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Abstract: Polymers containing magnetic properties play an important role in biomedical therapies,
such as embolotherapy or hyperthermia, for their differentiated properties. In this work, magnetite
(Fe3O4) nanoparticles were synthesized by the coprecipitation method and dispersed into a thermo-
plastic matrix of poly(vinyl pivalate) through an emulsion polymerization process. The main goal
was the individual encapsulation of magnetite nanoparticles to improve the magnetic response of the
magneto-polymeric materials using polymerizable carboxylic acids as coating agents, minimizing the
leaching of nanoparticles throughout the nanocomposite formation. For this purpose, synthesized
magnetite had its surface modified by acrylic acid or methacrylic acid to improve its individual
encapsulation during the polymerization step, thus generating a series of magnetic nanocomposite
materials containing different amounts of magnetite intended for biomedical applications. X-ray
diffractometry and TEM measurements provided a mean size of approximately 8 nm for the pure
magnetite nanoparticles and a spherical morphology. Acid-functionalized Fe3O4 had a size of ap-
proximately 6 nm, while the nanocomposites showed a size of approximately 7 nm. Magnetization
measurement provided a saturation magnetization value of approximately 75 emu/g and confirmed
superparamagnetic behavior at room temperature. DSC analysis showed a glass transition tempera-
ture of 65 ◦C for poly(vinyl pivalate)-based nanocomposites. The tests realized with homopolymer
and magnetic composites against different cell lineages (i.e., fibroblasts, keratinocytes, and human
melanoma) to evaluate the levels of cytotoxicity showed good results in the different exposure
times and concentrations used, since the obtained results showed cell viability greater than 70%
compared to the control group, suggesting that the synthesized materials are very promising for
medical applications.

Keywords: emulsion polymerization; superparamagnetism; toxicity; poly(vinyl pivalate);
hyperthermia; melanoma

1. Introduction

Iron is one of the most abundant elements in the Earth’s crust and is important in
several metabolic processes in the human body. In the form of its different compounds,
especially oxides, it has been researched and used in the biomedical field [1]. Some
iron oxides, such as magnetite and maghemite, show, under certain conditions, peculiar
properties such as superparamagnetism. In addition, these compounds exhibit good
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colloidal stability and biocompatibility [2], which makes several applications involving
nanoparticles possible.

Non-functionalized nanoparticles normally exhibit different properties than those
that have gone through a functionalization stage. However, a reduction in magnetism
on the surface of magnetite nanoparticles may hinder many possible uses in different
applications. To get around this difficulty, functionalization with several compounds is
used including polymers and carboxylic acids [3]. This procedure of dispersing magnetic
nanoparticles (MNPs) in polymeric matrices generates a series of interesting features for
biomedical applications, among which include [4,5] (i) an increased compatibility with
organic matrices, (ii) a reduced tendency to leach, (iii) protection of the particle surface
against oxidation processes, among others.

Due to the fact of their physicochemical properties, biocompatibility, reduced toxicity,
and the possibility of controlling morphology, several materials, such as polyethylene
glycol (PEG), chitosan, dextran, and poly(vinyl alcohol) (PVA), can be used in conjunction
with inorganic materials, such as iron oxides, for the development of materials with appli-
cations in several areas. Magnetic polymeric lattices have been found to have great use in
biomedical applications such as magnetic separation of compounds [6], diagnosis agents [7],
agriculture and food [8], drug delivery systems [9], catalysis [10], hyperthermia, and em-
bolotherapy [11]. Several methods have been developed to synthesize magnetic polymeric
lattices such as emulsion, suspension, dispersion, microemulsion, and miniemulsion.

Many studies in the biomedical area focus on toxicity and the collateral effects after
administration on living organisms and cells. The main concerns are related to cytotoxicity
and nephrotoxicity due to the nanoparticles’ sizes once they can cause many disease
states, such as ischemia and reperfusion injury, occurring mainly because of reactive
oxygen species (ROS). In the case of magnetite nanoparticles, because of their catalytic
properties, the generation of free radicals by Fenton processes is possible [12]. When this
type of process occurs in living organisms, with humans being the most studied, it can
lead to cardiovascular and degenerative diseases as well as cancer and aging. However,
several studies focusing on nanoparticle functionalization and encapsulation are currently
underway, aimed at understanding how these promising materials can successfully be used
in therapies associated with the treatment of some types of cancer [12,13].

To overcome some of the limitations on magnetic nanoparticle applications, including
compatibility with organic matrices, tendency to leach, and particle surface protection
against oxidation [5], polymers are normally used. The emulsion polymerization process
can be effectively used for individual encapsulation of magnetic nanoparticles with a
tailored yield and high encapsulation efficiency, which can guarantee greater efficiency of
the magnetic attraction of magneto-polymeric nanocomposites.

Several authors have investigated the cytotoxicity of nanoparticles in cells of different
types. Among these authors we can cite the recent work of Resende et al. [14], who
studied polymeric core–shell nanoparticles obtained through miniemulsion polymerization
combined with seeded polymerization intended for embolotherapy. As exemplified by
the authors, a new class of poly(methyl methacrylate)–Fe3O4/poly(vinyl pivalate) core–
shell superparamagnetic nanoparticles exhibited high cell viabilities for murine melanoma
(B16F10 cells lineage) and keratinocyte (HaCaT lineages). Although the work developed
by Resende and collaborators provides significant contributions, it is important to bear in
mind that the miniemulsion process might not be suitable for the individual encapsulation
of magnetic nanoparticles due to the characteristic size of monomeric nanodroplets, which
in the range of 50–200 nm, making the final magneto-polymeric material present a large
number of nanoparticles encapsulated in the form of nanoclusters, which may affect the
magnetic response of the material.

Rehana et al. [15] showed that magnetic nanoparticles functionalized with differ-
ent organic acids, such as ascorbic, hexanoic, salicylic acid, and amino acids, including
L-arginine and L-cysteine, reduce the toxicity of anticancer drugs towards adenocarcinoma
cells (A549). Working with other types of oxides, Sahu et al. [16] demonstrated that ZnO
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and SiO2 nanoparticles possess different cytotoxicity between particle sizes and cell types
such as human monocytes (THP-1 cells) and human lung cells (L-132).

Research with gold and silver metallic nanoparticles are also abundant. For exam-
ple, Ma et al. [17] prepared gold nanoparticles to study how the degradation of corona
protein affects cytotoxicity on cells; among the findings of the work, the different rates
of enzymatic degradation of the corona stand out, which can lead to differences in the
induction of toxicity and production of reactive oxygen species (ROS). Vazquez-Muñoz
et al. [18] tested silver nanoparticles on different taxonomical groups to study their effects
on different living systems including cancer cell lines. According to the authors, organisms
of different complexities are inhibited in vitro at microgram-scale concentrations of Ag in
different forms.

In this work, a new colloidal magnetic poly(vinyl pivalate) dispersion was synthesized
via the emulsion polymerization method. Based on the proposed approach, Fe3O4 magnetic
nanoparticles were individually coated by poly(vinyl pivalate) in a controlled way. In order
to accomplish a proper magnetic nanoparticle coating, the experimental protocol followed
two main singles steps: (i) surface modification of Fe3O4 nanoparticles with acrylic acid
or methacrylic acid to enhance the encapsulation efficiency, as these surface modification
agents guarantee chemical linking due to the copolymerization of acrylic acid or methacrylic
acid on the Fe3O4 nanoparticles’ surface with vinyl pivalate to form the particles shell;
(ii) an emulsion polymerization process using acrylic acid- or methacrylic acid-functionalized
Fe3O4 nanoparticles as a polymerization locus to encapsulate them individually with a
controlled thickness of a poly(vinyl pivalate) layer. It is worth bearing in mind that the
surface modification of magnetic nanoparticles with polymerizable modification agents
avoid the undesirable leaching problems of Fe3O4 nanoparticles, ultimately ensuring the
formation of a magnetic nanodispersion containing individually encapsulated nanoparticles
with a high magnetic response.

To provide insight into applications in the biomedical field, the magneto-polymeric
materials synthesized in the present work were evaluated in cytotoxicity assays in vitro for
fibroblasts, keratinocytes, and human melanoma cells. These materials were also charac-
terized through analytical techniques such as infrared (FTIR), thermogravimetric analyses
(TGAs), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), magnetiza-
tion measurements (VSMs), transmission electron microscopy (TEM), and temogravimetry.
To improve stability and dispersion into the polymer matrices, a surface modification was
necessary; this is an essential step for the synthesis of magneto-polymeric materials through
emulsion polymerization to guarantee a better compatibilization between vinyl pivalate
and magnetic nanoparticles. In this work, this was made using acrylic acid and methacrylic
acid to modify the surface of magnetite nanoparticles after the coprecipitation process.

2. Materials and Methods
2.1. Materials

Distilled water was a reactional media. Gas nitrogen (White Martins Ltda., Rio de
Janeiro, Brazil) was used in all reactions to maintain an inert atmosphere. Sodium hydroxide
(NaOH, 99%), ferric chloride hexahydrate (FeCl3·6H2O, 97%), ferrous sulfate heptahydrate
(FeSO4·7H2O, 99%), hydrochloric acid (HCl, 37%), acetone (99.5%), aluminum sulfate
(Al2(SO4)3, 98%), acrylic (VETEC Química Fina Ltda., Rio de Janeiro, Brazil, 99%), and
methacrylic acid (VETEC Química Fina Ltda., Rio de Janeiro, Brazil, 99%). Vinyl pivalate
(stabilized with MEHQ 6–15 ppm, Aldrich, St. Louis, MO, USA, 99%), hydroquinone
(Merck, São Paulo, Brazil, 99%). All reagents were used as received.

2.2. Preparation of Magnetite Nanoparticles (MNPs)

Magnetite nanoparticles (Fe3O4) were produced by the coprecipitation method.
FeSO4·7H2O and FeCl3·6H2O (1:2 molar ratio) were dissolved in 130 mL hydrochloric
solution (0.45 Mol·L−1) under an N2 atmosphere and mechanical stirring for 30 min in a
similar way as described by Neto et al. [19]. The solution was heated to 60 ◦C and added
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quickly to a 60 ◦C NaOH solution (1.48 mol·L−1) previously heated. The NaOH used in this
system, at pH 11, had the role of a precipitating agent. The mixture was allowed to react for
30 min at 60 ◦C. The produced nanoparticles were washed several times with distilled water
until reaching pH 7 and were separated using a magnet. The freshly obtained nanoparticles
were dispersed on hexane and stored in a fridge.

2.3. Functionalization of Magnetite Nanoparticles

Initially, 5 g of dried magnetite nanoparticles were dispersed on 170 mL of water with
magnetic stirring. The mixture was heated to 85 ◦C under a nitrogen atmosphere and
5.6 mL of acrylic acid or methacrylic acid were added by dripping at a rate of 0.5 mL/min
in order to functionalize the nanoparticle surface. After this, the system was left to react for
30 min and cooled to room temperature.

The resultant material formed a stable colloidal dispersion after decanting the nanopar-
ticulated system in the reaction flask by magnetic separation with a magnetic bar of
neodymium, and nanoparticles were washed with distilled water until the solution reaches
pH = 7. After this procedure, functionalized nanoparticles (20–25 wt% related to vinyl
pivalate) were washed with acetone to remove residual acrylic or methacrylic acid and
then dispersed into vinyl pivalate and stored under a nitrogen atmosphere in the fridge.

2.4. Synthesis of Fe3O4/Poly(vinyl pivalate) Composite Nanoparticles

Emulsion polymerizations were performed in a glass reactor coupled with a water
thermal bath and condenser. First, 12 g·L−1 sodium dodecyl sulfate (SDS) and 2.5 g·L−1

potassium persulfate (KPS) solutions were prepared, and then modified surface magnetite
nanoparticles (samples of Fe3O4/AA and Fe3O4/MA) were sonicated for 2 min and dis-
persed in SDS solution. After, the mixture was placed on the reactor and the KPS solution
was added.

The system was heated with mechanical stirring (500 rpm) and a nitrogen atmo-
sphere. When the temperature system reached 80 ◦C, acrylic acid was added at a rate
of 0.1 mL·min−1 under bubbling of nitrogen gas, which was maintained throughout the
reaction, to prevent early oxidation of magnetite nanoparticles caused by factors such as
pH, temperature, and radical initiator.

After acrylic acid addition, the system was left on magnetic stirring for 30 min prior
to the addition of vinyl pivalate monomer at a 0.25 mL/min rate using a solenoid pump
(Prominent® Gala series gamma/L PVT 1000, São Paulo, Brazil). When the addition ended,
the system was left to react for another 30 min to guarantee the total consumption of
the initiator.

After interrupting the reaction, freshly hydroquinone was added to inhibit further
polymerizations, and 10 mL polymer samples (i.e., AA20NP20 and AM25NP20) of the
obtained latex were dried for further analyses. These samples were put in an oven at 60 ◦C
for 72 h for removal of volatile species in an amorphous polymer phase. All quantities used
in this procedure are listed in Table 1.

Table 1. Recipe for the in situ synthesis of magnetic poly(vinyl pivalate) nanocomposites.

Species Weight (g) Concentration (g·L−1) Volume (mL)

Vinyl pivalate 20 - 23
Aqueous phase - - 45

SDS 0.3 12 25
KPS 0.05 2.5 20

Nanoparticles 1–4 - -
Acrylic acid or

methacrylic acid - - 2
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2.5. Materials Characterization

Fourier transform infrared spectroscopy (FTIR) was performed with a Varian FT/IR-4100
using KBr pellets to verify the functionalization of nanoparticles and polymeric materials.

Thermogravimetric analysis was performed on a Shimadzu TA-60WS to evaluate
the thermal stability of nanocomposites, operating at a 10 ◦C·min−1 heating rate and a
50 mL·min−1 N2 flow. The amount of material on a platinum crucible was approximately
10 mg. Differential scanning calorimetry (DSC) was performed on Shimadzu equipment
(DSC-60) operating at a 10 ◦C·min−1 heating rate under a 30 mL·min−1 N2 flow and temper-
ature range. The amount of material on the closed aluminum crucible was approximately
5 mg.

To determine the dimensions and average size of the crystallite, X-ray diffraction
measurements were carried out using a Bruker D8 FOCUS diffractometer (Bruker AXS,
Inc., Fitchburg, WI, USA) with CuKα1 (λ = 1.54059 Å) as a radiation source and an Ni filter
with a CBO monochromator operating at a 35 kV voltage and 15 mA. The sweep range for
the Bragg’s angles (2θ) was 10 ≤ 2θ ≤ 80 with a 0.05◦ step and a 1◦·min−1 angular velocity.

Particle morphology and size distribution of magnetite and composite particles were
evaluated by a Jeol model JEM-2100 Transmission electronic microscope (Jeol Ltd., Tokyo,
Japan) operated at 200 keV electron beam). The particle size distribution was computed
based on the nanoparticle count using the ImageJ program (v.1.53h, https://imagej.nih.
gov/ij/ (accessed on 10 November 2021)), and the size distribution graphs were built using
Origin software (OriginPro 2021 9.8.0.200, OriginLab Corp., Northampton, MA, USA).

Magnetic measurements were obtained using a commercial superconducting quantum
interference device (SQUID) magnetometer (Quantum Design, model MPMS3). Hysteresis
cycles were carried out at 5 and 300 K, applying a magnetic field up to 70 kOe (7 T). Zero-
field-cooled (ZFC) and field-cooled (FC) measurements in a low field (30 Oe) were obtained
in the temperature range from 5 to 300 K.

2.6. Cytotoxicity Assays

Since it is important to know how nanoparticles behave in living organisms, in terms of
viability and toxicity against cells, knowing the acceptable levels of materials at the cellular
level helps in determining the quantities that can be administered during applications of
these materials in living organisms.

In vitro assays were realized using fibroblast and human keratinocyte cell lineages
and non-melanoma skin cancer (FIBRO, HaCat, and A431, respectively). All cell lineages
cited above were cultivated on DMEM (Dulbecco’s modified Eagle’s medium). Both were
tamponed with sodium bicarbonate and supplemented with 10% fetal bovine serum (FBS)
and 1% antibiotic (100 UI/mL penicillin and 100 µg/mL streptomycin) at pH 7.2.

Cells were kept on cell culture flasks in an incubator at 37 ◦C, 95% humidified air, and
5% CO2. All experiments were realized on a log phase of growth cells. For quantification
of viable cells, 40 µL of trypan blue dye was added on 10 µL of cell suspension. This
dye penetrates a cell with an intact plasmatic cell membrane and helps to differentiate
viable cells.

After quantification, cells were transferred to culture microplates according to the
experiment to be accomplished. Viability cell assays were aimed at analyzing cell death (i.e.,
FIBRO, HaCat, and A431) for 3 different samples at 24, 48, and 72 h at various concentrations
(i.e., 0.01, 0.05, 0.1, 0.25, and 0.5 mg/mL). Based on the obtained results, the experiments
were directed to other in vivo biological assays.

To evaluate cell lineages, the samples were seeded on 96-well plates at concentrations
of 5 × 103, 3 × 103, and 5 × 103 cells per well on a DMEM medium. After 24 h, the
initial medium was replaced with a 200 µL culture medium containing different samples at
different concentrations (i.e., 0.01, 0.05, 0.1, 0.25, 0.5, and 1.0 mg/mL).

Evaluation of cell viability was made using the colorimetric method with 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) as a reduction agent.

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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Quantification was conducted by spectrophotometry at a 595 nm wavelength. The results
were obtained based on the average of 3 independent experiments conducted in triplicate.

The MTT assay was the chosen method to evaluate particle cytotoxicity once the
compound was reduced to formazan, generated by mitochondrial dehydrogenases that
are indicative of cell viability. Thus, these experiments evaluated the cell viability of the
lineages used in this study.

3. Results and Discussion

To determine the crystalline structure and crystallite size (DXRD) of synthesized Fe3O4,
X-ray diffraction (XRD) data analysis was performed. Characteristic peaks of nanoparticles
at 2θ were observed at approximately 30◦, 35.5◦, 43◦, 54◦, 57◦, and 63◦ (Figure 1). These
peaks were related to the Miller indexes of (220), (311), (400), (422), (511), and (440), which
confirmed the formation of a spinel structure of Fe3O4 [20,21]. In order to estimate the
crystallite size, the Debye–Scherrer relation (Equation (1)) was used:

DXRD =
k · λ

β · cos(θ)
(1)

where k is a constant assumed to be equal to 0.9 (n.b., k values are normally in the range
from 0.87 to 1.00); λ is the X-ray wavelength (equal to 0.154059 nm, CuKα1 radiation);
θ stands for the Bragg diffraction angle, and β corresponds to the full width at the half
maximum (FWHM) of the Bragg reflections. Using the linewidth of the most intense
peak (e.g., associated to the (311) Miller index), an average crystallite size of 8.2 ± 0.2 nm
was determined.
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Figure 1. X-ray diffractograms of pure Fe3O4 nanoparticles (Fe3O4), acrylic acid, and methacrylic
acid surface-modified Fe3O4 nanoparticles and magnetic poly(vinyl pivalate) nanocomposites (i.e.,
AA20NP20 and AM25NP20).
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There was the large possibility of formation of the maghemite phase next to the
magnetite phase, since both phases exhibited similar XRD patterns. The Bragg reflection
(440) can provide some clues. According to the literature [22], the position of that reflection
peak at 62.8◦ (Figure 1 and Table 1) suggests the presence of the maghemite phase or
nonstoichiometric magnetite likely at the particle surface.

Once diffraction values are quite similar between functionalized and non-functionalized
nanoparticles, the presence of acrylic acid or methacrylic acid did not affect the properties
in terms of structure and crystallinity [23]. In this case, the likely presence of the maghemite
(γ-Fe2O3) phase was also determined, since the diffractograms show the (440) peak at
62.8◦. Table 2 shows the characteristic peaks, Miller indexes and crystallite size of pure and
functionalized magnetite along with magneto-polymers.

Table 2. Characteristic peaks along with Miller indexes, crystallite size, lattice parameter, and
stoichiometry of pure and modified Fe3O4 magnetic nanoparticles and magnetic poly(vinyl pivalate)
nanocomposites.

Sample Peaks
(2θ)

Miller Indexes
DXRD (nm) a (Å)

Stoichiometry
(Fe3−δO4)(220) (311) (400) (422) (511) (440)

Fe3O4 30.2 35.5 43.3 54.2 57.2 62.8 8.44 8.358 Fe2.79O4

Fe3O4/AA 30.2 35.6 43.4 54.0 57.2 63.1 8.00 8.368 Fe2.86O4

Fe3O4/MA 30.2 35.6 43.3 54.0 57.2 63.1 8.29 8.347 Fe2.71O4

AA20NP20 30.4 35.5 43.3 53.7 57.3 63.1 8.07 8.357 Fe2.79O4

AM25NP20 30.3 35.6 43.3 54.0 57.2 62.9 8.04 8.346 Fe2.71O4

Although magnetite and maghemite exhibited very similar diffraction patterns, crys-
talline structure and, therefore, cubic spinel type, the lattice parameter (a) provides funda-
mental insight into the stoichiometry of the magnetite nanoparticles present in the magnetic
materials, as magnetite (a = 8.396 Å) can be oxidized to maghemite (a = 8.346 Å) [24–26],
following a process that may take place throughout material synthesis steps as a result of
the oxidation of unstable Fe2+ cations in the inverse-spinel magnetite octahedral site into
Fe3+, leading to slight changes in the magnetite stoichiometry [25,26]. The lattice parame-
ter (a) of magnetite into the magnetic materials were calculated based on the interplanar
distance (dhkl) associated with the reflection (311) according to Equation (2) [19].

a = dhkl

√
h2 + k2 + l2 (2)

Partially oxidized magnetite (or non-stoichiometric magnetite) is generally expressed
as Fe3-δO4 with 0.00 ≤ δ ≤ 0.33, which can be used to infer deviations from stoichiomet-
ric magnetite (δ = 0.00, Fe3O4) to completely oxidized magnetite (δ = 0.33, γ-Fe2O3 @
Fe2.67O4) [25,26]. Equation (3) provides a linear relationship between the lattice parameter
and the Fe2+/Fe3+ molar ratio (x), whereas Equation (4) correlates the parameter δ with the
Fe2+/Fe3+ molar ratio (0.0 ≤ x ≤ 0.5) [19,27].

a = 8.34134 + 0.10512x (3)

x =
Fe2+

Fe3+ =
1 − 3δ
2 + 2δ

(4)

In order to directly evaluate the stoichiometric parameter (δ) allowing for the establish-
ment of the stoichiometry of the nanoparticles (Fe3-δO4) present in the magnetic materials,
Equations (3) and (4) were combined, resulting in Equation (5).

δ = −8.39390 − a
8.18366 − a

(5)
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According to results from Equation (5), the stoichiometric parameter (δ) was in the
interval from 0.14 to 0.29, showing that the precursor magnetite nanoparticles were partially
oxidized to maghemite, resulting in the stoichiometry varying from Fe2.71O4 to Fe2.86O4
(Table 2) between the magnetite and maghemite phases.

Since biomedical applications are dependent on particle size, the relationship of the
critical size and particle size obtained from measurements, such as TEM and XRD, should
be noted. In the case of magnetite, the critical size was approximately 20 nm [28].

Fe3O4/poly(vinyl pivalate) nanocomposites were produced by emulsion polymer-
ization to incorporate magnetic nanoparticles in a poly(vinyl pivalate) matrix. The use
of acrylic acid or methacrylic acid as a free-radical polymerizable coating to modify the
surface of the magnetic nanoparticles combined with emulsion polymerization protocol
plays a fundamental role in the proper and individual encapsulation of surface-modified
magnetite, leading to the formation of a superparamagnetic material exhibiting an elevated
magnetic response with great potential for employment in biomedical applications such as
the treatment of tumors by hyperthermia.

The average size (DTEM) found for the synthesized pure magnetite particles was
7.0 ± 1.6 nm, (N = 338 particles, sample Fe3O4), 6.4 ± 1.7 nm for acrylic acid-modified
magnetite (N = 603 particles, sample Fe3O4/AA), and 5.8 ± 1.6 nm for methacrylic acid-
modified magnetite (N = 718 particles, sample Fe3O4/MA), whereas for the nanocom-
posites, it was 7.4 ± 2.2 nm (N = 316 particles) for sample AA20NP20 and 7.1 ± 1.8 nm
(N = 273 particles) for sample AM25NP20 as shown in Figure 2.
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Figure 2. Histograms of the particle size distribution of Fe3O4 magnetic nanoparticles and mi-
crographs of TEM analysis: (A) non-modified Fe3O4; (B) surface-modified Fe3O4 with acrylic acid;
(C) surface-modified Fe3O4 with methacrylic acid; (D) magnetic poly(vinyl pivalate) containing Fe3O4

modified with acrylic acid (AA20NP20); (E) magnetic poly(vinyl pivalate) containing Fe3O4 modified
with methacrylic acid (AM25NP20). The continuous blue line refers to lognormal distribution.

The smaller values of DTEM determined for Fe3O4 modified with carboxylic acids
may be attributed to a possible dissolution of the Fe3O4 magnetic nanoparticles in an
acidic medium. It is important to bear in mind that the dissociation of magnetite can take
place at pH values of approximately three. For this reason, it is plausible to assume that
both acrylic acid (pKa = 4.25) and methacrylic acid (pKa = 4.66) used in the process may
be responsible for this size difference [29–31]. Despite this, the experimental procedure
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adopted for functionalization does not significantly modify the size and morphology of the
starting material.

The slight differences observed in the value obtained from TEM (average size, DTEM)
and XRD (crystallite size, DXRD) measurements were consistent with the characteristic
of each analytical technique. The XRD data showed a statistical representation of crystal
characteristics at the nanoscale with the DXRD estimated based on the information from
the (311) Miller index, whereas the TEM showed an analysis of the size distribution
of particles for a specific population [32]. It is worth noticing that for both magnetic
nanocomposites (samples AA20NP20 and AM25NP20), DTEM increased in comparison to
the modified magnetite nanoparticles (samples Fe3O4/AA and Fe3O4/MA), which clearly
indicates the presence of the thermoplastic matrix of poly(vinyl pivalate) on the surface of
the nanoparticles.

Figure 3 shows the FTIR spectrum of pure magnetite and functionalized nanoparticles.
Modified nanoparticles were characterized by the appearance of new peaks and bands.
For the bands at 3400–3430 cm−1 (O–H stretching), 2913 cm−1, and 2840 cm−1 (CH2),
the peaks were characteristic of modification of nanoparticles with acrylic acid [33–35];
1628 cm−1 (COO− stretching) indicates surface modification with methacrylic acid. The
peak at 576 cm−1 characterized Fe–O stretching on the octahedral site [21]. Peaks on
1453 cm−1, 1214 cm−1, 1070 cm−1 (C–O stretching), and 974 cm−1 (C=CH bending) were
characteristic of poly(vinyl pivalate) and indicate the occurrence of polymerization.
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Figure 3. FTIR measurements of pure Fe3O4 nanoparticles, acrylic acid-modified Fe3O4, methacrylic
acid-functionalized Fe3O4 nanoparticles, and magnetic polymer nanocomposites (AM25NP20
and AA20NP20).
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Thermal stability of magneto-polymers synthesized and the effect of Fe3O4 incorpo-
rated were investigated by TGA. Two samples were chosen: AA20NP20, where 20% of
magnetite nanoparticles, regarding the monomeric phase, were protected with 20% of
acrylic acid. The second sample, AM25NP20, went through the same process with 25%
of methacrylic acid instead of acrylic acid. The weight losses of 75% for AA20NP20 and
80% for AM25NP20 illustrate the amount of organic material attached to the nanoparticle
surface as shown in Figure 4A,B.
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Figure 4. Thermogravimetry analysis: (A) pure (Fe3O4)-, acrylic acid (Fe3O4/AA)-, and methacrylic
acid (Fe3O4/AM)-functionalized Fe3O4; (B) magneto-polymers (i.e., AM25NP20 and AA20NP20)
and poly(vinyl pivalate) (PViP).

To investigate the effect of magnetite on the thermal degradation of synthesized
magneto-polymeric materials, the thermograms of magneto-polymers, shown in Figure 4,
were compared with a blank sample. Evaluations of weight losses relative to temperature
increases were made on 25% (Td25), 50% (Td50), and residue at 800 ◦C as shown in Table 3.
An increase in the degradation temperature related to the increase in magnetite content
on the nanocomposites was observed. This effect suggests that interactions between
nanoparticles and polymeric chains may interfere with the thermal degradation of magnetic
nanocomposites by elevating their decomposition temperatures, as inorganic compounds,
such as iron oxides, generally do not conduct energy quite well due to the presence of
moisture and other surface alterations of the compounds at the micro and nanoscales [36].

Table 3. Stability of the magnetic nanocomposites: residual material after calcination and decomposi-
tion temperatures.

Sample MNPs (wt%) Td25 (◦C) Td50 (◦C) Residue at 800 ◦C (wt%)

PViP 0 317 336 2.2
Fe3O4 100 - - 90.0

Fe3O4/AA a 100 - - 89.3
Fe3O4/MA a 100 - - 87.0
AA20NP20 20 277 421 27.0
AM25NP20 25 258 398 20.0

a Related to the total amount of magnetite (5 g) dispersed in water (170 mL) together with 5.6 mL of carboxylic acid.

Once methacrylic acid has a branched chain and a higher molecular weight compared
to acrylic acid, it is possible to attribute the highest degradation temperature value to
AA20NP20 due to the characteristics of the acids used, since methacrylic acid has a larger
volume, which causes a steric hindrance on the surface of the magnetic nanoparticle, thus
causing a smaller number of methacrylic groups attached to the surface of the material [37].
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Additionally, the DSC technique was used to evaluate the glass transition temperature
(Tg) of the magneto-polymeric materials, showing a Tg of 63 ◦C for AM25NP20, 62 ◦C for
AA20NP20, and 65 ◦C for poly(vinyl pivalate) (PViP), which indicates that the incorporation
of magnetic nanoparticles did not affect the final magneto-polymeric material in comparison
to bare poly(vinyl pivalate).

The magnetic properties of the nanocomposites were evaluated through magnetization
measurements. In Figure 5, the hysteresis curves of the magnetic materials are shown.
The obtained saturation magnetization values at 5 K for the pure and modified magnetic
nanoparticles (samples Fe3O4/AA and Fe3O4/MA) were in the range from 75 to 81 emu/g,
being larger for the Fe3O4/MA. The observed magnetization values for synthesized pure
nanoparticles were smaller than the value for bulk magnetite. It can probably be attributed
to (i) oxidation of magnetite to maghemite during the synthesis stage, mainly at the particle
surface; (ii) size effects that cause a reduction in the saturation magnetization. According to
the former explanation, the polymer presence seemed to preserve the oxidation process,
and it was better for the Fe3O4/MA sample [21].

Colloids Interfaces 2022, 6, x FOR PEER REVIEW 13 of 24 
 

 

indicates that the incorporation of magnetic nanoparticles did not affect the final magneto-
polymeric material in comparison to bare poly(vinyl pivalate). 

The magnetic properties of the nanocomposites were evaluated through magnetiza-
tion measurements. In Figure 5, the hysteresis curves of the magnetic materials are shown. 
The obtained saturation magnetization values at 5 K for the pure and modified magnetic 
nanoparticles (samples Fe3O4/AA and Fe3O4/MA) were in the range from 75 to 81 emu/g, 
being larger for the Fe3O4/MA. The observed magnetization values for synthesized pure 
nanoparticles were smaller than the value for bulk magnetite. It can probably be attributed 
to (i) oxidation of magnetite to maghemite during the synthesis stage, mainly at the par-
ticle surface; (ii) size effects that cause a reduction in the saturation magnetization. Ac-
cording to the former explanation, the polymer presence seemed to preserve the oxidation 
process, and it was better for the Fe3O4/MA sample [21]. 

 

  

-80 -60 -40 -20 0 20 40 60 80
-100

-50

0

50

100

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-50

-25

0

25

50

M
ag

ne
tiz

at
io

n 
(e

m
u/

g)

Magnetic Field (kOe)

(A) Fe3O4

300 K

5 K

-80 -60 -40 -20 0 20 40 60 80
-100

-50

0

50

100

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-50

-25

0

25

50

M
ag

ne
tiz

at
io

n 
(e

m
u/

g)

Magnetic Field (kOe)

Fe3O4/AA

300 K

5 K

(B)

-80 -60 -40 -20 0 20 40 60 80
-100

-50

0

50

100

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-50

-25

0

25

50

M
ag

ne
tiz

at
io

n 
(e

m
u/

g)

Magnetic Field (kOe)

(C)

300 K

5 K

Fe3O4/MA

Figure 5. Cont.



Colloids Interfaces 2022, 6, 7 13 of 23Colloids Interfaces 2022, 6, x FOR PEER REVIEW 14 of 24 
 

 

  

Figure 5. Magnetization curve of (A) non-modified Fe3O4; (B) surface-modified Fe3O4 with acrylic 
acid; (C) surface-modified Fe3O4 with methacrylic acid ;(D) magnetic poly(vinyl pivalate) containing 
Fe3O4 modified with acrylic acid (AA20NP20); (E) magnetic poly(vinyl pivalate) containing Fe3O4 
modified with methacrylic acid (AM25NP20). The dashed line refers to the temperature of 5 K and 
the continuous line to 300 K. 

The coercivity near to zero obtained from the M vs. H curves at 5 and 300 K suggests 
that the particles were in a superparamagnetic state [38,39]. At 5 K, a slight increase in the 
Hc values was observed, because the blocking temperature of magnetite nanoparticles can 
be above 5 K [26]. Similar results were obtained for the acrylic- and methacrylic acid-func-
tionalized nanoparticles as can be seen in Figure 5 and Table 4. As mentioned above, an 
increase in the Ms value for the magnetite particles functionalized with acrylic or meth-
acrylic acid in relation to the pure magnetite particles was observed (Table 2). This effect 
was linked to the reduction in particle size and the formation of a surface layer with zero 
magnetization (dead layer) in the pure magnetite particles. The presence of an organic 
covering, through the functionalization of the particles, helps to reorganize the surface 
interactions in the crystal, which generates an increase in the saturation magnetization 
[40]. 

Table 4. Magnetic properties of the pure and modified Fe3O4 and magnetic polymers. 

Sample 
Ms (emu/g) Hc (kOe) Mr (emu/g) 

TB (K) 
5 K 300 K 5 K 300 K 5 K 300 K 

Fe3O4 75.51 67.85 0.4266 0.0042 22.41 3.50 192 
Fe3O4/AA 78.43 68.30 0.2882 0.0053 17.86 3.33 206 
Fe3O4/MA 80.81 71.70 0.2829 0.0047 19.09 3.66 229 

AA20NP20 50.68 36.92 0.2214 0.0054 10.22 2.23 144 
AM25NP20 30.68 20.59 0.1515 0.0048 4.35 1.29 146 

Regarding the nanocomposites, a decay in the value of magnetization was observed 
when methacrylic acid (sample AM25NP20) was used in place of acrylic acid (sample 
AA20NP20) for the surface protection of nanoparticles before polymerization. This obser-
vation can be explained by superficial changes in the crystal generated during the func-
tionalization process by the organic cover [41]. 

Since the carboxylic acids used in the functionalization bind via oxygen from the car-
boxyl group to the surface of the nanoparticles, this generates a chemical environment 
similar to that of the macroscopic crystalline magnetite [3,42], since the modification 

-80 -60 -40 -20 0 20 40 60 80
-60

-30

0

30

60

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-30

-20

-10

0

10

20

30

M
ag

ne
tiz

at
io

n 
(e

m
u/

g)

Magnetic Field (kOe)

(D)

300 K

5 K

AA20NP20

-80 -60 -40 -20 0 20 40 60 80
-40

-20

0

20

40

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-20

-10

0

10

20

M
ag

ne
tiz

at
io

n 
(e

m
u/

g)
Magnetic Field (kOe)

AM25NP20(E)

300 K

5 K

Figure 5. Magnetization curve of (A) non-modified Fe3O4; (B) surface-modified Fe3O4 with acrylic
acid; (C) surface-modified Fe3O4 with methacrylic acid; (D) magnetic poly(vinyl pivalate) containing
Fe3O4 modified with acrylic acid (AA20NP20); (E) magnetic poly(vinyl pivalate) containing Fe3O4

modified with methacrylic acid (AM25NP20). The dashed line refers to the temperature of 5 K and
the continuous line to 300 K.

The coercivity near to zero obtained from the M vs. H curves at 5 and 300 K suggests
that the particles were in a superparamagnetic state [38,39]. At 5 K, a slight increase in
the Hc values was observed, because the blocking temperature of magnetite nanoparticles
can be above 5 K [26]. Similar results were obtained for the acrylic- and methacrylic
acid-functionalized nanoparticles as can be seen in Figure 5 and Table 4. As mentioned
above, an increase in the Ms value for the magnetite particles functionalized with acrylic or
methacrylic acid in relation to the pure magnetite particles was observed (Table 2). This
effect was linked to the reduction in particle size and the formation of a surface layer with
zero magnetization (dead layer) in the pure magnetite particles. The presence of an organic
covering, through the functionalization of the particles, helps to reorganize the surface
interactions in the crystal, which generates an increase in the saturation magnetization [40].

Table 4. Magnetic properties of the pure and modified Fe3O4 and magnetic polymers.

Sample
Ms (emu/g) Hc (kOe) Mr (emu/g)

TB (K)
5 K 300 K 5 K 300 K 5 K 300 K

Fe3O4 75.51 67.85 0.4266 0.0042 22.41 3.50 192

Fe3O4/AA 78.43 68.30 0.2882 0.0053 17.86 3.33 206

Fe3O4/MA 80.81 71.70 0.2829 0.0047 19.09 3.66 229

AA20NP20 50.68 36.92 0.2214 0.0054 10.22 2.23 144

AM25NP20 30.68 20.59 0.1515 0.0048 4.35 1.29 146

Regarding the nanocomposites, a decay in the value of magnetization was observed
when methacrylic acid (sample AM25NP20) was used in place of acrylic acid (sample
AA20NP20) for the surface protection of nanoparticles before polymerization. This ob-
servation can be explained by superficial changes in the crystal generated during the
functionalization process by the organic cover [41].

Since the carboxylic acids used in the functionalization bind via oxygen from the
carboxyl group to the surface of the nanoparticles, this generates a chemical environment
similar to that of the macroscopic crystalline magnetite [3,42], since the modification caused
by these bonds modifies the surface structure of the spins. The consequences of this are
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due to the role of the ligand groups in the ability to donate electrons, strengthening the
bond and density of the functionalization layer. This also allows for the adjustment of
Ms and control of the interactions between particles and morphological and structural
properties [40,42].

Other important features were obtained from the FC/ZFC curves that can be used to
study the thermal relaxation of magnetic nanoparticles. As observed, the field-cooling FC
and zero-field-cooling ZFC curves showed irreversible features, depending on the studied
sample. The ZFC curves showed an increasing trend as the temperature increased, until
reaching a maximum point, which was assigned to the blocking temperature (TB). After
this point, the ZFC curve showed a decreasing trend as shown in Figure 6.
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Figure 6. FC/ZFC of (A) non-modified Fe3O4; (B) surface-modified Fe3O4 with acrylic acid;
(C) surface-modified Fe3O4 with methacrylic acid; (D) magnetic poly(vinyl pivalate) containing
Fe3O4 modified with acrylic acid (AA20NP20); (E) magnetic poly(vinyl pivalate) containing Fe3O4

modified with methacrylic acid (AM25NP20).

It is well known that the blocking temperature (TB) separates the blocking states, at
low temperatures, from the relaxed states, at high temperatures. This means that at low
temperatures, the thermal energy becomes smaller with respect to the magnetic energy
and the magnetic moments of the particles are blocked. At high temperatures, above TB,
the thermal energy is higher than the magnetic energy and the system shows a superpara-
magnetic behavior. As observed in Figure 6, the ZFC curve for pure magnetite shows
a broad maximum, and it keeps growing with the temperature. Those features suggest
the presence of the bimodal distribution of blocking temperatures. The broad maximum
centered at ~192 K seemed to correspond to weakly interacting nanoparticles, meanwhile
the increasing trend above that maximum suggests the presence of strongly interacting
particles. This scenario seems to be modified in samples Fe3O4/AA and Fe3O4/MA. As
observed, there was only a maximum for both samples in the ZFC curves, with the blocking
temperature nearly at ~206 K for sample Fe3O4/AA, with a little shift to ~229 K for sample
Fe3O4/MA, which can be related to the strengthening of the particle–particle interaction.
However, after the polymerization, the blocking temperature shifted to lower temperatures,
nearly ~140–150 K for both samples. This shift suggests that the particle–particle interac-
tions weakened after the polymerization, which can be related to the presence of polymeric
groups among magnetic particles leading to larger distances among them and, therefore,
weak magnetic interactions.

In vitro tests are important in order to determine the level of toxicity of materials
in organisms. In the case of nanoparticles, this becomes important since some of the
characteristics of these materials can cause unexpected intoxications. A parameter used
to verify the low toxicity capacity is cell viability. High values of cell viability indicate
low toxicities.

3.1. FIBRO Lineage Cell Viability

The obtained results showed that the FIBRO lineage during a 24 h interval diminished
60% of the cell viability for sample 1 (PViP) at all concentrations; sample 2 (AA20NP20)
was reduced by 30% from initial concentrations and 50% at 1.0 mg/mL concentration. For
sample 3 (AM25NP20), only at a 0.05 mg/mL concentration was the reduction significant,
up to 60% (Figure 7).
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(B) 48, and (C) 72 h exposure in the particle concentrations of 0.01, 0.05, 0.1, 0.25, and 0.5 mg/mL.
Asterisks are related to different confidence intervals associated with statistical significance: * 95%
with p ≤ 0.05, ** 99% with p ≤ 0.01, *** 99.9% with p ≤ 0.001, and **** 99.99% with p ≤ 0.0001.
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At 48 h exposure time for the FIBRO lineage, the results were significant for sample 1,
where cytotoxicity was up 80% with a reduction in viability for 0.5 mg/mL. For other
concentrations, the percentage reduction varied 50–70%.

For sample 2, there was a variation of 30–50% of viability for all concentrations
analyzed. Sample 3 suffered a 20–30% reduction for all concentrations except 0.5 mg/mL,
where an increase in viability was observed.

After 72 h of exposure, for the FIBRO lineage, samples 1 and 2 (PViP and AA20NP20)
did not show a reduction for any of the studied concentrations. Sample 3 suffered a 20%
reduction, considered not biologically significant according to the literature for this lineage.

3.2. HaCaT lineage Cell Viability

The HaCaT lineage was inserted into the context of this study with the purpose of
comparing it with the FIBRO lineage to assess toxicity and, based on these results, the
material to be analyzed could be inserted into cosmetics or drugs, since it is human cell
lineages such as FIBRO (a fibroblast) and HaCaT (a normal keratinocyte). Both, when
combined, corroborated for a more detailed evaluation of cytotoxicity in an in vitro test
as well as a comparison with the non-melanoma skin cancer tumor line also used in this
study (A431).

Figure 8 shows the results after 24 h of treatment exposure. It is possible to observe
that in sample 1 (PViP), there was a 40% decrease for all concentrations, and sample 2
(AA20NP20) decreased 40% in the initial concentrations, 20% in the intermediate, and a
cell increase, that is, proliferation in the greater concentration. For sample 3 (AM25NP20),
the decrease in cell viability was almost 40% for all concentrations.

During a 48 h time exposure, it was possible to evaluate that in sample 1, there
was only a 35% reduction in the 0.25 mg/mL concentration; for sample 2, there was
no significant reduction; for sample 3 at initial concentrations, no significant reduction
occurred, presenting only a 40% reduction in cell viability at a greater concentration.

For 72 h treatment of the HaCat strain, there was observed a toxicity of 30–55% in
sample 1 in the analyzed concentrations; for sample 2, the reduction was only 40%; in
sample 3, only the concentration of 0.05 mg/mL showed a 50% reduction.
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Figure 8. Evaluation of the cytotoxic activity of the polymer samples on human keratinocyte (HaCaT)
cells after (A) 24, (B) 48, and (C) 72 h exposure at the particle concentrations of 0.01, 0.05, 0.1, 0.25,
and 0.5 mg/mL. Asterisks are related to different confidence intervals associated with statistical
significance: * 95% with p ≤ 0.05, ** 99% with p ≤ 0.01, *** 99.9% with p ≤ 0.001, and **** 99.99%
with p ≤ 0.0001.

3.3. A431 lineage Cell Viability

A third tumor lineage used in this study was that of non-melanoma skin cancer (A431),
which was also tested under the same conditions as the two non-tumor lines mentioned
above. At a 24 h time period, there was a reduction of 30–50% for all concentrations in
sample 1 (PViP), while in sample 2 (AA20NP20), only at the concentration of 0.1 mg/mL
was it significant with approximately 30%, and the others showed no changes. For sam-
ple 3 (AM25NP20), only concentrations of 0.05 and 0.1 mg/mL showed a reduction of
approximately 30% for both (Figure 9).
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For 48 h treatment of this strain, toxicity was obtained for all samples ranging from 20%
to 50% in the analyzed concentrations; whereas in sample 1, the most significant result was
found in the concentration 0.1 mg/mL with 70%. in Sample 2, viability was 70% for the first
four concentrations, and in Sample 3, the highest concentration was approximately 40%.
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Figure 9. Evaluation of cytotoxic activity of the polymer samples on human (A431) non-melanoma
skin cancer cells (NMSCCs) after (A) 24, (B) 48, and (C) 72 h exposure at the particle concentrations of
0.01, 0.05, 0.1, 0.25, and 0.5 mg/mL. Asterisks are related to different confidence intervals associated
with statistical significance: * 95% with p ≤ 0.05, ** 99% with p ≤ 0.01, *** 99.9% with p ≤ 0.001, and
**** 99.99% with p ≤ 0.0001.

Based on the 72 h treatment data, it is possible to observe that the viability ranged
from 25% to 60% in sample 1 with the highest toxicity being the highest concentration for
sample 2, and there was no significant reduction for concentrations in the last two, only the
toxicity was approximately 50%. In sample 3, only at the concentration of 0.25 mg/mL was
there a significant decrease of 60%.

Encapsulation of nanoparticles showed an improvement in the thermal stability and
biocompatibility of nanoparticles. Under this point of view, in vitro assays were realized
with different cell lineages and did not present representative toxicity for non-tumor cells,
which may be used for other biological studies, such as in vivo tests, with a more specific
purpose for determining cell damage in concentrations where cell reduction was signif-
icant, but the other concentrations used did not show any damage, being considered as
potential substances to be used associated with other substances without damage to the
human organism. It is agreed that the potential for using these materials in biomedical
application strongly depends on their cytotoxicity ability. In accordance with International
Organization for Standardization (ISO 10993-5:2009) [43], materials exhibiting a cell via-
bility greater than or equal to 70% in relation to the control group (100% viability) can be
considered non-cytotoxic.

4. Conclusions

The polymerization technique proposed in this work was capable of encapsulating
magnetic nanoparticles using poly(vinyl pivalate) as polymeric matrix. The experimental
results indicated the formation of the spinel phase of magnetite nanoparticles with a uni-
form size distribution with a mean size of approximately 6–8 nm, good magnetic properties,
high saturation magnetization (approximately 30–81 emu/g, depending on the magnetite
fraction), and superparamagnetic behavior at room temperature. Furthermore, the super-
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paramagnetic properties, which are important for applications, such as hyperthermia and
embolization, did not change after the emulsion polymerization process.

It was demonstrated that the magnetite nanoparticles were properly and individually
encapsulated using polymerizable carboxylic acids, such as acrylic acid and methacrylic
acid, as coating agents, which can improve the magnetic response of the magneto-polymeric
materials and, additionally, minimize the leaching of magnetite during the
nanocomposite synthesis.

According to cytotoxicity assays, the high cell viability indicated that the biomedical
application possibilities are promising, since the performance of the synthesized polymeric
materials were satisfactory against fibroblast (FIBRO), human keratinocyte (HaCaT), and
non-melanoma skin cancer (A431), exhibiting cell viabilities greater than 70% towards the
cell lineages used in the study.
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