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Abstract: Thin films of chitosan are often deposited on various surfaces to provide them with
antiseptic properties. In the presented research, chitosan foils were obtained using two methods
and treated with nitrogen plasma. The obtained materials were characterized by measuring the
wettability of the test liquids, and the apparent surface free energy was calculated using the Tadmor
equilibrium contact angles. The surface topography was characterized using optical profilometry and
SEM. On the other hand, the effect of plasma on surface groups was investigated using the FTIR-ATR
technique. Plasma activation of the surface increases the polarity of the surface. This is observed in
the changed surface roughness and the share of functional groups on the surface.
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1. Introduction

Chitosan films deposited on solid substrates are interesting in many aspects [1–3].
Among others, it is expected that chitosan can imparts antiseptic properties for solid
supports. This would have important applications wherever such antiseptic coatings are
needed. In the previous papers investigated the PEEK polymer with the deposited chitosan
layers whose surface had been activated with plasma [1]. In the scientifical studies it was
found that a thin polymer coating layer had not shield the interactions originating from the
substrate [4]. In all the aforementioned papers, we have examined chitosan films deposited
on solid substrates. In all the aforementioned papers, we have examined the chitosan films
deposited on solid substrates. In this paper, we studied chitosan as the plates separated
from a solid substrate polymer. In the literature there are reports on the chitosan films
activated with plasma. However, different methods of plasma activation were applied [5,6],
or low power generator and long activation time were used [7]. Those results are very
interesting, but wettability of the surface was not studied there. Therefore it was interesting
to carry out a study on the wettability of the chitosan foils and the effect of their plasma
treatment using the plasma parameters applied previously [1].

2. Materials and Methods
Method of Chitosan Preparation

Chitosan foils were obtained by the addition of 2 wt% chitosan (Sigma-Aldrich,
medium weight, the degree of initial deacetylation 75–85%) solution in the acetic acid
(3 wt%) onto a glass plate followed by drying at 80 ◦C for 3 h (Figure 1B’), i.e., its homoge-
nization. Plasma simply removes the top layer in this case (sample 1).
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the glass supports, thickness of the obtained foils was about 40 µm as measured by optical 
profilometry. The plasma duration was the same in both cases of the samples preparation. 

Principles of plasma treatment, contact angle measurements and spectroscopy are 
described in our previous papers [1]. 

3. Results 
As shown in Figure 1, the surface activation with plasma causes, depending on the 

method of obtaining the film, an almost twofold increase in roughness, which was con-
firmed by profilometric analysis (sample 1). In the case of the second sample, the surface 
obtained is homogeneous. The action of the plasma on the surface leads to the reduction 
of its roughness (Figure 1B’), i.e. its homogenization. Plasma simply removes the top layer 
in this case (SEM images Supplementary Materials S1). This leads to a decrease in the 
roughness of the sample. In addition to the change in surface roughness, the chemical 
groups on the surface of the polymer films also change. The water contact angle measured 
on the unmodified polymer (sample 1) was 75.1° ± 0.5 while when the surface was plasma 
modified its value was 34.7° ± 0.8. However, when the contact angles were measured on 
a polymer enriched with additional -NH2 groups (sample 2), the advancing contact angle 
of the water was 77.9° ± 1.6, after modification it was 40.5° ± 3.1. The contact angle hyste-
resis on both types of surfaces was about 10°. In order to calculate the apparent surface 
free energy components, the contact angles of the apolar diiodomethane were also meas-
ured. The advancing contact angle was 42.7° ± 2.9 and 33.3° ± 3.6, respectively, for the 
unmodified samples and modified sample, thus in the case of sample 2 the contact angle 
was about 10° lower. After the plasma activation, the receding angle was approximately 
17° for both surface types. The apparent surface free energy was calculated using two 
approaches: the contact angle hysteresis (CAH) [8] and the acid base (LWAB) [9] approach 
using the Tadmor [10] equilibrium contact angles (Supplementary Materials S2). 

 
Figure 1. SEM images of chitosan foils: (A) sample 1; (A’) sample 1 treated with N2 plasma; (B) 
sample 2; (B’) sample 2 treated with N2 plasma. 
Figure 1. SEM images of chitosan foils: (A) sample 1; (A’) sample 1 treated with N2 plasma; (B) sam-
ple 2; (B’) sample 2 treated with N2 plasma.

The other sample was prepared by dipping the film in a 10% aqueous solution of alkali
and followed by drying. This treatment strengthens the structure due to the change in the
protonation of the NH2 group of the polymer and changing the macromolecule conforma-
tions (sample 2). Before the plasma treatment the chitosan foils were separated from the
glass supports, thickness of the obtained foils was about 40 µm as measured by optical
profilometry. The plasma duration was the same in both cases of the samples preparation.

Principles of plasma treatment, contact angle measurements and spectroscopy are
described in our previous papers [1].

3. Results

As shown in Figure 1, the surface activation with plasma causes, depending on
the method of obtaining the film, an almost twofold increase in roughness, which was
confirmed by profilometric analysis (sample 1). In the case of the second sample, the
surface obtained is homogeneous. The action of the plasma on the surface leads to the
reduction of its roughness (Figure 1B’), i.e., its homogenization. Plasma simply removes the
top layer in this case (SEM images Sample 1 in Supplementary Materials). This leads to a
decrease in the roughness of the sample. In addition to the change in surface roughness, the
chemical groups on the surface of the polymer films also change. The water contact angle
measured on the unmodified polymer (sample 1) was 75.1◦ ± 0.5 while when the surface
was plasma modified its value was 34.7◦ ± 0.8. However, when the contact angles were
measured on a polymer enriched with additional -NH2 groups (sample 2), the advancing
contact angle of the water was 77.9◦ ± 1.6, after modification it was 40.5◦ ± 3.1. The contact
angle hysteresis on both types of surfaces was about 10◦. In order to calculate the apparent
surface free energy components, the contact angles of the apolar diiodomethane were also
measured. The advancing contact angle was 42.7◦ ± 2.9 and 33.3◦ ± 3.6, respectively, for
the unmodified samples and modified sample, thus in the case of sample 2 the contact angle
was about 10◦ lower. After the plasma activation, the receding angle was approximately
17◦ for both surface types. The apparent surface free energy was calculated using two
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approaches: the contact angle hysteresis (CAH) [8] and the acid base (LWAB) [9] approach
using the Tadmor [10] equilibrium contact angles (Sample 2 in Supplementary Materials).

On the untreated surfaces the energy calculated from the CAH approach is about
49 mJ/m2, while when the surfaces were treated with nitrogen plasma, it increases to about
70 mJ/m2. The changes in the wettability of the surface of the chitosan foils are mainly
due to a significant increase in the polar electron-donor parameter of the apparent surface
free energy when it was calculated using the LWAB approach. In the case of sample 1, this
parameter increases from 22.4 ± 0.2 mJ/m2 to 50.5 ± 1.5 mJ/m2, an even greater increase
occurs in the case of sample 2, where the parameter increases from 14.5 ± 1.1 mJ/m2 to
44.3 ± mJ/m2. To check how the surface chemistry changed, FTIR-AT spectra was taken.

Analyzing the spectra obtained with the FTIR-ATR technique of the case of sample 1,
an decrease in the intensity of vibrations can be seen at the frequency of 3250 cm−1, which
corresponds to the stretching vibration of the N-H and O-H bonds. This effect is not visible
in the case of sample 2. Plasma surface activation does not affect the vibration intensity
corresponding to the symmetrical stretching of the -CH3 group (2925 cm−1) [11]. At a
wavelength of 1645 cm−1, there is a peak characteristic of the group vibration stretching
(C = O amide I). In the case of an acidic sample, it is lower compared to the alkaline sample.
On the other hand, the activation of the surface with plasma causes opposite effects for this
group; in the case of sample 1 the intensity decreases while in the case of 2, it increases. A
similar effect can be seen in the case of the 1589 cm−1 peak corresponding to the vibrations
of the N-H group. The symmetrical deformation of the CH2 and CH3 groups correspond to
the peaks present at the wavelengths of 1423 cm−1 and 1375 cm−1, respectively. The plasma
effect is more pronounced in the case of the second more alkaline sample. The spectra
also shows the peaks characteristic of C-O stretching at 1066 and 1028 cm−1 wavelengths.
As can be seen from Figure 2, the method of preparing the foil mainly affects the C = O
and N-H groups of the structure of the tested compound and plasma activation influences
differently for the same polymer obtained in different ways.
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Figure 2. FTIR-ATR spectra of chitosan foils.

4. Conclusions

The structure of the orbital foil varies depending on the method of obtaining. The
advancing water contact angles measured on the films are comparable to those measured
on the chitosan layers deposited on polyetheretherketone [1]. Plasma surface activation
has different effects on the resulting surfaces. In the case of the acidic, it increased the
roughness, while in the case of alkaline one, the effect was opposite. The value of the



Colloids Interfaces 2022, 6, 6 4 of 4

contact angles is the result of topography and surface chemistry. The research shows that
in the case of a more homogeneous surface of the first sample, surface chemistry is more
responsible for the wettability of the surface, and topography in the second. If the influence
of topography is eliminated due to the plasma activation, the difference in the values of the
advancing contact angles is caused by a different chemical structure of the surface.
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