  are given by  
( ) ( ) ( ) ( ), , ,K x v K x vα α
− +

−=                    (18a) 

( ) ( ) ( ) ( ), , ,L x v L x vα α
− +

−=                    (18b) 

( ) ( ) ( ) ( ), , ,p x v p x vα α
− +

−=                    (18c) 

and 
( ) ( ) ( ) ( ), , .H x p H x pα α
− +

−=                   (18d) 

However, notice from (13) that the potential ( )V xα−  can be very different 
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from ( )V xα , as it will be seen on below examples.  

3. Mass Linear Dependence on Position 

In this case, one has the following dependence of the mass with respect the posi-
tion of the body  

( ) ,om x m xβ= +                          (19) 

where β  is a constant. Then, it follows that  

( )
2d2

e .
x s

m s o

o

m x
m

α β
α β∫  +

=  
 

                     (20) 

So, form the expressions (10), (15), (16), and (17), one obtains  

( ) ( ) ( ) ( )
2 2

2
1 2, ,

2
o

o

m x
K x v v V x

m

α β

α αα β

β +
+

+

+
= +               (21a) 

( ) ( ) ( )
2 2

( ) 2
1 2, ,

2
o

o

m x
L x v v V x

m

α β

α αα β

β +
+

+

+
= −               (21b) 

( ) ( ) ( )2 2

1 2, ,o

o

m x
p x v v

m

α β

α α β

β +
+

+

+
=                    (21c) 

and 

( ) ( )
( )

( )
1 2

2
2 2, ,

2
o

o

m
H x p p V x

m x

α β

α αα ββ

+
+

+= +
+

            (21d) 

where the effective potential Vα  is given by  

( ) ( )( )1 2
1 2

1 d .
x

o
o

V x F x m x x
m

α β
α α β β +

+= − +∫            (21e) 

3.1. Harmonic Oscillator 

For the harmonic oscillator, one has that ( )F x kx= − , and using the following 
integration  

( ) ( ) ( )1 2 2 2
2

1d 2 2 ,o o ox m x x m x x x mα β α ββ β β α
β

+ ++ = + + −∫      (22) 

the effective potential is 

( ) ( ) ( )
( )( )

2 2

2 1 2

2 2
,

3 2 2 2
o o

o

k m x x x m
V x

m

α β

α α β

β β α
β α β α β

+

+

+ + −
=

+ +
            (23) 

where the constant term ( )2 2 21 4 1 6okm α β− +  could be added to get the right 
limits ( 2

0 0 0 0lim lim lim lim 2V V kxα β α β α α→ → → →= = ), and one obtains the con-
stant of motion, Lagrangian, generalized linear momentum, and Hamiltonian for 
the harmonic oscillator with linear position dependence on its mass and qua-
dratic dissipation as  

( ) ( ) ( ) ( )
2 2

2
1 2,

2
o

o

m x
K x v v V x

m

α β

α αα β

β +
+

+

+
= +              (24a) 
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( ) ( ) ( ) ( )
2 2

2
1 2,

2
o

o

m x
L x v v V x

m

α β

α αα β

β +
+

+

+
= −              (24b) 

( ) ( ) ( )2 2

1 2, ,o

o

m x
p x v v

m

α β

α α β

β +
+

+

+
=                  (24c) 

and 

( ) ( )
( )

( )
1 2 2

2 2

 
, .

2
o

o

m p
H x p V x

m x

α β

α αα ββ

+
+

+= +
+

            (24d) 

Figure 1 shows the behavior of the body in the one quarter of the phase spaces 
( ),x v  and ( ),x p  for several values of the parameter K, with 1 kgom = ,  
 

 
(a) 

 
(b) 

Figure 1. Behavior through the constant of motion and the hamiltonian. (a)  
0.1 kg mα β= = ; (b) 0.1 kg mα β= = . 
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and 1 N mk = . Note that since 0β ≥ , the system is acquiring mass as the po-
sition is increasing. Because of this, and due that one has dissipation in the sys-
tem, the body will perform a damping spiral behavior on the phase spaces ( ),x v  
and ( ),x p , which is not shown here. 

To determine this spiral damping behavior and assuming always and increas-
ing of mass, one would have to divide the phase space ( ),x v  in four regions: 1) 

0v >  and 0x > , 2) 0v <  and 0s ≥ , 3) 0v <  and 0s < , 4) 0v >  and 
0s ≤ . On the upper place ( 0v > ) one uses ( )Kα

+ , and in the lower plane one 
uses ( )Kα

− . Once 0v =  on the region (1), the effective energy ( )Kα
−  is deter-

mine by the value of the effective potential at the point 1x  where this happens, 
and the mass changes on the region (2) of the form ( ) ( )1 1om s m s s sβ β= + + −  
in the interval [ ]1,0s s∈ . On the region (3) the mass must vary as  
( ) 12om s m s sβ β= + +  until the body reaches again a velocity 0v =  at the 

point 2s  (negative). At this point the effective energy ( )Kα
+  is defined by the 

value of the effective potential at this point, and the mass varies on this region (4) 
as ( ) ( )1 2 22om s m s s s sβ β β= + + + −  until the body reaches 0s = , com-
pleting on cycle of the spiral motion. The same would be repeated with the other 
cycles of the spiral motion. The reason of this complication is due to the fact that 
during the whole motion the body is increasing its mass, otherwise one would 
have mass oscillation depending whether x is positive or negative. The same idea 
is applied for the Hamiltonian and the phase space ( ),x p , and note the great 
different behavior of body on the phase space ( ),x p  with respect the phase 
behavior on the phase space ( ),x v , due to the position dependence of the gene-
ralized linear momentum (24c).  

3.2. Pendulum 

The position on the pendulum is determined by its displacement s respect its 
equilibrium position at the angle 0θ = , that is s lθ= , where l denotes the 
length of the cord. The force acting on the body, of mass ( )m s , hanged at the 
end of the cord is given by ( ) ( ) ( )sinF s gm s s l= − , being g the constant acce-
leration due to gravity. Using the following integration [22] 

( ) ( )( ) ( ) ( )

( )

3 2
1 2

3 2

1 d e
2

2 23 , 1 3 , ,

oi m l

o o

g l
f s F s s s

m s m s
i i

l l

α β
α β β α β

α β

β
β

β

β βα αγ γ
β β β β

+
+ π−

+

= + = −

 + +   
× + − + − +    

    

∫
    (25a) 

where γ  is the uncompleted gamma function [22] (page 940). If we select the 
mass as 1 kgom =  and nα β =  and integer number, the function ( )f s  can 
be given by  

( ) ( ) ( )
( ) ( )

( )
2

0 0

2 !
cos 2 .

2 ! !

k k jn k

k j
k j

n l sf s g s l j
n k l k j

β −+

−
= =

+
= − +

+ − −
π∑ ∑      (25b) 

Therefore, the effective potential is  
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( ) ( )
1 2 .
o

f s
V s

mα α β+=                       (25c) 

The Constant of Motion, Lagrangian, generalized linear momentum, and 
Hamiltonian are  

( ) ( ) ( ) ( )
2 2

2
1 2,

2
o

o

m s
K s v v V s

m

α β

α αα β

β +
+

+

+
= +              (26a) 

( ) ( ) ( ) ( )
2 2

2
1 2,

2
o

o

m s
L s v v V s

m

α β

α αα β

β +
+

+

+
= −              (26b) 

( ) ( ) ( )2 2

1 2, ,o

o

m s
p s v v

m

α β

α α β

β +
+

+

+
=                  (26c) 

and  

( ) ( )
( )

( )
1 2

2
2 2, ,

2
o

o

m
H s p p V s

m s

α β

α αα ββ

+
+

+= +
+

            (26d) 

where v represents the velocity of the body, d dv s t= . Figure 2 shows the be-
havior of the body in the first quadrant ( 0s ≥ , 0v ≥ , and 0p ≥ ) of the phase 
spaces ( ),s v  and ( ),s p  for the values of the parameters K and H given by 
0, 10, 20, 30, 40, 50, 60, 70, and 80 (blue, orange, yellow, and so on) with 

1 kgom = , and 1 ml =  and ( )f s  taken as the expression (25b). The inner blue 
and orange lines represent the oscillatory spiral damping behavior of the body  
 

 
(a) 

 
(b) 

Figure 2. Behavior through the constant of motion and the hamiltonian. (a) Phase space 
(x, v); (b) Phase space (x, p). 
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due to increasing of mass during its motion and the damping factor. The upper 
lines represent the rotational spiral damping behavior of the body due to the 
same reason (this spiral damping behavior is not shown on these plots. To get 
this behavior one would need to proceed similarly as it was explained for the 
harmonic oscillator part). 

The effective potential Vα  has an oscillatory increasing behavior as a func-
tion of the displacement s. Therefore, it does not matter which value of the effec-
tive energy K or H takes, due to the increasing of mass and damping factor, the 
body will perform an oscillatory damping behavior, that is, the origin of the 
phase space is an attractor of the dynamics of the body (as it happened with the 
first example). On Figure 2(b) one sees an apparent increasing of the genera-
lized linear momentum as the body is rotating. However, eventually will reach 
the return point of the potential and the generalized linear momentum will be 
zero (as the yellow line indicates).  

4. Conclusions and Comments 

In general, we have constructed constant of motion, Lagrangian, generalized li-
near momentum, and Hamiltonian for a 1-D conservative system with position 
depending mass and embedded in a medium where the body feels a dissipative 
force which depends quadratically on its velocity. In particular, we made the 
analysis for the case when the body increases its mass linearly on its displace-
ment, where the dynamics in the phase spaces ( ),x v  and ( ),x p  is plotted on 
one quadrant of these spaces, which could be very important if one wants to use 
quantum mechanics for theses system, and we have shown the damping effect 
on the motion of the body for the harmonic oscillator and pendulum systems 
due to dissipative force and the increasing of its mass. 

We want to comment something for the case of mass lost, we have seen from 
our model (19) with 0β <  that the motion is limited to a displacement given 
by max ox m β=  (zero mass), where the potential function of the harmonic 
oscillator is zero, and this value would represent a singularity in the velocity be-
havior for positive generalized energies (for generalized energies higher than 

( )maxV xα ), but it would represent a zero motion in space ( ),x p  for the Ha-
miltonian. 
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List of Terminology 

α : Dissipation parameter; 
β : Variation of mass with respect to “x” parameter; 
( )F x : Conservative force; 
( ),K x vα

± : Constant of motion ( ( )0v+ >  and ( )0v− > ) or Effective energy; 
( ),T x vα : Effective Kinetic Energy; 
( )V xα : Effective Potential; 
( ),L x vα

± : Lagrangian ( ( )0v+ >  and ( )0v− < ); 
( ),p x vα

± : Generalized Linear Momentum ( ( )0v+ >  and ( )0v− < ); 
( ),H x pα

± : Hamiltonian ( ( )0p+ >  and ( )0p− < ); 
( ),a bγ : Uncompleted gamma function. 
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