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Abstract 
Newton did not invent or use the so-called Newton’s gravitational constant 

G. Newton’s original gravity formula was 2

MmF
R

=  and not 2

MmF G
R

= . In 

this paper, we will show how a series of major gravity phenomena can be cal-
culated and predicted without the gravitational constant. This is, to some de-
gree, well known, at least for those that have studied a significant amount of 
the older literature on gravity. However, to understand gravity at a deeper 
level, still without G, one needs to trust Newton’s formula. It is when we first 
combine Newton’s assumptionn, that matter and light ultimately consist of 
hard indivisible particles, with new insight in atomism that we can truly begin 
to understand gravity at a deeper level. This leads to a quantum gravity theory 
that is unified with quantum mechanics and in which there is no need for G 
and not even a need for the Planck constant. We claim that two mistakes 
have been made in physics, which have held back progress towards a unified 
quantum gravity theory. First, it has been common practice to consider 
Newton’s gravitational constant as almost holy and untouchable. Thus, we 
have neglected to see an important aspect of mass; namely, the indivisible 
particle that Newton also held in high regard. Second, standard physics have 
built their quantum mechanics around the de Broglie wavelength, rather than 
the Compton wavelength. We claim the de Broglie wavelength is merely a 
mathematical derivative of the Compton wavelength, the true matter wave-
length. 
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1. Newton Neither Invented Nor Used G 

In his book, the Principia [1], Newton mentioned the gravitational force formula 
in words (see the Appendix) that create an equivalent to: 

2

MmF
R

=                              (1) 

However, he did not make a single mention of any gravitational constant 
(with the notation of G or through any other notation), nor did he ever use such 
a constant himself. This appears to be something that few physicists or historians 
today know or acknowledge [2] [3]. In the Principia, Newton’s focus was on rel-
ative masses, although he mentioned the word “mass” only once, but it is clear 
that he meant mass as an amount of matter. Based on easily-observable gravita-
tional observations, such as the orbital time of satellites (moons and planets), he 
found the relative mass (weight) of Saturn, Jupiter, the Earth, and the sun; see 
also Cohen [4] for more detail on this. Cohen also pointed out that Newton’s 
focus is on relative masses: 

“That is, since Newton is concerned with relative masses and relative densities, 
the test mass can take any unity” 

The kilogram definition of mass was invented more than 100 years after 
Newton published the Principia and thus came into being long after his death. 
Newton was, in several of his texts, clear on the idea that matter (and energy) at 
the deepest level is based on indivisible fully-hard particles with spatial dimen-
sion. He took this idea from atomism, a source that he referred to several times 
in his work [5] [6]. Newton was focused on atomism before he started to publish 
his work; this is evident from his unpublished notebook. He was also clear on 
this in Principia and, in particular, in his later book Opticks [7]. Newton thought 
that the amount of mass was related to the quantity of indivisible particles in the 
chosen mass. He even assumed that light was made up of such indivisible par-
ticles. He knew that it was impossible to find the number of indivisible particles 
in any observable mass at that time, an assertion that he mentioned in Principia. 
It was therefore natural for him to focus on relative masses when he worked with 
gravity. In short, to find the relative mass of two heavenly objects, Newton uti-
lized satellite orbital time and the distance from the satellite to the center of the 
mass of which he wanted to find the relative mass; this is a method we return to 
shortly. 

Newton also explained that weight is proportional to mass. In other words, 
twice the mass gives twice the weight in relation to two masses located the same 
distance from the gravitational object. 

In 1798, Henry Cavendish [8] measured the density of the Earth using a tor-
sion balance, also known as a Cavendish apparatus. The principles of such ap-
paratus was already described by geologist John Michel [9] in 1784, but he died 
before he was able to use it, and Cavendish gives him full credit for the idea. Ear-
lier, Newton had found the relative density between planets, and for this no Ca-
vendish apparatus or similar was needed. However, when we want to find the 
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density of the Earth relative to a given substance, for example, water or iron, we 
need to know the gravity properties of a mass that we know is formed uniformly 
of the chosen substance. The Cavendish apparatus was needed to measure the 
gravitational effect from a small practical mass when one had knowledge of what 
substance it contained. Based on knowing the gravitational effect from such a 
known substance, one could compare that to the gravitational effect of the Earth 
and then know the density of the Earth relative to this substance. 

Cavendish did not mention a gravitational constant nor did he have use for 
one. However, a Cavendish apparatus can indeed be used to find the gravita-
tional constant G. The gravitational constant was needed when one decided on 
the kilogram definition of mass. Even if the kg definition was likely already in-
troduced in 1796, it did not become widely used before around the 1870s. An 
important change here is that the Metre Convention was signed in 1875, leading 
to production of The International Prototype of the Kilogram. The kg definition 
of mass is, in our view, an incomplete definition of mass that needs G to become 
a complete mass measure that incorporates gravity effects from matter. The gra-
vitational constant was likely mentioned for the first time by the French physic-
ists Cornu and Baille [10] in 1873. Their paper mentioned the gravity force for-
mula in the form 2F fmm R′= , where f is the gravitational constant. 

However, the idea took hold and in 1894, the gravitational constant was first 
called G (rather than f) by Boys [11] in a proceeding at the Royal Society that 
followed shortly after he published in the prestigious journal Nature. To switch 
the notation from f to G is simply cosmetic1. Although, for example, Max Planck 
still used the notation f for the gravity constant in 1899, 1906, and 1928 [12] [13] 
[14], the use of G continued, and by the 1930s G had become the standard nota-
tion for the gravitational constant. Keep in mind that it took 200 years from the 
publication of Newton’s gravitational theory to the first mention of the gravita-
tional constant; thus it was, to some degree, a breakthrough, but from another 
perspective, it could also be seen as a disaster, as it led to an inferior definition of 
mass. 

2. Newton’s Gravity Formula; MmF
R





2=  

As the original Newton formula is not compatible with the kg definition of mass 
(without adding a gravitational constant), we will call the Newton mass M  to 
distinguish it from the modern kg definition of mass M. We will later explain 
why the mass we obtain from the original Newton formula is superior to the kg 
definition of mass. 

The centripetal force in the Newtonian theory is given by 
2mv

R


. For a planet  

or moon to be in equilibrium within its orbit, the centripetal force must balance 

 

 

1But Boys also had some interesting information in his paper on measurement methods in relation 
to G, for example. 

https://doi.org/10.4236/jmp.2022.132014


E. G. Haug 
 

 

DOI: 10.4236/jmp.2022.132014 182 Journal of Modern Physics 
 

with the gravitational force, so under the original Newton theory we must have: 
2

2 0mv Mm
R R

− =


 

                          (2) 

Solved with respect to v, this gives an orbital velocity of:  

Mv
R

=


                            (3) 

As we can see, this is quite different from the modern orbital velocity formula 

that is GMv
R

= . The difference is the Newton gravitational constant G, which,  

as we have noted, Newton himself never used. We can then ask, “Does the for-
mula work without the Newton gravitational constant?” And, in fact, it does. 
Newton used the square of the orbital time and the distance between two masses 
to find the relative masses of heavenly objects. The orbital time is the circumfe-
rence of the orbiting object (for example the moon) divided by the orbital veloc-
ity. In other words:  

L L
v M

R

=


 

LT
M
R

=


                           (4) 

This formula we can then solve with respect to mass, and we get:  
2

2

L RM
T

=  

( )2

2

2 R R
M

T
π

=  

2 3

2

4 RM
T

=
π

                           (5) 

Assume we decide to measure orbital time in days (as Newton did) and dis-
tance in km (although naturally Newton used a different length measure). The 
distance to the sun can be found by parallax, and it is about 149.6 million km. 
The time it takes for the Earth to orbit the sun is 365 days. So now we can calcu-
late the mass of the Sun as: 

2 3
20 3 2

2

4 149600000 9.92 10 km days
365sM ≈ ×

π
=  

As we can see, the mass has very strange notation and does not seem to be 
very recognizable or intuitive, but this is partly because we are accustomed to 
thinking of mass in terms of kg (or pounds). Next, let us calculate the mass of 
the Earth; for this we will use the orbital time of the moon, which is about 27.3 
days. The distance from the Earth to the moon is about 384,400 km. The mass of 
the Earth must therefore be: 
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2 3
15 3 2

2

4 384400 3 10 km days
27.3EM ≈ ×

π
=  

Again, this seems to be a strange mass that is hard for us relate to, but the 

mass of the sun relative to the Earth is now 
20

15

9.92 10 329750
3 10

×
≈

×
. This is a  

number many of us do recognize; it is the mass of the sun relative to the Earth 
that we also obtain if we look at the modern kg definitions of the sun and the 
Earth. The 24π  will even cancel out in the relative mass formula, which can be 
described by: 

3 2
1 2
3 2
2 1

R T
R T

                            (6) 

Further, if the satellites were orbiting the objects we wanted to find the mass 
of at the same distance 1 2r r= , then the relative mass is simply the orbital time 
squared divided by each other. This is very similar to Newton’s reasoning in the 
Principia. As Newton pointed out, one could use any units one wanted (for dis-
tance or time) when the focus was on relative masses. When we say the sun’s 
mass is 329,750 times that of the Earth’s, then we have chosen the Earth as the 
unit mass. We could just as well have used the Earth mass as the unit mass when 
handling small objects on Earth. However, the mass of the Earth is enormous 
compared to any object we handle in our daily lives and so it would be hard to 
conceptualize it. Therefore, to have a better understanding of the mass, it makes 
sense to choose a smaller unit mass. The kg is a unit mass that is an arbitrari-
ly-chosen mass, but it is practical—not so small so that it was hard to measure 
on an old-fashioned scale, and yet not so big that it could not be carried around. 
Weights, we must remember, were important to standardized trade, for example. 
So, we can say an almost arbitrary amount of weight (mass) was chosen as a kg. 
When we deal with a small practical mass, we can also quite easily know what 
substance it consists of—we can make a lead ball, gold ball, or iron ball, or we 
can simply fill a container with water. When we deal with planets, we know they 
likely consist of many types of elements, and it is harder to say for certain what 
their cores consist of completely. 

Now to find the mass of the Earth in kg, we must first find a method to test 
gravity’s effect on small practical masses, e.g., where we already know the kg 
mass of the object in question. Remember that to find the mass of the sun, New-
ton needed something orbiting the sun, but obviously there are plenty of planets 
to choose from. To find the mass of the Earth, he needed something that orbited 
the Earth, and indeed, the moon fit the bill. However, in order to measure a 
small practical mass, we need something “orbiting”2 that is also very small (very 
small compared to planets, but still massive compared to atoms and molecules). 
This was a difficult task, and many attempts were undertaken, but it was first 
done accurately in 1798 by Henry Cavendish through what is known today as a 
“Cavendish apparatus” and consists of some small balls (made of lead or gold, 

 

 

2Other methods were also considered here, with varied success. 
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for example) “orbiting” some larger (but still small) balls. Interestingly, the mass 
of a large lead ball in the Cavendish apparatus will have a Newton mass of: 

2 2

2

2 LRM
T

θπ
=                           (7) 

where T is the oscillation time, and θ  is the deflection angle of the torsion 
balance from its rest position, and R is the distance from the small lead ball to 
the large lead ball, and L is the distance between the two small balls. 

We know how to find this Newtonian type mass with the torsion balance, 
Formula (7). We do not need to know its kg mass or any other mass-measure for 
this. However, we can find its kg mass by comparing it with the kg standard by 
using a scale calibrated to kg. This now gives us a connection between the mys-
terious Newton mass and the kg (or pound). We can now also find the kg mass 
of the Earth, and the density of the Earth in terms of kg. The Cavendish appara-
tus, which was said to first find the gravitational constant indirectly, is both true 
and not true. Cavendish never mentioned a gravitational constant, and it is not 
needed under any circumstances, as we soon will see. The reason the Cavendish 
apparatus was required then was because one needed a way to measure the 
Newtonian type mass of a small object, so one could use the small unit (instead 
of the Earth, for example) as unit mass. The Cavendish apparatus also made it 
possible to accurately find the density of the Earth, not because of any gravita-
tional constant, but because a small practical mass can be made of one substance 
where the density (weight) is known relative to other substances (e.g., gold ver-
sus water). In this way, one could find the density of the Earth very accurately 
relative to a given substance. If one had known a planet in our solar system con-
sisted of a homogenous substance, take iron, for example, then there would have 
been no need for a Cavendish apparatus to find the density of the Earth relative 
to material objects. But we know of no such planet consisting of only one sub-
stance, and it would also be hard to check if that was really the case, even if it 
could be imagined. So, the breakthrough of the Cavendish apparatus was that 
one could find the gravity (Newtonian mass) of even a small practical mass. Na-
turally we can find the relative densities of different substances simply by using a 
scale. 

Still, what we call the Newtonian mass, M , is difficult to fully understand, 
although it is no stranger than the kg. Up until now, we have used arbitrary units 
such as km for length, and Earth days as time. As we will see, it is when we first 
switch to more fundamental units and then explore the quantum world that we 
truly see the beauty of Newton’s formula. 

Switching to more fundamental units 
At this stage we can still choose any time unit we want: years, days, hours, or 

seconds. More important than the choice of time interval (time unit) is to link 
both time and length to something very fundamental in nature. This is light. We 
know from the writings of Aristotle (in his work De Sensu) that the Greek phi-
losopher Empedocles, about 2500 BC, understood or at least assumed that the 
speed of light had a finite limit: 
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Empedocles said that the light from the sun arrives first in the intervening 
space before it comes to the eye, or reaches the Earth. This might seem to be the 
case. For whatever is moved through space is moved from one place to another; 
hence, there must be a corresponding interval of time in which it is also moved 
from one place to the other. 

In 1676, Ole Christensen Rømer was likely the first to make a quantitative 
measurement of the speed of light and he concluded that it was finite. In 1704, in 
his book Opticks [7], Newton reported Rømer’s calculations of the finite speed 
of light and gave a value of “seven or eight minutes” for the time it would take 
for light to travel from the sun to the Earth, an estimate that is not far from its 
real speed. So, Newton could have linked length to time through the speed of 
light, even if his calculations and predictions would have been somewhat inac-
curate. In 1728, (one year after Newton’s death) the English physicist James 
Bradley estimated the speed of light in a vacuum to be approximately 301,000 
km per second, which is very close to today’s defined value. 

Here we will choose seconds as the time unit, and will link this to length 
through the speed of light. Our length unit will be the distance light travels in 
any given time unit. Here we choose the second; this is a well-known unit dis-
tance in modern physics, known as light-second (length); see, for example [15]. 
Now time and length units are suddenly related to something very fundamental. 
In modern physics, the speed of light is the same in every reference frame; it is 
known as c and per definition exactly 299,792,458 meters per second in vacuum. 
But here we have chosen the length unit that represents how long light travels in 
one second, so the speed of light will then be one light-second per second in this 
unit system. In other words, we can set 1c = , something that is often done in 
modern physics. What is important is that time and length are linked through 
something very fundamental, namely the speed of light. 

Now the distance to from the Earth to the sun will be about  
149600000000 m 299792458 m s 499R = ≈  light-seconds. The circumference 

of the orbit of the Earth around the sun is therefore about 2 499L = π×  light 
seconds. Further, we can find the mass of the sun  

( )

2 3 2 3
6

2 2

4 4 499 4.93 10 Light-seconds
365 24 60 60

S
RM

T
−= = ≈ ×

×

π π

× ×
      (8) 

This looks like a very unfamiliar mass, but soon we will see it makes much 
more sense than expressing the mass of the sun in kg. (The sun’s mass in kg is 
approximately 1.98 × 1030). 

Similarly, for the Earth we can use the moon’s orbital time to find the mass of 
the Earth. The orbital time of the moon is about 27 days, or 27 24 60 60× × ×  
seconds. The distance to the moon is about 1.28 light-seconds. The mass of the 
Earth must therefore be: 

( )

2 3
11

2

4 1.28 1.52 10 Light-seconds
27 24 60 60

EM −= ≈ ×
π

× × ×
          (9) 

This means the mass of the sun relative to the Earth must be approximately 
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11

6

1.52 10 324342
4.93 10

−

−

×
≈

×
. This is close to the actual modern accepted number. 

Next let us use the orbital velocity formula Mv
R

=


 to predict the orbital  

velocity of Saturn. The distance from the sun to Saturn is about 1.434 billion km, 
which is about 4783.3 light-seconds. The mass of the sun we have estimated to 
be 4.93 × 10−6 light seconds, and inputting the formula, we get: 

6
054.93 10 3.21 10 Light-seconds per second

4783.3
v

−
−×

= ≈ ×  

That is, the orbital velocity is now on the dimensionless form; it is identical to 
v
c

. In order to obtain meters per second, we need to multiply by c and this gives  

us about 9625 meters per second, which is the same as is observed in experiments.  

That our orbital velocity can actually be seen as v
c

 means it is a dimensionless  

number. For example, Langacker [15] in his book “Can the Laws of Physics Be  

Unified?” (2017) indicated that such dimensionless units as v
c

 could be more 

fundamental. 
Actually, the mass we find in this way without depending on or knowing G is 

identical to half the Schwarzschild radius in meters divided by the speed of light,  

and exactly equal to the Haug radius [16]; 1
2h s

GMr r
R

= = , which is derived by  

taking into account relativistic mass that has been abandoned by general relativ-
ity theory [17] [18]. In other words, this is half the Schwarzschild radius in 
light-seconds or exactly the Haug radius in light-seconds. We propose that the 
Haug radius (divided by the speed of light) could be a much better model of 
mass than the kg-defined mass. However, no one should be fully convinced that 
light seconds are a better mass measure than kg just yet. It is when we get to the 
quantum aspects that this first becomes clear. As explained previously, we have 
demonstrated that we can predict relative masses, we can find the density of 
planets, and we can perform orbital velocity predictions, all with no knowledge 
of the gravitational constant. We will expand further on this before returning to 
look at the light-second mass from a quantum perspective. 

3. Escape Velocity and Such Things as Time Dilation 

Leibniz [19] already suggested the in 1688 that kinetic energy was given by 2mv  
a formula that “soon” was empirically confirmed by Gravesande [20] around  

1720. We know today this should be corrected to 21
2kE mv≈  (ignoring relati-

vistic effects, so valid for when v c ). The escape velocity in Newton’s formula 
can be derived in the following way: 

2
2

1
2 e

Mmmv
R

−




                           (10) 
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and when we solve with respect to ev , this gives 

2
e

Mv
R

≈


                          (11) 

We can also find expected gravitational time dilation by taking into account 
that the time of a clock at distance 2R  must move faster than the clock at a 
distance of 1R  ( 2 1R R h= + , where h is the hight about ocean level) from the 
center of the gravity object by: 

2 1
2 2
2 11 1

T T

v v
=

− −
 

2 1

2 1

2 21 1

T T

M M
R R

=

− −
 

 

2
2 1

1

21

21

M
R

T T
M
R

−
=

−





                       (12) 

Assume the clock 1T  is at sea level and clock 2T  is 2,000 meters above sea 
level, which corresponds to 1 6371000 0.0212514r c≈ =  light-seconds and  

( )2 6371000 2000 0.0212580r c= + =  light-seconds. For every second at the ocean 
level, following number of seconds will go by as observed from the mountain level: 

11

2 11

2 1.52 101
0.02125801 1.00000000000022 s

2 1.52 101
0.0212514

T

−

−

× ×
−

= =
× ×

−

          (13) 

which is the same as predicted by general relativity theory. The point is that here 
we have done it without any knowledge of G. What is even more important is our 
mass. The mass of the Earth, as we have said, is about 1.52 × 10−11 light-seconds. 
We can convert this to meters by multiplying by 299792458 m sc = . This means 
the mass of the Earth is 111.52 10 0.0046 mc−× × = . This is actually half of the 
Schwarzschild radius of the Earth and identical to the Haug radius, which is no 
coincidence. From Newton’s formula, one finds that the mass is the Haug radius of 
the Earth (when using length units linked to how far light travels in the  

arbitrary chosen time unit, here seconds). One gets the Haug radius by 2h
GMr
c

= ;  

however, modern physics has not recognized that half the Schwarzschild radius 
actually is a better definition of mass than the kilogram mass, but a new quan-
tum gravity theory has taken advantage of this [21] [22]. Be aware that Michell 
[9] already, in 1784, got exactly the same radius for where the escape velocity 
was c as the much later Schwarzschild radius rooted in general relativity theory. 
So the Schwarzschild radius is not unique for general relativity theory [23]; they 
are the same. 
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4. Getting Down to the Quantum Level 

Any rest-mass in terms of kg can be expressed as: 

1m
cλ

=
                             (14) 

where   is the Planck constant, λ  is the reduced Compton length [24], and c 
is the well-known speed of light. This formula3 can describe any rest-mass in 
terms of kg, including both subatomic and cosmological objects. The Planck 
constant is indeed a constant, and so is the speed of light. The only factor that 
differs between masses of different sizes (weights) is then the Compton wave-
length of the mass. The Compton wavelength has only been measured for fun-
damental particles such as the electron. However, even larger masses that don’t 
have their own Compton wavelengths still consist of a series of subatomic par-
ticles that must have Compton wavelengths. The Compton wavelengths of ele-
mentary particles are additive based on the following formula: 

1

1 2 3

1
1 1 1 1

n

i

n

λ

λ λ λ λ
=

= =
+ + + +

∑


                 (15) 

This means that the Formula (14) can be used for composite masses and even 
astronomical objects like the sun or the moon. But what does the formula truly 
represent? The Planck constant is linked to the quantization of energy. Some will 
find it strange that the speed of light is embedded in the mass formula. We are 
all familiar with 2E mc= , but few physicists are familiar with the idea that the 
speed of light is integrated in the mass at a deeper level. This indicates some-
thing inside a fundamental particle, a mass, is linked to the speed of light, and 
also to composite masses, as they consist of fundamental particles. But how? 
Mass is known at the quantum level to be a wave-particle duality. But what ex-
actly is a wave-particle duality? Newton assumed light consisted of indivisible 
particles; later, the view that light was a wave evolved from some experiments 
strongly indicating wave behaviour. Then Einstein introduced his photoelectric 
effect and again showed that light had particle-like properties, and light was re-
defined as having a mystical wave-particle duality; not mystical in the terms of 
the math, but in terms of the interpretation of the math. Then Louis de Broglie 
[28] [29] suggested that matter, in addition to having particle-like properties, 
also likely had wave-like properties, and he suggested that the matter wave was  

given by the following formula B mv
λ

γ
=
 , where 

2

2

1

1 v
c

γ =

−

. Einstein quickly  

endorsed the idea, and some years later it was confirmed that masses such as 
electrons had wave-like properties; see [30] [31]. This was considered almost a 

 

 

3This way of to describe the kilogram mass was possibly first described by Haug [25] [26] [27]. To 

express the kilogram mass, 1m
cλ

=
  is naturally simply the Compton wavelength formula solved 

with respect to m, but even if this is very easy to do, it has not, to our knowledge, actually been done 
before in these papers. 
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proof that the de Broglie hypothesis was rooted in reality. Next, in a series of 
steps, an entire quantum wave theory emerged from this line of thought, based 
on the important work of Heisenberg [32], Schrödinger [33], Klein Gordon, Pauli, 
and Dirac, among others. Further, the quantum mechanical theory fit experiments 
extremely well. And just before this development, gravity theory had evolved 
into Einstein’s [34] general relativity theory. Since then, for more than 100 
years, many of the world’s most brilliant physicists have tried to unify gravity 
with quantum mechanics into a quantum gravity theory but without much suc-
cess. 

However, in our rest-mass formula, 1m
cλ

=
  we do not have the de Broglie  

wavelength, but the reduced Compton wavelength; λ . Compton was more of 
an experimental researcher than de Broglie and he had measured the wavelength 
of an electron around the same time that de Broglie had presented his hypothesis 
of the matter wave. That is, the Compton wavelength has been measured, at least 
indirectly. There is a very simple mathematical relation between the Compton  

wavelength and the de Broglie wavelength, namely B
v
c

λ λ= . However, if 0v = , 

then the de Broglie wavelength is infinite [35] [36], or even mathematically un-

defined as it is not allowed to divide by zero (
0B mv m

λ
γ

= =
×

  ). An infinite  

matter wave for a subatomic particle is, to put it mildly, a bizarre prediction. We 
will claim, as we have done in other papers [21], that the de Broglie wavelength 
is not a physical wavelength; it should be seen as a mathematical derivative of 
the true physical Compton wavelength. In short, the de Broglie wavelength is 
simply a mathematical artifact that is never needed. A theory built around the de 
Broglie wavelength will, in general, give a series of correct predictions, but the 
interpretations will often be absurd, as one has not discerned what matter is di-
rectly linked to the Compton wavelength and what is linked to the de Broglie 
wavelength. Why does modern physics have two different types of wavelengths 
for mass—one being the experimentally-observed Compton wavelength, the 
other being the hypothetical de Broglie wavelength? Well, this is a topic for 
another time. 

Let’s return to our mass definition in kg in terms of the Compton wavelength. 
The formula can be rewritten as: 

1

1

c

cc

c

λ
λ

=

×





                          (16) 

We can see that the kg of the mass in question is simply the Compton fre-
quency of the mass in question divided by the Compton frequency of one kg. 
That is, the kg definition of mass at a deeper quantum level is a frequency ratio. 
At each Compton time we will claim there is a Planck mass event. Such Planck 
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mass events consist of two indivisible particles colliding. Such indivisible par-
ticles, when not colliding with other particles, move at the speed of light over the 
reduced Compton length. For example, an electron will then have the following 
number of Planck mass events per second: 

207.76 10e
e

cf
λ

= ≈ ×                       (17) 

Each Planck mass event is 10−8 kg, but the Planck mass event only lasts for one 
Planck time, so this gives a mass in kg for the electron of: 

20 317.76 10 10 kg

1

e p p
e

c
cm m t

c

c

λ
λ

−= ≈ × × = =

×


           (18) 

However, this mass definition that indeed is a collision ratio does not tell an-
ything about how long each collision lasts; it disappears in the equation, as the 
Planck length will cancel out between the Planck mass in terms of kg and the 
Planck time. The standard kg definition of mass is a collision ratio, and that is all 
we need when working with most observable phenomena. An exception to this is 
gravity. Gravity is not some magical force; all mass is also gravity. That is, gravi-
ty is the collisions between the indivisible particles that exist in matter. The colli-
sion only lasts for a Planck time, as we can find from gravity observations. This 
is, however, not embedded in today’s mass definition, and it must come from 
somewhere in the gravity models to make the gravity formulas predict correctly. 
This is where the gravity constant comes in. The so-called Newton’s gravitation-
al constant adds to the formula what is missing in the kg definition of mass. 
Luckily what is missing is only something that is constant, namely the Planck 
length, and we need to take something out of the kilogram mass, namely the 
Planck constant. The Planck constant is the units of energy relative to the colli-
sion ratio in a kg. That is, the Planck constant is the amount of energy in an in-
divisible particle in the form of a collision ratio where the collision ratio is rela-
tive to the collisions in one kg per second. 

The quantum aspects of this theory and a unified quantum gravity theory are 
explained in much more detail in [21] [22] [37] [38]. Just as important is the fact 
that one can find the Planck length (and other Planck units such as the Planck 
time and the Planck mass) totally independently of any knowledge of G, see [39] 
[40] [41]. The Newton gravitational constant that Newton never invented or  

used is, at a deeper level, a composite constant of the form 
2 3
pl c

G =


 as described  

by Haug in some of the papers just mentioned, as well as in [25] [27] [42], 
something we soon will get back to in this paper. 

5. The Newton Mass from a Quantum Perspective, the True  
Mass and the Newton God Particle 

Let us look closer at what the “mysterious” mass we get out of the original New-
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ton formula actually represents from a quantum particle perspective. The reason 
we use the term “God Particle” is simply because Newton called such particles 
so: 

“… and that these primitive Particles being Solids, are incomparably harder 
than any porous Bodies compounded of them; even so very hard, as never to 
wear or break in pieces; no ordinary Power being able to divide what God him-
self made one in the first Creation.” Isaac Newton, see full quote in the appen-
dix. 

With this, we think Newton indicated that the indivisible particle was the 
most fundamental of all particles. We will next show how we can measure im-
portant properties of this particle that we now have reasons to think are directly 
linked to the Planck scale. 

The mass of the Earth, for example, we predicted (using Newton’s original 
formula) to be 1.52 × 10−11 Light-seconds. We believe that we can find the mass 
of Newton’s indivisible particle from this and claim it must be given by the fol-
lowing formula (a formula we have already shown is directly linked to the 
Planck length, [43]) 

im Mλ= 

                            (19) 

where λ  is the reduced Compton wavelength of the Newtonian mass M  of 
for example the Earth, (e.g. the gravity object of which we have observed the 
mass). How can we find the Compton wavelength of the Earth? We can measure 
the Compton wavelength of an electron without knowing the mass of the elec-
tron. The reduced Compton wavelength of an electron can be found by Comp-
ton scattering and it is about 3.86 × 10−13 m. Also be aware that the Planck con-
stant is not needed for finding this, because we have: 

,2 ,1

1 cose
γ γλ λ

λ
θ

−
=

−
                         (20) 

where ,1γλ  and ,2γλ  are the wavelength of the photon before and after it hit 
the electron, and θ  is the angle between the incoming and outgoing photon. In 
light-seconds, the reduced Compton wavelength ( ( )2e eλ λ= π ) of the electron 
is about 1.28 × 10−21 light-seconds. This can be measured without knowing the 
mass of the electron first, see also [44]. Further, the Compton wavelength of a 
proto can be found by simply checking the cyclotron frequency of a proton rela-
tive to an electron. The cyclotron frequency is given by: 

2
qBf

m
=

π
                           (21) 

where q is the charge of the particle, and B is the magnetic field, and m is the 
mass of the particle. Since protons and electrons have the same charge, we must 
have: 

2
1836.15

2

e e eP

p e P

P

qB
f m m

qBf m
m

λ
λ

= = = ≈
π

π

                 (22) 
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The well-known (measured) cyclotron frequency ratio [45] [46] is about 
1836.15247, so the reduced Compton wavelength of the proton is simply the 
measured reduced Compton wavelength of the electron divided by the cyclotron  

frequency ratio, that is 
1836.15247

e e
P e

P

f
f

λ
λ λ= ≈ . Interest in the Compton  

wavelength of the proton goes back to at least 1958 and has recently garnered 
more interest; see [47] [48]. Now we just need to know the number of protons 
(assuming neutrons have same mass or do we need to make a slight adjustment 
for this) in the Earth, which we could count hypothetically, even if this is im-
possible directly in practice, but we will soon look at indirect methods to do so. 
In any case, there are about 3.57 × 1051 protons in the Earth (we assume neu-
trons have approximately the same mass as protons). In addition, there would be 
a small adjustment for binding energy, the nuclear binding energy, and the bond 
energy that keeps atoms together, but that is so small compared to the rest-mass 
energy of the atoms that it will not make much of a difference in the predicted 
Compton wavelength. The reduced Compton length of the Earth is then given 
by: 

511

1 2 3
76

1 1
1 1 1 1 13.57 10

1836.15

1.96 10 light-seconds

n

E
i

n e

λ

λ λ λ λ λ
=

−

= = =
+ + + + × ×

= ×

∑
      (23) 

The mass of Newton’s indivisible particle we can now calculate by: 
11 76 441.52 10 1.96 10 5.46 10 light-secondsim Mλ − − −= = × × × ≈ ×

   (24) 

Some will recognize this number; it is the Planck time, which is 5.46 × 10−44 
seconds. This is the case because we have chosen seconds as our time scale but 
remember this is also directly linked to our length scale. The ultimate subatomic 
mass is a collision between two indivisible particles; this collision lasts for ap-
proximately 5.46 × 10−44 seconds. Our interpretation is that two indivisible par-
ticles spend this amount of time in collision (standing still) during the period in 
which one non-colliding indivisible particle (moving at the speed of light) travels 
a distance equal to the Planck length, that has a distance of 5.46 × 10−44 light 
seconds (or approximately 1.61 × 10−35 m). This is explained in more detail, but 
from a slightly different perspective, in our two collision space-time unified quan-
tum gravity papers, see [21] [38]. 

Keep in mind, we never relied on the so-called Newton gravitational constant 
(that Newton never invented) that was invented to fit the arbitrary kilogram 
mass, and the mass definition of kg (pounds); as we have said, at a deeper level 
the kilogram mass is just a collision ratio. Nor do we need the Planck constant to 
find the Planck time [49]. One can mistakenly think this is only theory as it 
seems impossible to directly count the number of protons in the Earth. Still, we 
can do this indirectly. This is when a Cavendish apparatus comes in handy. Here, 
we can start out by finding the Newton gravitational mass of a small practical 
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mass like a lead ball, given by: 
2 2

2

2
c

R LM
T

θ
=

π
                          (25) 

where cM  is the Newton mass of one of the large balls in the Cavendish appa-
ratus and L is the distance between the smallest balls in the Cavendish apparatus, 
and R is the distance from the centre of the small ball to the centre of the larger 
ball, and θ  is the angle of deflection (in radians), and T is the oscillation time. 
This formula is only valid when 1c = ; otherwise one must divide it by 3c . 

To find the Compton wavelength of the ball in the Cavendish apparatus, we 
can count the number of protons in that object; this is also a challenge, but is 
fully possible; see [50] [51] [52]. When we know the Newton mass (light-seconds) 
of the ball, we can easily find the Newton mass of the Earth relative to that. Also, 
if we know the Compton wavelength of the mass in the Cavendish apparatus (by 
counting atoms in it as described above), then we can find the reduced Compton 
wavelength of the Earth from the following equation: 

c
E

E

M
M

λ λ=




                         (26) 

where λ  is the reduced Compton wavelength of the sphere in the Cavendish 
apparatus. We could also have found the reduced Compton wavelength of the 
Earth simply by using the Compton formula: 

E
EM c

λ =
                          (27) 

but then we need to know the Planck constant, and part of our purpose is to 
demonstrate we need fewer constants than in standard physics when under-
standing gravity and physics from a deeper perspective. 

We also have that: 
2 3

3 3

1 p pl lG lp cM M
c cc c λ λ

= = × =






               (28) 

which is the collision time of that mass over the shortest possible time interval it 
can be observed, as described by Haug in his unified quantum gravity theory 
[53]. Again, the collisions between indivisible particles last only for the Planck  

time; this is given by p
p

l
t

c
= , and multiplied by how often these collisions hap-

pen pl
λ

. The part pl
λ

 can also be seen as a frequency probability if pl λ< ,  

when observed over the shortest possible time interval, which is the Planck time. 
Be aware that for anything that has been measured in relation to the Newton 
formula, one of the masses in the derivations for what one wants to predict will 
always cancel out; we are always operating with just GM in any observable pre-
diction and never GMm. Modern physics appears to have missed the point that 
the invented GM is actually identical to the mass in the original Newton formula. 
That GM is the Newtonian mass holds when we have linked length and time 
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through the speed of light, e.g., when 1c = . When we have units such that  

1c <> , then the collision time mass is given by 3

1
2

p p sl l rGMM
c ccλ

= = = . In the 

special case 1c =  we naturally get 1
2 sM r= . When 1c <>  it is interesting to 

note that we also have4 1
2p sl r λ= . 

Back to the gravity constant G; why on earth would the universe invent 
something that is length cubed divided by time and kg (the output units of G). 
Of course, the universe never invented such a thing. Modern physics invented a 
gravity constant to fit a misinterpreted mass view of Newton’s formula, which 
was needed to get physicists’ ill-specified mass model to fit experiments. Newton 
never mentioned a gravitational constant himself. He calculated relative masses 
based on orbital time squared (and adjusted for distance between the gravity ob-
jects; that is, the masses.). 

6. The So-Called Newton’s Gravity Constant G Is Just a  
Composite Constant Needed to Fix the Incomplete  
Kilogram Mass 

In 1984, Cahill [54] already suggested that the Newtonian gravity constant could 

perhaps be a composite constant of the form 2
p

cG
m

=
  and that the Planck units 

could be more fundamental; in other words, simply solving the Planck mass 

formula p
cm

G
=

  with respect to G. However, in 1987, Cohen [55] pointed  

out that if one needs G to find the Planck units this will simply lead to a circular 
problem, so it seemed one needed to know G. This is the main view among most 
researchers to this day, and has been repeated as late as 2016 in an interesting 
paper by McCulloch [56]. However, in recent years, we have had a breakthrough 
in understanding the Planck units. We can now extract the Planck length and 
Planck time from a series of gravity observations without any prior knowledge of 
G, c, and  , see [40] [41] [57]. There also exist other suggestions for how to get 
the gravity constant from such things as its hypothetical relation to electromag-
netic constants to suggestions of how to extract G from cosmological constants; 
see, for example, [58] [59] [60]. However, here we will focus on expressing the 
gravity constant from the Planck units as this seems to lead to a significant step 
forward in understanding gravity. Some of these approaches are actually closely 
related when they are compared carefully; see [61]. In 2016 we [42] suggested 
this to express G as a composite constant of the form: 

2 3
pl c

G =


                          (29) 

This is nothing more than solving the Planck length formula of Max Planck 

 

 

4As first described by [43]. 
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with respect to G. Back then, I had also not been able to yet solve the circular 
problem. That is, we had not yet found a way to find pl  or other Planck units 
independent of G. A year later, Haug [39] solved the circular problem for the 
first time, so G can indeed be expressed as a composite constant and the Planck 
length can be found independent of any knowledge of G. Later on, we showed 

pl  can be found independent of any prior knowledge of G, c and  . See, for 
example, [62]. 

Still, it is first when one combines this composite view of G with the idea that 

any kilogram mass can be expressed as 1m
cλ

=
 , one gets a real breakthrough  

in the understanding of gravity. All observable gravity phenomena rooted in to-
day’s standard gravity theory contain GM and not GMm. The 1873, modified, 
Newton gravity formula indeed contains GMm, but the small mass m always 
cancels out in derivations of formulas that can be used to predict observable 
gravity phenomena, and can thereby be checked with observations. This is for 
observable gravity phenomena where the small mass m has insignificant gravita-
tional impact relative to M; in other words, when we have m M . For real two 
body problems where both masses are significantly large relative to each other to 
have significant impact the gravity parameter is ( )1 2 1 2G M M GM GMµ = + = + , 
so then one multiplies both the kilogram masses with the gravity constant. 

One can ask why it is necessary to always multiply the mass with G when used 
it for gravity. At a superficial level, this is simply how we have to calibrate the 
gravity formula for it to be useful for predictions. First, we must find the value of 
G from one gravity observational phenomena and then we can use the same G to 
predict other types of things related to gravity that we can observe. In other 
words, G seems to be a constant; it is an empirically-observed or calibrated con-
stant, not a derived constant, or something understood from a very deep pers-
pective. The physics’ community has no idea what G truly represents, or exactly 
why it is there. In 1961, Thüring [63] concluded that G had been inserted quite 
ad hoc and that it is not clear how it is related to the physical nature. In our view, 
G contains something missing in the model. When one introduced the kilogram 
mass, something was missing in the formula 2F Mm R=  so one had to mul-
tiply it by an unknown constant and get 2F GMm R= . The constant G was 
unknown and had to be found by calibration to observable data. It then worked, 
but no one knew exactly why, because they had, and still have, no knowledge of 
why exactly G must be included and what it represents at a deeper level. This we  

can first really understand when we multiply G in the composite form, 
2 3
pl c

G =


, 

with the kilogram mass. This gives: 
2 3

31p p pl c l l
GM c

c cλ λ
= × =





                   (30) 

That is, the Planck constant in the kilogram mass cancels out with the Planck 
constant embedded in G, so to calculate GM we need less information than to 
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find G and M separately. In our view, G is needed to get   out of the kilogram 
mass and 2

pl  into the mass. Further: 

3 p pl l
GM c

c λ
=  can be seen as a gravity constant 3c , multiplied by a new 

mass definition p pl l
m

c λ
= , which we have called collision-time mass. 

This mean the Newton gravity force formula can be described as:  

3
2

MmF c
R

=




                        (31) 

This force formula does not give the same output units as the 1873 version of 
the Newton formula, as its output unit is m∙s−1 versus the 1873 formula’s output 
that gives m∙kg∙s−2, so one could mistakenly think there must therefore be some-
thing very wrong with our newly-suggested gravity force formula, see also [41]. 
The thing is that the Newton’s gravity force is never observed, and neither is the 
force coming from the 1873 formula. What is observable is when the small m 
has canceled out from the formula through derivations of predictions of observ-
able gravitational phenomena. The new gravity force formula is simple and give 
exactly the same predictions and also the same output units as the as the 1873 
formula, and in the special case of setting 1c = , the new formula is the original  

Newton formula: 2

MmF
R

=




. 

Table 1 shows the original Newton formula as well as observations we can de-
rive from it, in addition to the modified Newton version of 1873, which has the a 
gravity constant G. The two formulas, at a deeper level, predict exactly the same 
for observable phenomena. However, the Newton formula is simpler, requires 
fewer constants and is much more intuitive. If two theories are identical in pre-
dictions, then the simplest theory should win. In the original Newton formula-
tion, we are totally independent of the value of  , so this is not simply setting  

1G c= = = , in the original Newton formula 2

MmF
R

=




 all that is set to 1 is c. 

7. The Uncertainty in Measurement of G Is It Still Relevant 

We have demonstrated in this paper that Newton never invented nor used the 
so-called Newton gravitational constant G. Further, from Table 1, it is clear G is 
not needed to predict any observable gravitational phenomena. The Newtonian 
gravitational constant introduced in 1873 is needed when one uses the incom-
plete kilogram definition of mass, to fix that kilogram mass into a gravitational 
mass. The kilogram mass is not in line with Newton’s thought that matter ulti-
mately consists of indivisible particles, which recent research strongly indicates 
are linked to the Planck length and Planck time. 

It is well known that there is a large uncertainty in the measurement of the 
Newtonian gravitational constant compared to most other physical constants. 
See, for example [64]-[69]. However, it would be a misunderstanding to think  
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Table 1. In the first formula column, the table shows what is rooted in the 1873 modified Newton theory, and the second formula 
column shows the original Newton formula. In addition, we show what both the 1873 framework and the original Newton 
framework means at the deepest level, where both theories are identical, except in the original Newton theory 1c = . Further, pay 
attention to the fact that all observable gravity phenomena are linked to GM and not GMm in the 1873 modified Newton gravity 

theory and only to M  in the original Newton theory, rather than Mm  . 

Non observable (contains GMm or Mm  ) 

 1873 modified Newton and forward: “Original” Newton: 

Gravity force ( )2
2 kg m sMmF G

R
−= ⋅ ⋅  ( )3 1

2 2 m sMm MmF c
R R

−= = ⋅
 

   when 1c =  

Mass must be ( )1 kg
M

M
cλ

=
  p

p
M

l
M l

λ
=  (collision time, see [21]) 

Gravitational constant 
2 3

, pl c
G G
 

=  
 

 1c =  

Observable predictions, identical for the two methods: (contains only GM) 

Gravity acceleration 
22

2 2
p

M

lGM cg
R R λ

= =  
2

2 2

1 p

M

lMg
R R λ

= =


 

Orbital velocity 
1

o p
M

GMv cl
R Rλ

= =  
2
p

o p
M

lMv l
R Rλ

= =


 

Orbital time 

32 2

p

R RT
clGM

R

λ
= =

π π  
32 2

p

R RT
lM

R

λ
= =

π π


 

Velocity ball Newton cradle 
22 p

out

clGM Hv H
R R λ

= =  
22 p

out

lM Hv H
R R λ

= =


 

Periodicity Pendulum (clock) 
22 2

p

L L RT R L
g GM cl

λπ
π= =π=  22 2

p

L L RT T R L
g M l

λπ
π=π= = =



 

Frequency Newton spring 1 1 1
2 2 2

pclk GMf
m R x R xλπ π

= =
π

=  1 1 1
2 2 2

plk Mf
m R x R xλπ π

=
π

= =




 

Gravitational red-shift 

2

2
1 1

2

2
2 2

221 1
1 1

2 21 1

p

M

p

M

lGM
R c R

z
GM l

R c R

λ

λ

− −
= − = −

− −

 

2

1 1

2

2 2

221 1
1 1

221 1

p

M

p

M

lM
R R

z
lM

R R

λ

λ

− −
= − = −

− −


 

Observable predictions (from GR): (contains only GM or only M ) 

Time dilation 
2 2

2 221 1 p
R f f

M

lGMT T c T
R Rλ

= − = −  
2 2

2 221 1 p
R f f

M

lMT T c T
R Rλ

= − = −  

Gravitational deflection (GR) 
2

2

4 4 p

M

lGM
c R R

δ
λ

= =  
23

2

4 4 p

M

lc M
c R R

δ
λ

= =  
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Continued 

Advance of perihelion ( ) ( )
2

2 2 2

6 6
1 1

p

M

lGM
a e c a e

σ
λ

= =
−
π

−
π  ( ) ( )

2

2 2 2

6 6
1 1

p

M

lM
a e c a e

σ
λ

= =
−
π

−
π   

Quantum analysis:   

Constants needed G,  , and c or pl ,  , and c pl  and indirectly c, but 1c =  

Variable needed one for mass size one for mass size 

 
we are getting away from this uncertainty after we have got rid of G. So, this pa-
per is not about improving or getting rid of this uncertainty. From a deeper 
perspective, the uncertainty in G ultimately comes from uncertainty in mea-
surements of the Planck length. This also explains why the uncertainty in G is so 
large compared to in what has been found in most other physical constants. The 
reason is that the Planck length is the shortest possible observable length, and it 
is therefore not so strange that it is hard to measure it accurately when it is the 
smallest of all things there are. 

The standard uncertainty in the gravity constant G is exactly twice that of the 
standard uncertainty in the Planck length. Just as an illustrative example, assume 
the measured standard uncertainty in the Planck length is 1%, then relative un-
certainty in the gravitational constant must be: 

100 2%

p

p

l
G
l G
∂

=
∂

                        (32) 

NIST 2018 CODATA states the one standard deviation uncertainty in the 
gravity constant is given by 2.2 × 10−5, and for the Planck length the one stan-
dard deviation uncertainty is given as 1.1 × 10−5. This perfectly matches our view 
that the standard uncertainty in the Newton gravity constant is exactly twice of 
that of the Planck length. But since where we have G in the 1873 Newtonian  

framework we have 2
pl  embedded, this since 

2 3
pl c

G =


 as understood from a  

deeper level, then the standard uncertainty in the gravity observations are the 
same as before. Bear in mind that c and   are defined as exact constants so they 
do not add to any uncertainty in G or in gravitational observations, because   
also cancels out for any observable gravity phenomena. All these studies, which 
try as accurately as possible to find the value of the gravitational constant, can be 
seen as simply methods to find an accurate value of the Planck length, even if the 
researchers looking into measuring G are not aware of this. They are of the view 
that the Planck length only can be found after one has found G, c and h through 
dimensional analysis. In recent years, we have demonstrated how to find the 
Planck length and Planck time independent on any knowledge of G and h and 
even of c. Still, these experiments, trying to accurately measure G, are just as re-
levant as before, but it is the uncertainty in 2

pl  the experimenters are looking at, 
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without knowing so. It could be that when this becomes widely known, one could 
devise even more accurate ways to measure 2

pl , but this only time can tell. We do 
not claim to know any new ways to measure G more accurately than before. 

From Table 1, we see that both the standard 1873 Newtonian formalization, 
as well as the original Newtonian formulation that is without G, when unders-
tood from a deeper perspective, contain the same two constants for prediction of 
all observable phenomena; that is, pl  and c. 

Still, our insight that we do not need G to make gravity predictions is not an 
argument to reduce the uncertainty in gravity measurements. It is an argument 
for the possibility to understand gravity through deeper and simpler principles. 
It is also an argument to reduce the number of universal constants from G, h 
and c to just pl  and c. 

8. Conclusion 

As we have seen, it is by using Newton’s original formula that we obtain the 
correct unit measure of mass. The kg definition of mass is a manmade, arbitrary 
unit of mass that has caused great confusion in modern physics. The kg defini-
tion and similar manmade arbitrary units (such as the pound) are why the gra-
vitational constant had to be invented. Nature does not work in kg; it has its own, 
more fundamental units. Arbitrary incomplete units have added an unnecessary 
layer of complexity to modern physics, and Newton’s original theory is superior 
in many ways. Naturally, the theory was not complete in terms of quantum me-
chanics and relativity theory. However, if the field of physics had stayed with 
Newton’s original formula, it is possible that a full understanding of mass and a 
unified quantum theory might have been developed much earlier. 
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Appendix: Some Quotations from Newton 

Below are some quotations from Newton on gravity 
If there be several bodies consisting of equal particles whose forces are as the 

distances of the places from each, the force compounded of all the forces by 
which any corpuscle is attracted will tend to the common centre of gravity of the 
attracting bodies; and will be the same as if those attracting bodies, preserving 
their common centre of gravity, should unite there, and be formed into a globe. 
p 236  

I say, that the whole force with which one of these spheres attracts the other 
will be reciprocally proportional to the square of the distance of the centres. The 
force with which one of these attracts the other will be still, by the former rea-
soning, in the same ratio of the square of the distance inversely. Cor. 3. The mo-
tive attractions, or the weights of the spheres towards one another, will be at 
equal distances of the centres as the attracting and attracted spheres conjunctly; 
that is, as the products arising from multiplying the spheres into each other. p. 
223.  

Cor.2 The force of gravity towards several equal particles of any body is reci-
procally as the square of the distance of the places of the particles. p. 393.  

Cor.2 The force of gravity which tends to any one planet is reciprocally as the 
square of the distance of places of that planet’s center. p. 393.  

That all bodies gravitate towards every planet; and that the weights of bodies 
towards any the same planet, at equal distances from the centre of the planet, are 
proportional to the quantities of matter which they severally contain. p. 394, 
book 3.  

If two spheres mutually gravitating each towards the other, if the matter in 
places on all sides round about and equidistant from the centres is similar, the 
weight of either sphere towards the other will be reciprocally as the square of the 
distance between their centres.  

Wherefore the absolute force of every globe is as the quantity of matter which 
the globe contains; but the motive force by which every globe is attracted to-
wards another, and which, in terrestrial bodies, we commonly call their weight, 
is as the content under the quantities of matter in both globes applied to the 
square of the distance between their centres (by Cor. IV, Prop. LXXVI), to which 
force the quantity of motion, by which each globe in a given time will be carried 
towards the other, is proportional. And the accelerative force, by which every 
globe according to its quantity of matter is attracted towards another, is as the 
quantity of matter in that other globe applied to the square of the distance be-
tween the centres of the two (by Cor. II, Prop. LXXVI): to which force, the ve-
locity by which the attracted globe will, in a given time, be carried towards the 
other is proportional.  

That there is a power of gravity tending to all bodies, proportional to the sev-
eral quantities of matter which they contain. p. 397.  

Newton only uses the word “mass” once in his book: 
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The quantity of matter is the measure of the same, arising from its density and 
bulk conjunctly. It is this quantity that I mean hereafter everywhere under the 
name of body or mass.  

In other words, mass is the quantity of matter. 
In the Principia, Newton is also clear on the idea that the smallest particles of 

all bodies have spatial extension and are hard (indivisible) and can move. And 
he follows up with the comment, “And this is the foundation of all philosophy.” 

Since every particle of space is always, and every indivisible moment of dura-
tion is everywhere, certainly the Maker and Lord of all things cannot be never 
and nowhere. p. 505.  

And thence we conclude the least particles of all bodies to be also extended, 
and hard and movable, and endowed with their proper vires inertia. And this is 
the foundation of all philosophy.  

In his book Optica, Newton is even clearer that he think matter consists of 
fully-hard forever-lasting particles; that is, indivisible particles: 

All these things being consider’d it seems probable to me, that Godin the Be-
ginning form’d Matter in solid, massy, hard, impenetrable, movable Particles, of 
such Sizes and Figures, and in such Proportion to Space, as most conduce to the 
End for which he form’d them; and that these primitive Particles being Solids, 
are incomparably harder than any porous Bodies compounded of them; even so 
very hard, as never to wear or break in pieces; no ordinary Power being able to 
divide what God himself made one in the first Creation. While the Particles con-
tinue entire, they may compose bodies of one and the same Nature and Texture 
in all Ages; But should they wear away, or break in pieces, the Nature of Things 
depending on them, would be changed. Those minute rondures, swimming in 
space, from the stuff of the world: the solid, coloured table I write on, no, less 
than the thin invisible air I breathe, is constructed out of small colourless cor-
puscles; the world at close quarters looks like the night sky — a few dots of stuff, 
scattered sporadically through and empty vastness. Such is modern corpuscula-
rianism.  

There are many more references showing that Newton believed that the smal-
lest particles were indivisible, even though he also said it would be hard to prove. 
This seems to be a view he held from the time of his unpublished notebook, to 
his published works Opticks and Principia. He wrote more about this in unpub-
lished draft versions than he did in published versions. Keep in mind that even 
to talk about atomism had been forbidden in most of Europe for hundreds of 
years. Giordano Bruno was burnt at the stake in 1600 mainly for talking openly 
about atomism. As another example of the suppression and persecution taking 
place in that era, in 1624 the Paris Parliament decreed that a person maintaining 
or teaching atomism would be liable for the death penalty. Lancelot Law Whyte, 
who claimed to have worked with Albert Einstein on the unified field theory, 
noted, 

The aggressive rise of physical atomism as an adequate explanation of the un-
iverse … provoked a crusade (1660-1700) against it. 
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In addition, recent research has shown that the Galileo affair may have been 
related to the fact that he openly talked about atomism; see [70]. For example, in 
the late 1680s, the Holy Office ordered local inquisitors to refuse to licence 
books which stated that: “substantial composites are not made by matter and 
form but by atoms or corpscules” [71]. 

In England, the climate for discussing atomism was slightly more relaxed than 
in continental Europe, but even Newton probably had to be careful, especially if 
he was considering the possibility of visiting France, for example. 
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