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Abstract: The iodination of organic compounds is of great importance in synthetic organic chemistry.
It opens comprehensive approaches for the synthesis of various biologically active compounds. The
recent advances in iodination of organic compounds using elemental iodine or iodides, covering the
last thirteen years, are the objective of the present review.
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1. Introduction

The introduction of iodine as an available, inexpensive, environmentally friendly
element into organic molecules has attracted a significant interest providing versatile
building blocks in synthetic organic chemistry [1]. Iodine compounds have widespread
use in organic chemistry. Iodinated compounds are frequently used as reagents in organic
synthesis [2]. The best choice for the iodination of organic compounds is the use of
molecular iodine or the iodide anion in combination with environmentally friendly and
atom-efficient oxidants in the presence of desirable solvents or under solvent-free protocols,
thus enhancing the green chemical profile of the iodination process [3]. Molecular iodine is
extensively employed for α-iodination of alkyl carbonyl compounds [4]. It could act as a
catalyst promoting enolisation and as a reagent reacting with enol to afford α-iodocarbonyl
compounds [5]. Comprehensive synthetic protocols for electrophilic iodination of organic
compounds employing I2 or I− were reviewed by Stavber and co-workers in 2008 [6].
The reports covered by this review [6] mainly carried low green chemical profiles, thus
challenging greener-related protocols. Thus, in the present review, as part I of the matter,
related protocols have been elaborated to highlight recent advances in the iodination
of organic compounds, including alkanes, alkenes, alkynes, and alkyl carbonyls using
elemental iodine or iodides, covering the period from 2008–2021.

2. Iodination of Alkanes

In 2008, Sudalai and co-workers [7] presented NaIO4/KI/NaN3 an efficient system
for mono- and 1,2-difunctionalization of hydrocarbons through activation of C-H bond,
providing vicinal azido- and acetoxy iodinations of cyclic hydrocarbons in high yields
(Scheme 1). This protocol is successful for acyclic and cyclic alkanes.
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Scheme 1. C-H activation of cyclohexane mediated by NaIO4.
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Homolytic cleavage of I-N3 gives an azide radical, which removes a proton from cyclic
alkane to provide an alkyl radical. The reaction of an alkyl radical with I2 provides alkyl
iodide followed by oxidative elimination giving alkene, which undergoes addition of either
I-N3 or I-OAc across the double bond (Scheme 2).
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In 2012, Yu and co-workers [8] reported diastereoselective C-H iodination with i-Pr-
and t-Bu-substituted oxazoline auxiliaries catalyzed by palladium (II) (Scheme 3).

Compounds 2021, 1, FOR PEER REVIEW 2 
 

 

 
Scheme 1. C-H activation of cyclohexane mediated by NaIO4. 

Homolytic cleavage of I-N3 gives an azide radical, which removes a proton from cy-
clic alkane to provide an alkyl radical. The reaction of an alkyl radical with I2 provides 
alkyl iodide followed by oxidative elimination giving alkene, which undergoes addition 
of either I-N3 or I-OAc across the double bond (Scheme 2). 

 
Scheme 2. Plausible reaction pathway. 

In 2012, Yu and co-workers [8] reported diastereoselective C-H iodination with i-Pr- 
and t-Bu-substituted oxazoline auxiliaries catalyzed by palladium (II) (Scheme 3). 

 
Scheme 3. Diastereoselective C-H iodination i-Pr- and t-Bu-substituted oxazoline auxiliaries cata-
lyzed by Pd (II). 

Zhu and co-workers [9] have presented quinoline-based ligand-enabled palladium 
(II)-catalyzed iodination of various α-hydrogencontaining carboxylic acid and amino ac-
ids (Scheme 4). 

 
Scheme 4. C(sp3)-H Iodination of carboxylic acid derivatives. 

3. Iodination of Alkenes and Alkynes 
The considerably breakthrough in the field of electrophilic iodination of alkenes was 

achieved already in 2005 [10], where, 30% aqueous H2O2 was used as the oxidant for the 
iodotransformation. However, later in 2008, Stavber and co-workers [11] even improved 
the green chemical profile of the reaction establishing an environmentally friendly 

I I

X
X = OAc, N3

I-OAc or I-N3[O]I or I2I N3

-HN3

NHAr

H

O

NHAr

I

O

I2

Pd(OAc)2, Ligand

PhI(OAc)2, 1,4-dioxane, 80 oC, 24 h

75%

Ligand =
N O

Me
tBu
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Zhu and co-workers [9] have presented quinoline-based ligand-enabled palladium
(II)-catalyzed iodination of various α-hydrogencontaining carboxylic acid and amino acids
(Scheme 4).
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Scheme 4. C(sp3)-H Iodination of carboxylic acid derivatives.

3. Iodination of Alkenes and Alkynes

The considerably breakthrough in the field of electrophilic iodination of alkenes
was achieved already in 2005 [10], where, 30% aqueous H2O2 was used as the oxidant
for the iodotransformation. However, later in 2008, Stavber and co-workers [11] even
improved the green chemical profile of the reaction establishing an environmentally friendly
methodology for aerobic oxidative iodination of alkenes using potassium iodide as iodine
source catalyzed by sodium nitrite in acidic media providing the corresponding products
in good to quantitative yields (Scheme 5). The authors have reported that the alkene
was added as the last reactant to avoid polymerization. Moreover, in the case of phenyl-
substituted alkynes (phenylethyne) using MeCN as the solvent, the formation of (E)-1,2-
diiodo-1-phenyl-1-ethene was observed while, in the case of phenyl-1-propyne, a small
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amount of (Z)-1,2diiodophenylethene was also obtained (Scheme 6). The presence of an
external nucleophile was observed to be beneficial for efficient and selective reactions.

Compounds 2021, 1, FOR PEER REVIEW 3 
 

 

methodology for aerobic oxidative iodination of alkenes using potassium iodide as iodine 
source catalyzed by sodium nitrite in acidic media providing the corresponding products 
in good to quantitative yields (Scheme 5). The authors have reported that the alkene was 
added as the last reactant to avoid polymerization. Moreover, in the case of phenyl-sub-
stituted alkynes (phenylethyne) using MeCN as the solvent, the formation of (E)-1,2-dii-
odo-1-phenyl-1-ethene was observed while, in the case of phenyl-1-propyne, a small 
amount of (Z)-1,2diiodophenylethene was also obtained (Scheme 6). The presence of an 
external nucleophile was observed to be beneficial for efficient and selective reactions. 

 
Selected products: 

 
Scheme 5. Aerobic oxidative iodination of alkenes. 

 
Scheme 6. Aerobic oxidative iodination of phenyl-substituted alkynes. 

Huang and Yang [12] have reported a novel and efficient method for synthesizing 
iodocyclopropylmethanol and 3-iodobut-3-en-1-ol derivatives via the iodohydroxylation 
of alkylidenecyclopropanes with I2/H2O system affording ring-opening or ring-keeping 
products in moderate to excellent yields (Scheme 7).  

 
Scheme 7. Iodohydroxylation of alkylidenecyclopropanes with substituted aromatic rings. 

A convenient and eco-friendly method for the synthesis of α-iodoketones from al-
kenes and alkynes has been reported by Yadav and co-workers [13] using 2-iodoxyben-
zoic acid (IBX)/I2 as the effective reagent system in water providing the corresponding 
products in good to high yields (Scheme 8).  

Scheme 5. Aerobic oxidative iodination of alkenes.

Compounds 2021, 1, FOR PEER REVIEW 3 
 

 

methodology for aerobic oxidative iodination of alkenes using potassium iodide as iodine 
source catalyzed by sodium nitrite in acidic media providing the corresponding products 
in good to quantitative yields (Scheme 5). The authors have reported that the alkene was 
added as the last reactant to avoid polymerization. Moreover, in the case of phenyl-sub-
stituted alkynes (phenylethyne) using MeCN as the solvent, the formation of (E)-1,2-dii-
odo-1-phenyl-1-ethene was observed while, in the case of phenyl-1-propyne, a small 
amount of (Z)-1,2diiodophenylethene was also obtained (Scheme 6). The presence of an 
external nucleophile was observed to be beneficial for efficient and selective reactions. 

 
Selected products: 

 
Scheme 5. Aerobic oxidative iodination of alkenes. 

 
Scheme 6. Aerobic oxidative iodination of phenyl-substituted alkynes. 

Huang and Yang [12] have reported a novel and efficient method for synthesizing 
iodocyclopropylmethanol and 3-iodobut-3-en-1-ol derivatives via the iodohydroxylation 
of alkylidenecyclopropanes with I2/H2O system affording ring-opening or ring-keeping 
products in moderate to excellent yields (Scheme 7).  

 
Scheme 7. Iodohydroxylation of alkylidenecyclopropanes with substituted aromatic rings. 

A convenient and eco-friendly method for the synthesis of α-iodoketones from al-
kenes and alkynes has been reported by Yadav and co-workers [13] using 2-iodoxyben-
zoic acid (IBX)/I2 as the effective reagent system in water providing the corresponding 
products in good to high yields (Scheme 8).  

Scheme 6. Aerobic oxidative iodination of phenyl-substituted alkynes.

Huang and Yang [12] have reported a novel and efficient method for synthesizing
iodocyclopropylmethanol and 3-iodobut-3-en-1-ol derivatives via the iodohydroxylation
of alkylidenecyclopropanes with I2/H2O system affording ring-opening or ring-keeping
products in moderate to excellent yields (Scheme 7).
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Scheme 7. Iodohydroxylation of alkylidenecyclopropanes with substituted aromatic rings.

A convenient and eco-friendly method for the synthesis of α-iodoketones from alkenes
and alkynes has been reported by Yadav and co-workers [13] using 2-iodoxybenzoic acid
(IBX)/I2 as the effective reagent system in water providing the corresponding products in
good to high yields (Scheme 8).

The authors reported that the interaction between alkene and iodine could generate a
cyclic iodonium ion, which reacts with water to provide an iodohydrin. The iodohydrin
reacts with IBX to afford α-iodoketone (Scheme 9).

An efficient and facile protocol for the iodomethoxylation and iodohydroxylation of
alkenes and alkynes in the presence of m-iodosylbenzoic acid as a recyclable reagent has
been achieved by Chi and co-workers [14] (Scheme 10).
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In the case of performing the reactions between alkynes and I2/m-iodosylbenzoic
acid/MeOH diiododimethoxylation products were obtained (Scheme 11).
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By treatment of the reaction mixture with an anionic exchange resin, pure iodo-
functionalized products were provided. Unreacted m-iodosylbenzoic acid and reduced
m-iodobenzoic acid are regenerated from the resin by treatment with HCl.

A simple, efficient, and practical method for the iodination of alkynyl enolates has
been described using allenoates as the starting material through an alkynyl enolate as
the intermediate. The reaction of the silyl ether of alkynyl enolate with iodine provides



Compounds 2022, 2 7

iodoallenoate in good yield [15]. Grigg and co-workers [16] developed a protocol for the
synthesis of 1-C-(tetra-O-acetyl-β-D-galactopyranosyl)-2,3-diiodo-1-propene using β-C-
galactose allene as a starting material with iodine in the presence of ethanol as a solvent
(Scheme 12).
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A convenient method for synthesizing of vicinal halohydrins, haloacetates, and halo
methyl ethers from olefins with 2:1 I−/IO−

3 has been described [17]. Iodo reagent was
found to be better for reaction with linear alkenes and the elimination of diiodo impurity
(Scheme 13). I−/IO−

3 was not successful for the vicinal functionalization of chalcones
and stilbene.
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Scheme 13. Vicinal functionalization of alkenes with 2:1 I−/IO−
3 reagents.

Iodofluorination of electron-deficient olefins such as α,β-unsaturated esters, phos-
phonate, and amides with iodonium cation species generated by the anodic oxidation of
iodide anion in Et3N-5HF/MeNO2 has been reported [18], providing the corresponding
iodofluorinated products in good to moderate yields (Scheme 14).
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An efficient route for the aerobic photo-oxidative synthesis of phenacyl iodides from
styrenes, H2O and I2 has been reported by Itoh and co-workers [19], providing the corre-
sponding products in moderate to high yields (Scheme 15).
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A simple and efficient method for azidoiodination of alkenes has been reported
by Sudalai and co-workers [20] using NaIO4/KI/NaN3 combination. Through an anti-
Markovnikov fashion, the regiospecific 1,2-azidoiodination proceeds to give β-iodoazides
in quantitative yields (Scheme 16).
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to form alkyl radical species. The combination of an alkyl radical with either molecular
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Hanessian and co-workers [21] developed a method for the total synthesis of Jerangolid
A (shows antifungal activity) where I2 was used for iodination of lactone in the presence of
pyridine in DMF underwent further steps. Kuhakarn and co-workers [22] have described
the method for the direct synthesis of β-keto sulfones between the reaction of sodium
arensulfinates with alkenes, including styrene derivatives, and aliphatic alkenes mediated
by o-iodoxybenzoic acid/iodine (IBX/I2) (Scheme 18).
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A new route for synthesizing of 5-hydroxypyrrolin-2-one derivatives from the modi-
fied Morita-Baylis-Hillman (MBH) adducts through CuI- mediated aerobic oxidation, allylic
iodination, hydration of nitrile, and lactamization has been reported [23].

Krasutsky and co-workers [24] have reported the method for electrophilic monoiodi-
nation of terminal alkenes (Scheme 19).
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The use of the oxidative system (t-BuOCl + NaI) as an efficient oxidant and N-
iodinating reagent with triflamide and cyclic dienes in acetonitrile for providing 1,1,1-
trifluoro-N-((1R,5R)-5-iodocyclopent-2-en-1-yl)methanesulfonamide in low yield has been
reported by Shainyan and co-workers [25]. A co-iodination method for alkenes with
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(diacetoxyiodo)benzene (DAIB) and I2 combination and different nucleophilic sources
(MeCN-nucleophile) providing the corresponding products in moderate to high yields have
been reported [26] (Scheme 20).
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Ma and co-workers [27] established stereoselective iodohydroxylation of 1,2-allenylic
sulfoxides using iodine and benzyl thiol, providing 3-hydroxy-2-iodo-2(E)-alkenyl sulfides
in the presence of MeCN/H2O as a solvent.

[Bis(trifluoroacetoxy)iodo]benzene (PIFA) was used as a mediator for ethoxyiodina-
tion of enamides with potassium iodide, providing the corresponding products in good
to quantitative yields [28]. A convenient method for the synthesis of vicinal iodohydrins
and iodoesters from olefins has been reported by Narender and co-workers [29] via NH4I
and oxone system in MeCN/H2O and DMF/DMA, under catalyst-free at room tempera-
ture, providing the corresponding products in good to quantitative yields. This protocol
is realizable to various olefins, such as a terminal, symmetrical, and 1,2-disubstituted
unsymmetrical olefins. Additionally, 1,2-disubstituted olefins provided excellent diastere-
oselectivity (Scheme 21).

Compounds 2021, 1, FOR PEER REVIEW 7 
 

 

The use of the oxidative system (t-BuOCl + NaI) as an efficient oxidant and N-io-
dinating reagent with triflamide and cyclic dienes in acetonitrile for providing 1,1,1-tri-
fluoro-N-((1R,5R)-5-iodocyclopent-2-en-1-yl)methanesulfonamide in low yield has been 
reported by Shainyan and co-workers [25]. A co-iodination method for alkenes with (di-
acetoxyiodo)benzene (DAIB) and I2 combination and different nucleophilic sources 
(MeCN-nucleophile) providing the corresponding products in moderate to high yields 
have been reported [26] (Scheme 20). 

 
Selected products: 

 
Scheme 20. Co-Iodination of cinnamyl alcohol derivatives and alkenes. 

Ma and co-workers [27] established stereoselective iodohydroxylation of 1,2-allenylic 
sulfoxides using iodine and benzyl thiol, providing 3-hydroxy-2-iodo-2(E)-alkenyl sul-
fides in the presence of MeCN/H2O as a solvent. 

[Bis(trifluoroacetoxy)iodo]benzene (PIFA) was used as a mediator for ethoxy-
iodination of enamides with potassium iodide, providing the corresponding products in 
good to quantitative yields [28]. A convenient method for the synthesis of vicinal iodohy-
drins and iodoesters from olefins has been reported by Narender and co-workers [29] via 
NH4I and oxone system in MeCN/H2O and DMF/DMA, under catalyst-free at room tem-
perature, providing the corresponding products in good to quantitative yields. This pro-
tocol is realizable to various olefins, such as a terminal, symmetrical, and 1,2-disubstituted 
unsymmetrical olefins. Additionally, 1,2-disubstituted olefins provided excellent dia-
stereoselectivity (Scheme 21). 

 
Scheme 21. Vicinal functionalization of olefins via NH4I/oxone system. 

The protocol for the synthesis of iodovinylnaphthols using molecular iodine in the 
presence of MeCN as the solvent has been developed by Kumar and co-workers (Scheme 
22) [30]. 

Scheme 21. Vicinal functionalization of olefins via NH4I/oxone system.

The protocol for the synthesis of iodovinylnaphthols using molecular iodine in the pres-
ence of MeCN as the solvent has been developed by Kumar and co-workers (Scheme 22) [30].

Since halohydrins are essential building blocks in organic synthesis and could be trans-
formed to other organic intermediates such as amino-, azidoalcohols, and epoxides, Ning
and co-workers [31] established an efficient protocol of iodohydroxylation of olefins with
DMSO (dimethylsulfoxide) as an oxidant, an oxygen source, a solvent and HI generated
in situ. It was reported that DMSO could oxidize haloanions to halocations under acidic
conditions (Scheme 23).
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Scheme 23. Iodohydroxylation of olefins with NaI.

Zhu and co-workers [32] developed a one-pot and non-metal strategy for the direct
vicinal difunctionalization of alkenes using iodine and tert-butyl hydroperoxide (TBHP) to
synthesize 1-(tert-butylperoxy)-2-iodoethanes in good to high yields (Scheme 24). The method
is realizable in the fields of organic synthesis, pharmacology, and medicinal chemistry.
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Scheme 24. Synthesis of 1-(tert-butylperoxy)-2-iodoethanes with I2/TBHP.

Iodine monoacetate as an effective reagent was used for the regio- and diastereose-
lective iodoacetoxylation of alkenes and alkynes. An inexpensive, non-metal, and envi-
ronmentally friendly protocol for synthesizing iodine monoacetate was presented using
iodine and oxone in acetic anhydride and acetic acid combination. It was shown that the
reactions with styrene derivatives were more successful than allylic and aliphatic olefins,
where regioisomeric mixtures in lower yields were observed (Scheme 25). Additionally,
alkynes provided mono- and diiodinations in comparable yields [33].
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Shakhmaev and co-workers [35] have developed an efficient protocol for the synthe-
sis of ethyl 5-phenylpent-2-en-4-ynoate by olefination-dehydrohalogenation of 2-iodo-3-
phenylprop-2-enal obtained by the reaction between cinnamaldehyde and molecular iodine
in the presence of 4-(dimethylamino)pyridine (DMAP) as the catalyst.

Meng and co-workers [36] have discovered a convenient and efficient method for
iodination of arylacetylenes using I2 and DMAP (4-dimethylaminopyridine) (Scheme 27)
and the iodination of aryl acetylenic ketones by employing K2CO3 as a base providing the
corresponding products in good to excellent yields (Scheme 28).
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Tsai and co-workers [37] have established a simple and environmentally friendly
method for iodination of terminal alkynes catalyzed by CuI/TBAB (tetrabutylammonium
bromide) under air in water providing the corresponding products in good to high yields
(Scheme 29).

The efficient method for iodoarylation of arylalkynes with I2 and PhI(OCOPh)2 was de-
veloped [38], providing the corresponding products in moderate to good yields (Scheme 30).
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Scheme 29. Iodination of terminal alkynes catalyzed by CuI/TBAB.
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Scheme 30. Iodoarylation of arylalkynes with I2 and PhI(OCOPh)2.

Reddy and co-workers [39] developed an efficient protocol for oxy-iodination of
alkynes using potassium iodide (KI) and tert-butyl hydroperoxide (TBHP), in the presence
of methanol as a solvent, at room temperature affording the corresponding products in
moderate to quantitative yields (Scheme 31).
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Scheme 31. Synthesis of 1-iodoalkynes employing KI/TBHP.

A novel and convenient protocol for the hydroiodination of alkynes has been es-
tablished by Ogawa and Kawaguchi [40], employing I2/hydrophosphine binary system
affording the corresponding Markovnikov-type adducts in good yield. It was reported that
this method could be applied for iodinations of OH and COOH groups. Chobanyan and
co-workers have reported the method for the synthesis of hydroalumantion-iodination of
alkyne-1,4-diols [41].

Guo and co-workers [42] have reported a new approach for the synthesis of (E)-
diiodoalkenes using alkyne as the starting material, ammonium persulfate as an oxidant,
iodide as iodine source, and water as the green solvent, providing the corresponding
products in good to quantitative yields (Scheme 32).
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Scheme 32. Diiodination of alkynes with iodide in water mediated by (NH4)2S2O8.

It is assumed that oxidation of the iodide ion by the persulfate ion generates I2, which
further undergoes electrophilic anti-addition into the alkyne to afford the corresponding
(E)-1,2-diiodoalkene (Scheme 33).
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Ferris and co-workers have reported an efficient method for the iodination of termi-
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and sodium acetate buffer solution (pH 5). 

Bathophenanthrolinedisulfonic acid (BPDS) was used to solubilize copper species in 
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Scheme 33. Plausible reaction mechanism.

A convenient protocol for the iodination of N-propargyltriflamide between trifluo-
romethanesulfonamide and trifluoro-N-(prop-2-yn-1-yl)methanesulfonamide in the system
t-BuOCl–NaI provided N-[(2E)-2,3-diiodoprop-2-en-1-yl]trifluoromethanesulfonamide has
been described by Shainyan and co-workers [43]. Oxidative halogenation of terminal
alkynes has been reported by Lui and co-workers [44] mediated by chloroamine salt as the
oxidant and KI as the halogen source providing 1-iodooalkynes in good to quantitative
yields (Scheme 34).
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Scheme 34. Synthesis of 1-iodoalkynes mediated by chloramine salt.

Inexpensive and non-toxic reagents NH4I (iodide source) and oxone (oxidant) were
used for stereospecific oxidative (E)-diiodination of various alkynes such as aliphatic,
aromatic, and heteroaromatic alkynes at room temperature in the presence of water as a
green solvent [45] (Scheme 35).
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Scheme 35. Oxidative (E)-diiodination of alkynes using NH4I/oxone system.

It is reported that oxone oxidizes the I− (NH4I) to form I+ (HOI). This reactive species
may react with alkyne to give a transient cyclic iodonium species, which further undergoes
nucleophilic attack by I− in situ from the opposite side of the cyclic iodonium ion to provide
trans-diiodo alkene.

Ferris and co-workers have reported an efficient method for the iodination of terminal
alkynes [46], employing a stoichiometric amount of KI and CuSO4 in a mix of MeCN and
sodium acetate buffer solution (pH 5).

Bathophenanthrolinedisulfonic acid (BPDS) was used to solubilize copper species in
the solution (Scheme 36).
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Scheme 36. Iodination of terminal alkynes mediated by KI/CuSO4.

Han and Xiao [47] have developed an efficient and simple procedure for double-
iodination of terminal alkynes using I2 in the presence of water as the green solvent at room
temperature. Moreover, by employing I2/H3PO3 system, the selective hydroiodination of
different alkenes and alkynes were obtained in good yields (Scheme 37).
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Regarding the mechanism, it was reported that H3PO3 could react with molecular
iodine to give hydrogen iodide HI, and then following the Markovnikov rule, provides
the corresponding hydroiodination. For the double-iodination, I2 undergoes electronic
anti-addition to alkynes via a cyclic iodonium to provide the corresponding diiodoalkene
(Scheme 38).
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In 2020, Ghosh and co-workers [48] reported a metal- and oxidant-free method for
synthesizing 1,1,2-triiodostyrenes by decarboxylative iodination of propiolic acids using
I2/NaOAc providing the corresponding products in good yields (Scheme 39). Moreover,
β,β-diarylacrylic acids undergo decarboxylative mono-iodination under the same reaction
conditions, affording 1,1-diaryl-2-iodoalkenes.
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In the same year, Lingling and co-workers [49] have published a convenient protocol
for diiodination of alkynes employing sodium iodide (as iodine source) and air (as an
oxidant) under the visible light, providing the corresponding products in moderate to high
yields (Scheme 40).
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Recently, an environmentally benign method for the aerobic oxidative iodination
of terminal alkynes mediated by sodium sulfinate/KI was presented by Zhuo and co-
workers [50] using ethanol as the green solvent at room temperature. Moreover, the
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synthesis of symmetrical 1,3-diynes was presented via the iodination/homocoupling of
terminal alkynes (Scheme 41).
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4. Iodination of Alkyl Carbonyls Compounds to α-Iodo Alkyl Carbonyl Derivatives

In 2008, Stavber and co-workers [11] had established an environmentally friendly
methodology for aerobic oxidative α-iodination of carbonyl compounds using potassium
iodide as iodine source catalyzed by sodium nitrite in acidic media providing the corre-
sponding products in good to quantitative yields. In the case of aryl methyl ketones using
MeCN as the solvent, iodination on the aromatic ring was occurred, while in the presence
of aqueous EtOH as the solvent, the methyl group was iodinated (Scheme 42).
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Pavlinac and co-workers [51] have described an efficient methodology for the iodi-
nation of dimethoxy- and trimethoxy benzenes, aryl alkyl ketones and cyclic ketones by
employing I2/UHP (urea-H2O2) or I2/30% aq. H2O2 in the water miscible ionic liquid
(IL) 1-butyl-3-methyl imidazolium tetrafluoroborate (bmimBF4) or in water immiscible IL,
1-butyl-3-methyl imidazolium hexafluorophosphate(bmimPF6), providing the correspond-
ing products in excellent yields. In terms of efficiency, 30% aq. H2O2 was superior to UHP
as the mediator of iodination in both ILs for iodine introduction at methoxy substituted
benzenes and alkyl site next to a carbonyl group (Scheme 43).
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The same group of authors have developed [52] the green methodology for iodination
of aryl methoxy substituted 1-indanone, 1-tetralone, and acetophenone using I2/30% aq.
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H2O2 as oxidant under solvent- and catalyst-free reaction conditions (SFRC). In the case
of dimethoxy- and trimethoxy benzenes, iodination on the aromatic ring has occurred,
while in the case of aryl alkyl ketones, iodination took place at the alkyl position next to a
carbonyl group (Scheme 44).
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under SFRC.

Furthermore, Iskra and co-workers [53] have reported an efficient, selective, and
metal-free protocol for the iodination of aldehydes, alkyl ketones, and aromatics using
I2/NaNO2/air/silica-supported H2SO4 in MeCN at room temperature. Air was used as
the oxidant for the regeneration of I2 from eluted HI with 100% iodine atom economy
(Scheme 45).
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Yadav and co-workers [54] have reported a new and efficient method for the syn-
thesis of α-iodo ketones and α-iodo dimethyl ketals in good to high yields, starting from
acetophenones in the presence of I2 and TMOF (trimethylorthoformate), (Scheme 46).
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A convenient method for iodination of α,β-unsaturated ketones using copper (II)
oxide/iodine in the presence of i-PrOH as the solvent has been reported by Wang and
co-workers [55], providing the corresponding products in good to high yields (Scheme 47).

Compounds 2021, 1, FOR PEER REVIEW 16 
 

 

 
Scheme 46. α-iodination of ketones and dimethyl ketals with I2/TMOF. 

A convenient method for iodination of α,β-unsaturated ketones using copper (II) ox-
ide/iodine in the presence of i-PrOH as the solvent has been reported by Wang and co-
workers [55], providing the corresponding products in good to high yields (Scheme 47). 

 
Scheme 47. Iodination of α,β-unsaturated ketones using CuO/I2. 

Terent’ev and co-workers [56] have reported the convenient method for synthesizing 
2-iodo-1-methoxy hydroperoxides and their deperoxidation and demethoxylation to 2-
iodo ketones. The reactions have occurred between enol ethers and the I2-H2O2 system, 
providing the corresponding products in moderate to quantitative yields. 

Stavber and co-workers [3] have established a novel and green methodology for io-
dination of ketones in an aqueous micellar system, in the presence of I2, as the iodine 
source, air (terminal oxidant), NaNO2 (catalyst), and H2SO4 (activator). The use of the 
aqueous solution of anionic amphiphile SDS (sodium dodecyl sulfate) was observed to be 
an excellent promoter than the use of water alone, improving the efficiency of the reac-
tions (Scheme 48). 

 
Selected products: 

 
Scheme 48. Aerobic oxidative iodination of ketones. 

Lee and co-workers have developed an efficient method for iodination of aryl alkyl 
ketones using I2/HTIB [hydroxyl(tosyloxy)iodo]benzene or MeI/HTIB in [bmim]BF4 ionic 
liquid, providing the corresponding products in good to excellent yields [57]. 

An efficient protocol for the synthesis of α-iodo ketones by oxidative iodination of 
ketones in the presence of iodine and m-iodosylbenzoic acid as a recyclable oxidant has 
been presented. The corresponding iodinated products are separated from side products 
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Terent’ev and co-workers [56] have reported the convenient method for synthesizing
2-iodo-1-methoxy hydroperoxides and their deperoxidation and demethoxylation to 2-
iodo ketones. The reactions have occurred between enol ethers and the I2-H2O2 system,
providing the corresponding products in moderate to quantitative yields.

Stavber and co-workers [3] have established a novel and green methodology for
iodination of ketones in an aqueous micellar system, in the presence of I2, as the iodine
source, air (terminal oxidant), NaNO2 (catalyst), and H2SO4 (activator). The use of the
aqueous solution of anionic amphiphile SDS (sodium dodecyl sulfate) was observed to be
an excellent promoter than the use of water alone, improving the efficiency of the reactions
(Scheme 48).
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Scheme 48. Aerobic oxidative iodination of ketones.

Lee and co-workers have developed an efficient method for iodination of aryl alkyl
ketones using I2/HTIB [hydroxyl(tosyloxy)iodo]benzene or MeI/HTIB in [bmim]BF4 ionic
liquid, providing the corresponding products in good to excellent yields [57].

An efficient protocol for the synthesis of α-iodo ketones by oxidative iodination of
ketones in the presence of iodine and m-iodosylbenzoic acid as a recyclable oxidant has
been presented. The corresponding iodinated products are separated from side products
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by treatment with anionic exchange resin Amberlite IRA 900 HCO−
3 , m-iodosylbenzoic acid

can be recovered from Amberlite resin by treatment with HCl [58].
A convenient and selective synthetic protocol for iodination of 1,3-dicarbonyl deriva-

tive substrates has been reported by Khan and Ali [59] using vanadyl acetylacetonate,
hydrogen peroxide, and sodium iodide at ice-bath temperature, providing the iodinated
products in good yields (Scheme 49).
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Moriya and co-workers [60] have reported a convenient method for reductive iodina-
tion of carboxylic acids to alkyl iodides using 1,1,3,3-tetramethyldisiloxane (TMDS) and I2
catalyzed by InBr3 in the presence of CHCl3 as the solvent.

Prebil and co-workers [61] have developed air/NH4NO3(cat.)/I2/H2SO4(cat.) reaction
system in the presence of MeCN as the solvent, for the α-iodination of aryl, heteroaryl,
alkyl, and cycloalkyl methyl ketones. In the case of strongly activated aryl methyl ketones
iodination took place regioselectively on the aromatic ring, (Scheme 50).
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Scheme 50. Aerobic oxidative α-iodination of alkyl methyl ketones using air/ NH4NO3(cat.)/I2/
H2SO4(cat.) reaction system.

Regarding the mechanism, in cycle I, iodination enol form of the ketone at α-position
using I2 has occurred, and I2 has been reduced to HI. The re-oxidation of iodide to I2 by
NO2 has been presented as cycle II. NO2 has been reduced to NO when it completes the
oxidation of iodide, while the oxidation of NO to NO2 is accomplished with aerial oxygen.
Acidic conditions have two leading roles: the first is to transform NH4NO3 to HNO3, which
is thermally supported decomposing equilibrium with NO2, and the second is in tuning
the reactivity by increasing enolization of the ketone (Scheme 51).

In 2014, Terent’ev and co-workers [62] reported mono-and bicyclic enol ethers reactions
with I2/H2O2, I2–ButOOH, and I2–tetrahydropyranyl hydroperoxide combinations. The
authors have presented that the reaction pathway depends on the nature of peroxide and
the ring size. The reaction between 2,3-dihydrofuran and 3,4-dihydro-2H-pyran with the
I2–hydroperoxide system provides iodoperoxides, α-iodolactones, and α-iodohemiacetals.
Bicyclic enol ethers were converted into vicinal iodoperoxides only in the reaction with the
I2–H2O2 system (Scheme 52), while I2–ButOOH provides the hydroperoxidation product.
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In 2011, Marri and co-workers [63] had reported a simple and efficient methodology
for the α-monoiodination of carbonyl compounds employing NH4I and oxone in methanol,
providing the corresponding products in moderate to excellent yields (Scheme 53).
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It is reported that Oxone® oxidizes the I− (NH4I) to I+ (HOI) which reacts with enol
form of carbonyl compound to provide the corresponding α-iodo product (Scheme 54).
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In 2015, Reddy and co-workers [64] had established a convenient and environmentally
friendly protocol for the synthesis of α-iodo alkyl ketones starting from secondary alcohols,
including benzylic and aliphatic alcohols (cyclic and acyclic) using ammonium iodide and
oxone in aqueous media (Scheme 55).

Zhu and co-workers have reported the convenient method for the β-C (sp3)-H iodina-
tion of ketones in the presence of palladium (II) as the catalyst employing aminooxyacetic
acid auxiliary [65]. Sanz-Marco and co-workers [66] have developed an efficient and
one-pot methodology for the synthesis of α-iodo alkyl ketones (as single constitutional
isomers) starting from allylic alcohols and elemental iodine in combination with NaNO2
as an oxidation catalyst and oxygen as the terminal oxidant. The protocol combines a
1,3-hydrogen shift mediated by Ir(III) complex (Scheme 56).
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5. Conclusions

In summary, this review presents the progress of various methods for the iodination
of organic compounds, including alkanes, alkenes, alkynes and alkyl carbonyls using
elemental iodine or iodides. Aerobic oxidative and non-metal iodination strategies are also
established. It should be emphasized that convenient methods have been developed in this
field. Still, investigating and developing environmentally friendlier protocols in aqueous
reaction media or under solvent-free can be considered an exciting research subject.
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