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Abstract: The residue number system (RNS) is widely used in different areas due to the efficiency of
modular addition and multiplication operations. However, non-modular operations, such as sign and
division operations, are computationally complex. A fractional representation based on the Chinese
remainder theorem is widely used. In some cases, this method gives an incorrect result associated
with round-off calculation errors. In this paper, we optimize the division operation in RNS using the
Akushsky core function without critical cores. We show that the proposed method reduces the size
of the operands by half and does not require additional restrictions on the divisor as in the division
algorithm in RNS based on the approximate method.

Keywords: Akushsky core function; residue number system; RNS; modular division

1. Introduction

The results of studies on improving the performance of computing systems show
that within the limits of positional number systems, a significant improvement cannot be
expected without a considerable increase in the operating frequencies of elements and
complications of the hardware of digital computing structures [1]. An important issue is to
choose an effective method for encoding numerical information, i.e., selecting a number
representation for fast processing. The residue number system (RNS) is used to improve
the efficiency of data encryption algorithms [2–4], cloud computing [5–7], digital signal
processing [8,9], wireless networks [10], matrix computing [11,12], and artificial neural
networks [13,14]. One of the computationally complex operations in RNS is the Euclidean
division or remainder division. Reducing the computational complexity of the remainder
division algorithm will expand the range of RNS applicability for more efficient use of it in
the implementation of numerical methods, etc.

Positional number systems, in which information is presented and processed in mod-
ern computing devices, have drawbacks. The main one for the speed limit is the presence of
inter-digit transfers. They impose restrictions on the methods of implementing arithmetic
operations. Therefore, it seems natural to construct an arithmetic system with no inter-bit
transfers, i.e., a non-weighted number system. One of such systems is the RNS, where
numbers are represented by the remainders of division by the selected bases of the system,
and operations can be performed in parallel on each digit independently.

The development of computing devices based on the RNS began in the 1950s to 1960s
of the 20th century. They were implemented in the form of modular coprocessors [15].

If a series of positive integers p1, p2, . . ., pn, called moduli or bases of the system,
is given, then the RNS is a system in which a positive integer is represented as a set of
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remainders obtained by division by the chosen base X = (α1, α2, . . . , αn), where αi =
X mod pi for i = 1, 2, . . . , n [1].

It is known from number theory that if the moduli pi are coprime, then the represen-
tation of the number X = {α1,α2, . . . ,αn} is unique, and X satisfies the condition X < P,
where P = p1· p2· . . . · pn is a dynamic range of number representation.

For numbers A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) the following expression holds:

C = A ∗ B = (a1 ∗ b1, a2 ∗ b2, . . . , an ∗ bn),

where ∗ = {+,−,×}.
However, despite several advantages, the RNS has the following disadvantages:

limited action of this system by the field of positive integers, difficulty in determining
the ratios of numbers in magnitude, determining if the result of an operation is out of
range, etc.

Operations in the RNS can be divided into two groups: modular, where calculations
are performed for each digit independently, and non-modular, which require, to one degree
or another, knowledge of the positional characteristics of the number.

In Section 2, we consider the features of division in the RNS, an approximate method
based on the Chinese remainder theorem, the Akushsky core function, and also a block
diagram of the division algorithm is presented. Section 3 considers examples of the division
operation implementation in the RNS in the form of a computing system. Section 4 presents
the main results of the work and directions for further research.

2. Features of Division in the Residue Number System

The division is one of the primary arithmetic operations. However, in RNS, the
implementation of the modular division is computationally complex. There are methods
for performing division with numbers of a specific type, for example, division with zero
remainders, scaling, etc. [16].

The well-known division algorithms in the RNS [17–19] are based on comparing and
subtracting numbers.

Let a dividend X, a divisor Y, a quotient Q, and a remainder R be given. Then
R = X − Y · Q, while R < Y. Consider the division algorithm based on the sequential
approximation of the quotient Q by degrees of the base of the number system, i.e., for a
binary system, the process consists in finding qi = {0, 1} such that the equality holds

Q = qn · 2n + qn−1 · 2n−1 + · · ·+ q1 · 21 + q0 · 20. (1)

Substituting (1) into the division formula, we obtain

R = X−Y · qn · 2n −Y · qn−1 · 2n−1 − · · · −Y · q1 · 21 −Y · q0 · 20. (2)

Thus, the division process can be reduced to a sequence of subtractions. Let 2n enter
into the representation of the quotient Q, that is, qn = 1, then we denote ∆1 = X− 2n · Y,
and ∆1 ≥ 0. Substitute ∆1 in (2).

R = ∆1 −Y · qn−1 · 2n−1 − · · · −Y · q1 · 21 −Y · q0 · 20.

Let us continue this process. We denote ∆2 = ∆1 − 2n−1 · Y. Since ∆i is the sum of
the remainder of the division and remaining members of the sequence of degrees of the
number system are multiplied by the divisor, then ∆i ≥ 0 is always satisfied.

If 2k is not included in the representation of the quotient Q, i.e., qk = 0, then
∆n−k−1 = ∆n−k−2 − 2k · Y < 0. It is necessary to check the occurrence of 2k−1 for which
∆n−k = ∆n−k−2 − 2k−1 ·Y is calculated.

In RNS, any number X < P is unambiguously represented by a set of residues xi of
dividing the number X by relatively prime moduli of the RNS pi, where xi ≡ X mod pi,
P = ∏n

i=1 pi is the working range of the RNS, i = 1, n. The recovery of the number X



Computation 2022, 10, 9 3 of 14

from the RNS to the positional number system can be done, as in the prototype, using the
approximate Chinese remainder theorem

F(X) =
X
P

=

∣∣∣∣∣∣∣
n

∑
i=1

∣∣∣P−1
i

∣∣∣
pi

pi
· xi

∣∣∣∣∣∣∣
P

=

∣∣∣∣∣ n

∑
i=1

ki · xi

∣∣∣∣∣
1

,

where ki =
|P−1

i |pi
pi

, Pi = P/pi,
∣∣∣P−1

i

∣∣∣
pi

is a multiplicative inverse. The application of the

approximate method based on the Chinese remainder theorem is considered, in particular,
in the patent [20]. However, the ki coefficient rarely turns out to be a finite fraction. Its
rounding leads to accumulation errors.

The sign in the RNS is most often introduced by dividing the range into two parts,
then, taking into account the dynamic range P, in the RNS, it is possible to represent
the numbers

− P−1
2 ≤ X ≤ P−1

2 , if P is odd,
− P

2 ≤ X ≤ P
2 − 1, if P is even.

Then,
X is positive if 0 ≤ X ≤ P

2 − 1, if P is even, 0 ≤ X ≤ P−1
2 , if X is odd,

X is negative if P
2 ≤ X < P, if P is even, P+1

2 ≤ X < P, if X is odd.
To perform division according to formula (2), it is necessary to compare RNS numbers

and determine their signs.
Since the RNS is a non-weighted number system, then for comparing numbers and

determining the sign, i.e., finding the position of the number on the number line, it is
necessary to calculate the positional characteristic. An example of a positional characteristic
is the Chinese remainder theorem with fractions used in the prototype. Another positional
characteristic can be a core function, introduced by I. Ya. Akushsky [21,22]:

C(X) =
n

∑
i=1

wi
X
pi

. (3)

The numbers wi, called weights, can be arbitrary. They define each specific core
function and can vary depending on the task. The essential property of the core function
is that its maximum range can vary and can be significantly less than the P number,
depending on the choice of weights. For example, you can use as C(P) some arbitrary
value CP, which has the properties necessary for solving a specific problem. The values
of the core function C(X), specified by the weights w1, w2, . . . , wn, under the condition
0 ≤ C(X) < CP, X ∈ [0, P), can be calculated using the formula

C(X) =

∣∣∣∣∣ n

∑
i=1

C(Bi) · xi

∣∣∣∣∣
CP

, (4)

where Bi = Pi ·
∣∣∣P−1

i

∣∣∣
pi

are the orthogonal bases of RNS. However, in general, the core

function does not have the monotonicity required for comparing numbers.
To construct a core function with specified properties, we use the following algorithm

(Algorithm 1).
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Algorithm 1: Selection of parameters for the core function of a special type for a given set of
moduli.

Input: Set of RNS moduli p1, p2, . . . , pn. It is required to construct a core function with a module
of a special type with CP = R(N) and non-negative coefficients.
Output: Coefficients w1, w2, . . . , wn of the constructed core function.

1. Let N = log2 Pn.

2. For the given value N calculate w∗i =
∣∣∣R(N) · P−1

i

∣∣∣
pi

, i = 1, 2, . . . , n, and C∗P = P ·∑n
i=1

w∗i
pi

,

where R(N) = 2N.
3. Calculate Q by the formula Q =

R(N)−C∗P
P .

4. If Q < 0, then N = N + 1 and go to step 2. Otherwise, go to step 5.
5. Choose such a qi that Q = q1 + q2 + · · ·+ qn. Calculate wi = qi · pi + w∗i for i = 1, 2, . . . , n.
6. Check the conditions for the absence of critical cores from below: C(pk) = ∑k

i=1 wi
pk
pi
≥ 0

and the absence of critical cores from above: ∑n
i=1

(
pk
pi
+ 1

)
wi − wk > 0, for all

k = 1, 2, . . . , n. If it does not hold, N = N + 1 and go to step 2.

end.

The core function with the given properties is given by expression (4), where

C(Bi) =
Bi · CP

P
− wi

pi
, and Bi = Pi ·

∣∣∣P−1
i

∣∣∣
P

.

To compare numbers, let us use the following Algorithm 2.

Algorithm 2: Comparison of numbers represented in the RNS using a core function with
non-negative coefficients.

Input: X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)
Output: X < Y, X > Y or X = Y

1. Calculate C(X) and C(Y).
2. Comparison

2.1. If C(X) < C(Y), then X < Y
2.2. If C(X) > C(Y), then X > Y
2.3. If C(X) = C(Y), then

2.3.1. if xk < yk, then X < Y
2.3.2. if xk > yk, then X > Y
2.3.3. if xk = yk, then X = Y

end.

In this case, non-negative coefficients w1, w2, · · · , wn are taken, and wk 6= 0 is the
first non-zero coefficient.

To determine the sign of a number, it is necessary to construct a core function such
that C(X) ≤ C(K) for positive numbers and C(X) > C(K) for negative numbers, where
K = P/2 if P is even (K = (P− 1)/2 if P is odd). K is the middle of the RNS range.
Therefore, use Algorithm 2 for X and K.

Let us consider an example of division in RNS based on function (4) and Algorithm 2.
We take {11, 13, 17, 19} as RNS. Then P = 46, 189, P1 = 4199, P2 = 3553, P3 = 2717,

P4 = 2431, P−1
1 = 7, P−1

2 = 10, P−1
3 = 11, P−1

4 = 18, B1 = 29, 393, B2 = 35, 530, B3 = 29, 887,
B4 = 43, 758. Using Algorithm 1, we obtain N = 17, w1 = 16, w2 = 8, w3 = 5, w4 = 9.

Then, the auxiliary values C(Bi) are equal to C(B1) = 83, 408, C(B2) = 100, 824,
C(B3) = 84, 811, C(B4) = 124, 173.

The core function takes the form

C(X) = |83, 408 · x1 + 100, 824 · x2 + 84, 811 · x3 + 124, 173 · x4|217 .
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The middle of the RNS range is K = 23, 094, for which C(K) = 65, 517.
We find the quotient of dividing X = (5, 4, 3, 5) by Y = (1, 10, 6, 4). Let us check

the signs of the dividend and the divisor, for which we calculate C(X) and C(Y):
C(X) = 122, 770 > 65, 517 = C(K), the number is negative,
C(Y) = 54 < 65, 517 = C(K), the number is positive.
Since the dividend and divisor are different signs, the result will be negative. For the

dividend, we find the opposite value, to perform division over the absolute values. For
this, in the RNS, it is necessary to subtract the corresponding remainder from the modulus.

− X = (p1 − x1, p2 − x2, . . . , pn − xn) = (11− 5; 13− 4; 17− 3; 19− 5) = (6, 9, 14, 14).

We get |X| = (6, 9, 14, 14). Representations of powers “2” in RNS can be calculated in
advance, depending on the range of RNS (the highest occurrence power of 2n is blog2 Kc)
and stored in memory:

214 = (5, 4, 13, 6), 213 = (8, 2, 15, 3),
212 = (4, 1, 16, 11), 211 = (2, 7, 8, 15),
210 = (1, 10, 4, 17), 29 = (6, 5, 2, 18),
28 = (3, 9, 1, 9), 27 = (7, 11, 9, 14),
26 = (9, 12, 13, 7), 25 = (10, 6, 15, 13),
24 = (5, 3, 16, 16), 23 = (8, 8, 8, 8),
22 = (4, 4, 4, 4), 21 = (2, 2, 2, 2),
20 = (1, 1, 1, 1).

The highest possible degree of quotient when performing division is equal to the di-
mension of the dividend. It is necessary to multiply the divisor sequentially by 2i to find the
number for which the values of the core function satisfy the expression C(|X|) ≤ C

(
2i|Y|

)
.

C
(

26|Y|
)
= 4155 < C(|X|) = 8264 < C

(
27|Y|

)
= 8331

Using the formula (2), we calculate ∆1 = X− 27 · Y:

∆1 = (6, 9, 14, 14)− (7, 11, 9, 14)·(1, 10, 6, 4) = (10, 3, 11, 15), ∆1 < 0.

It means that 27 is not included in the representation of the quotient Q. Let us check 26

by calculating ∆2 = X− 26 · Y:

∆2 = (6, 9, 14, 14)− (9, 12, 13, 7) · (1, 10, 6, 4) = (8, 6, 4, 5), ∆2 > 0.

It means that 26 is included in the representation of the quotient Q. Let us check 25, by
calculating ∆3 = ∆2 − 25 · Y:

∆3 = (8, 6, 4, 5)− (10, 6, 15, 13) · (1, 10, 6, 4) = (9, 11, 16, 10), ∆3 > 0.

It means that 25 is included in the representation of the quotient Q. Let us check 24, by
calculating ∆4 = ∆3 − 24 · Y:

∆4 = (9, 11, 16, 10)− (5, 3, 16, 16) · (1, 10, 6, 4) = (4, 7, 5, 3), ∆4 > 0.

It means that 24 is included in the representation of the quotient Q. Let us check 23 by
calculating ∆5 = ∆4 − 23 · Y:

∆5 = (4, 7, 5, 3)− (8, 8, 8, 8) · (1, 10, 6, 4) = (7, 5, 8, 9), ∆5 > 0.
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It means that 23 is included in the representation of the quotient Q. Let us check 22 by
calculating ∆6 = ∆5 − 22 · Y:

∆6 = (7, 5, 8, 9)− (4, 4, 4, 4) · (1, 10, 6, 4) = (3, 4, 1, 12), ∆6 > 0.

It means that 22 is included in the representation of the quotient Q. Let us check 21 by
calculating ∆7 = ∆6 − 21 · Y:

∆7 = (3, 4, 1, 12)− (2, 2, 2, 2) · (1, 10, 6, 4) = (1, 10, 6, 4), ∆7 > 0.

It means that 21 is included in the representation of the quotient Q. Let us check 20 by
calculating ∆8 = ∆7 − 20 · Y:

∆8 = (1, 10, 6, 4)− (1, 1, 1, 1) · (1, 10, 6, 4) = (0, 0, 0, 0), ∆7 = 0.

It means that 20 is included in the representation of the quotient Q.
Therefore,

|Q| = 26 + 25 + 24 + 23 + 22 + 21 + 20 = 127.

Since the result must be negative, then Q = −127. Let us check:

− 2921
23

= −127.

3. Implementation of the RNS Division

Let us consider the block diagram of the division of numbers represented in the RNS
(Figure 1) [23].
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the division is 0. 

Figure 1. General block diagram for calculating division.

Figure 1 shows the general block diagram of the division calculation, which contains
the input of the dividend X, input of the divisor Y, block for calculating positional charac-
teristics, block for refining the approximation series, block for the derivation of the quotient,
and output of the quotient Q. The inputs of the dividend X and the divisor Y are connected
to the first and second input blocks for calculating positional characteristics.

From the first output of the block for calculating positional characteristics, the sign
value of the result is fed to the first input of the quotient output block.

From the second output of the block for calculating positional characteristics, the
signal “|X| < |Y|” is sent to the second input of the quotient output block, i.e., the result of
the division is 0.
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From the third output of the block for calculating positional characteristics, the signal
“|X| = |Y|” is sent to the third input of the quotient output block, i.e., the division result is
±1, depending on the signs of the input numbers.

From the fourth and sixth outputs of the block for calculating positional characteristics,
the absolute values of the dividend |X| and divisor |Y| are sent.

From the fifth output of the block for calculating positional characteristics, the value
of the core function of the absolute value of the dividend C(|X|) is sent to the second input
of the block for refining the approximation series.

The signal of the end of enumeration of powers “2” included in the representation of
the quotient Q is received from the first output of the block for refining the approximation
series to the fourth input of the quotient output unit.

The first output of the quotient output block is the quotient output.
Figure 2 shows a block diagram for calculating positional characteristics, which con-

tains inverters of the dividend and divider, blocks for multiplying by constants and for
addition, blocks for determining the sign, dividend and divisor multiplexers, an XOR
element, and a comparison block.
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At the inputs of the dividend and the divisor, the values of the dividend X and the
divisor Y are sent, represented in RNS as (x1, x2, . . . , xn) and (y1, y2, . . . , yn).

In inverters of the dividend and divisor, the opposite values −X and −Y are calcu-
lated, correspondingly.

In the RNS, to obtain the opposite value −X, it is necessary to subtract the correspond-
ing remainder from the modulus (p1 − x1, p2 − x2, . . . , pn − xn). Then, the numbers X and
−X, Y and −Y in the blocks of multiplication by constants are multiplied by the constants
of the values of the core function of the RNS orthogonal bases C(Bi), i.e., in each block,
there is a parallel multiplication of the residues by C(Bi) according to the formula (4).

The values of the products from the multiplication blocks by the constants are fed
to the inputs of the addition blocks, the output of which is the lowest N bits of the sum,
which corresponds to finding the remainder modulo 2N in formula (4). N is determined in
advance by Algorithm 1 while constructing the core function.

The values of the dividend and the divisor from the inputs of the dividend and the
divisor, respectively, are sent to the first inputs of the sign determination blocks. The values
of the core function C(X) and C(Y) from the outputs of the addition blocks are sent to the
second inputs of the sign determination blocks. In the blocks for determining the sign, the
values of the core function and the remainders are compared on one of the bases with the
middle of the RNS range K according to Algorithm 2.

The signs of X and Y from the outputs of the blocks for determining the sign are sent
to the inputs of the XOR element, as well as to the control inputs of the corresponding
multiplexers. The XOR element output is the first output of the positional characteristic
calculation block.
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The first and second inputs of the multiplexer of the dividend receive the value of the
core function C(X) from the output of the addition block and the value of the dividend X
from the input of the dividend.

The third and fourth information inputs of the multiplexer receive the value of the
core function C(−X) from the output of the addition block and the value −X from the
output of the inverter.

The first output of the multiplexer is connected to the second input of the comparison
unit and the fifth output of the positional characteristics calculating unit and transfers the
value of the core function from the absolute value of the dividend C(|X|). The second
output of the multiplexer is connected to the first input of the comparison unit and is the
fourth output of the unit for calculating positional characteristics. It transmits the absolute
value of the dividend |X|.

The first and second inputs of the divider multiplexer receive the value of the core
function C(Y) from the output of the addition block, and the value of the divider Y from
the input of the divider. The third and fourth information inputs of the multiplexer receive
the value of the core function C(−Y) from the output of the addition block, and the value
−Y from the output of the inverter. The first output of the multiplexer is connected to
the third input of the comparison unit. It transfers the value of the core function from the
absolute value of the divisor C(|Y|). The second output of the multiplexer is connected to
the fourth input of the comparison unit, is the sixth output of the positional characteristics
calculating unit and transmits the absolute value of the divider |Y|.

The comparison block is based on Algorithm 2. It compares the absolute values of
the dividend |X| and divisor |Y| with C(|X|) and C(|Y|) values, respectively. It sends to
the first output of the comparison unit a signal in the case of “|X| < |Y|”, which is fed to
the second output of the positional characteristics calculating unit. It sends a signal to the
second output of the comparison unit in the case of “|X| = |Y|”, which is fed to the third
output of the block for calculating positional characteristics.

Figure 3 shows the block for refining the approximation series. It contains the storage
register of the reduced, storage register of the divisor, modulo multiplying register, storage
register of degrees “2”, power counting unit, demultiplexer, multiplexer, modulo subtrac-
tion block, multiplication by the constants blocks, addition blocks, block for determining
the sign, and logical element AND.
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The value |X| from the first input of the refinement block of the approximation series
is received at the first input of the storage register of the reduced one. The input of the
divider storage register is the third input of the approximation series refinement block.
It transmits the value |Y| to the first input of the modulo multiplication unit, where the
divider is multiplied by the power of “2”, presented in the RNS, which come from the first
output of the storage register of the powers of “2”.

Additionally, degrees “2” from the first output of the storage register are fed to the
second input of the demultiplexer. The first input receives the value of the product from
the output of the multiplying unit.

The degree counting unit determines the degree “2”, for which the product 2i · |Y| ≥ |X|
and then it counts down the degrees to check the occurrence of the power “2” in the
representation of the quotient Q. To determine the maximum degree “2”, the power count
unit supplies the first output connected to the first input of the power storage register “2”
with the address values starting from 1, while the maximum degree is equal to blog2 Kc,
the storage register of degrees “2” supplies the first output of degrees “2” presented in
the RNS.

The second output, connected to the control input of the demultiplexer, is supplied
with the value of the operating mode: direct or countdown degrees.

In the direct counting case, the value of the product from the output of the modulo
multiplication unit is fed to the third output of the demultiplexer. It is connected to the
input of the multiplication unit by a constant where the values of the core function from
the orthogonal bases of the RNS C(Bi) are multiplied and then added in the addition block.

The least significant N bits of the result are fed to the second input of the power
counting block, where it is compared with the value of the dividend core function, which is
fed to the first input of the power counting block from the second input of the approximation
series refinement block.

In the countdown case, the value of the product from the output of the modulo
multiplying unit is fed to the first output of the demultiplexer, to the second output of
which the value of the power “2” is supplied. At the end of the countdown, a signal about
the end of counting is sent to the third output of the power counting unit.

In the subtraction unit, subtraction is performed according to formula (2). The first
input is fed from the output of the storage register of the reduced product, and the second
one is fed from the first output of the demultiplexer.

The result of subtraction is fed to the input of the multiplying unit by constants, from
where it is fed through the addition unit to the first input of the sign determination unit,
the second input of which is connected to the output of the modulo subtraction unit, which
is also connected to the second information input of the multiplexer.

The output of the sign determination unit is connected through the inverter to the first
output of the AND logic element, the second input of which receives degrees “2” from the
second output of the demultiplexer, and to the control input of the multiplexer, the first
input of which is connected to the output of the storage register of the decreasing one, and
the output of the multiplexer is connected to the second to the input of the storage register
of the decrement. The output of the AND gate is the second output of the approximation
series refinement block.

Figure 4 shows a quotient output block containing a modulo addition block, demulti-
plexer, inverter, storage register “1” in the RNS, storage register “−1” in the RNS, private
multiplexer, unit multiplexer, quotient selection multiplexer, and the AND logic gate.

Degrees “2” from the fifth input of the quotient output unit are fed to the first input of
the modulo addition unit. Its output is connected to the output of the demultiplexer.

Depending on the end-of-count signal, it connects to the demultiplexer control input
from the fourth input of the quotient output unit, feeds the result to the second input of the
block addition modulo or to the second input of the quotient multiplexer and to the first
input of the quotient multiplexer through the inverter.
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The signal of Q sign from the first input of the quotient output unit is fed to the control
inputs of the quotient multiplexer and unit multiplexer. Its first and second information
inputs receive signals from the outputs of the storage register “1” in the RNS and the
storage register “−1” in the RNS, respectively.

The outputs of the quotient multiplexer and unit multiplexer are connected to the first
and second inputs of the private selection multiplexer. Its control input receives the signal
“|X| = |Y|” from the third input of the private output block. The output of the private
selection multiplexer is connected to the first input of the AND gate. The signal “|X| < |Y|”
is supplied through the inverter from the second input of the private output. The output of
the AND gate is the output of the quotient Q.
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4. Discussion

This section presents a description of the example for verification of obtained results,
their interpretation, as well as the conclusions that can be drawn.

Let us consider an example for the RNS {p1, p2, p3, p4} = {11, 13, 17, 19}. According
to Algorithm 1, the internal parameters N = 17, w1 = 16, w2 = 8, w3 = 5, and w4 = 9
are calculated. The constant multiplication blocks multiply each of the four remainders of
the number by C(B1) = 83, 408, C(B2) = 100, 824, C(B3) = 84, 811, and C(B4) = 124, 173,
respectively. Addition blocks add the obtained products and output the least significant
N bits of the number. Thus, pairs of blocks of multiplication by constants with addition
blocks implement the formula

C(X) = |83, 408 · x1 + 100, 824 · x2 + 84, 811 · x3 + 124, 173 · x4|217 .

The inverters find the opposite value for the number represented in the RNS by
subtracting the corresponding remainder from the modulus.

X = (5, 4, 3, 5) is fed to the input of the dividend, which, after calculating the core func-
tion by blocks of multiplication by constants and addition, feeds the value C(X) = 122, 770
to the second input of the sign determination block, to the first input of which X = (5, 4, 3, 5)
is sent from the input of the dividend.

In the block for determining the sign, a comparison is made with K = 23, 094 and
C(K) = 65, 517 according to Algorithm 2. The value of the sign of X is 1 (negative) and it
is fed to the control input of the dividend multiplexer, and to the first input of the XOR
element. Additionally, the value X = (5, 4, 3, 5) is fed to the inverter, the result of which is
−X = (p1 − x1, p2 − x2, . . . , pn − xn) = (6, 9, 14, 14).

After calculating the core function by the constant multiplication and addition blocks,
C(−X) = 8264 is obtained. C(X) = 122, 770 is fed to the first information input of the
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multiplexer. X = (5, 4, 3, 5) is fed to the second information input. C(−X) = 8264 is fed
to the third information input. −X = (6, 9, 14, 14) is fed to the fourth information input.
Since the dividend is negative, C(|X|) = 8264 is fed to the first output of the multiplexer of
the dividend and |X| = (6, 9, 14, 14) is fed to the second output.

At the same time, Y = (1, 10, 6, 4) is fed to the input of the divider, which, after
calculating the core function by the blocks of multiplication by constants and addition,
feeds the value C(Y) = 54 to the second input of the sign determining block, the first input
of which is Y = (1, 10, 6, 4) from the input of the divider. In the block for determining the
sign, a comparison is made with K = 23, 094 and C(K) = 65, 517 according to Algorithm 2.

The value of the sign of Y is 0 (positive), and it is fed to the control input of the
divider multiplexer and to the second input of the XOR element. In addition, the value
Y = (1, 10, 6, 4) is fed to the inverter. The result is −Y = (10, 3, 11, 15). After calculating
the core function by the constant multiplication and addition blocks, C(−Y) = 130, 980 is
obtained. C(Y) = 54 is fed to the first information input of the multiplexer, Y = (1, 10, 6, 4)
is fed to the second information input, C(−Y) = 130, 980 is fed to the third information
input, and −Y = (10, 3, 11, 15) is fed to the fourth information input. Since the divisor is
positive, C(|Y|) = 54 is fed to the first output of the multiplexer, and |Y| = (1, 10, 6, 4) is
sent to the second output.

Since the signs of the dividend X and the divisor Y are different, signal 1 is sent
to the output of the XOR element, i.e., the result is negative. The comparison block
is based on Algorithm 2. C(|X|) = 8264 and |X| = (6, 9, 14, 14) are compared with
C(|Y|) = 54 and |Y| = (1, 10, 6, 4) coming from the dividend and divisor multiplexers.
Since C(|X|) = 8264 > C(|Y|) = 54, then |X| > |Y|, “|X| < |Y|”, and “|X| = |Y|”, 0 is sent.

Thus, the sign of result 1 is fed to the first output of the block for calculating positional
characteristics. The zeros are fed to the second and third outputs, which means that the
conditions “|X| < |Y|” and “|X| = |Y|” are not met. At the fourth, fifth, and sixth outputs,
respectively, there are the values |X| = (6, 9, 14, 14), C(|X|) = 8264 and |Y| = (1, 10, 6, 4).

|Y| = (1, 10, 6, 4) is fed to the input of the divider storage register. The degree counting
unit delivers to the first output the address of the power “21” represented in the RNS, which
is stored in the degree storage register “2”.

The value (2,2,2,2) is fed to the second input of the modulo multiplication block, the
first input of which is (1,10,6,4). The result (2,7,12,8), under the action of the signal at the
control input of the demultiplexer, is fed to the multiplication and addition blocks. The
value of the core function C(2|Y|) = 116 is calculated. In the degree counting unit, this value
is compared with C(|X|) = 8264, which is fed to the first input. Since 116 < 8264, the degree
counting continues. This countdown continues until 27, for which C

(
27|Y|

)
= 8331. After

that, the degree counting unit goes into the countdown state and sends a corresponding
signal to the control input of the demultiplexer.

The degree counting unit delivers to the first output the address of the power “27”
represented in the RNS, which is stored in the degree storage register “2”. The value
(7,11,9,14) is fed to the second input of the modulo block, the first input of which is (1,10,6,4).

The result (7,6,3,18), under the action of a signal at the control input of the demul-
tiplexer, is fed to the second input of the subtractor modulo, to the first input of which
|X| = (6, 9, 14, 14) is fed.

The result ∆1 = (10, 3, 11, 15) is fed to the blocks of multiplication by a constant and
addition, in which the value of the core function C(∆1) = 130, 980 is calculated. It is fed
to the first input of the block for determining the sign, to the second input of which the
value ∆1 is sent, since the number C(∆1) > C(K), then ∆1 < 0 and 27 is not included in the
representation of the quotient Q.

“1” is sent to the output of the block for determining the sign, which arrives to the
multiplexer control input, overwriting the value |X| in the decrement storage register.
Additionally, 1 from the output of the sign determination unit is fed to the inverted first
input of the AND gate, zeroing the value of the power “27” supplied from the second
output of the demultiplexer.
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Further, the degree counting unit feeds to the first output the address of the degree
“26”, represented in the RNS, which is stored in the degree storage register “2”. The
value (9,12,13,7) is fed to the second input of the modulo block, the first input of which
is (1,10,6,4). The result (9,3,10,9), under the action of a signal at the control input of the
demultiplexer, is fed to the second input of the subtractor modulo, to the first input of which
|X| = (6, 9, 14, 14) is fed. The result ∆2 = (8, 6, 4, 5) is fed to the blocks of multiplication by
a constant and addition, in which the value of the core function C(∆2) < C(K) is calculated,
which is fed to the first input of the block for determining the sign, to the second input
of which comes the value of ∆2, since the number C(∆2) < C(K), then ∆2 > 0 and 26 is
included in the representation of the quotient Q.

At the output of the block for determining the sign, 0 is sent, which is fed to the control
input of the multiplexer, recording the value of ∆2 in the storage register to be reduced. In
addition, 0 from the output of the sign determining block is fed to the inverted first input
of the AND gate, passing the value of the power “26” supplied from the second output of
the demultiplexer to the second output of the approximation series refinement block.

The rest of the degrees are checked in the same way. Finally, the degree counting unit
sends to the first output the address of the “20” represented in the RNS, which is stored in
the degree storage register “2”. The value (1,1,1,1) is fed to the second input of the modulo
block, the first input of which is (1,10,6,4). The result (1,10,6,4) under the action of the signal
at the control input of the demultiplexer is fed to the second input of the subtractor modulo.
The first input is sent with ∆7 = (1, 10, 6, 4) from the output storage register decreasing.

The result ∆8 = (0, 0, 0, 0) is fed to the blocks of multiplication by a constant and
addition, where the value of the core function C(∆8) = 0 is calculated, which is fed to the
first input of the block for determining the sign. The second input receives the value ∆8,
since the number C(∆8) < C(K). Then ∆8 ≥ 0 and 20 are included in the representation of
the quotient Q.

“0” is sent to the output of the block for determining the sign, which is fed to control
input of the multiplexer, writing the value of ∆8 in the storage register to be reduced. In
addition, “0” from the output of the sign determining block is fed to the inverted first input
of the AND element, passing the value of the power “20” supplied from the second output
of the demultiplexer to the second output of the approximation series refinement block.
The end of the counting signal is sent to the third output of the power counting block.

The final quotient is formed in the block of the output of the quotient. The first
input of the modulus addition block sequentially receives the degrees “2” included in the
representation of the quotient Q. The second input of the modulus addition block receives
the sum of the previously obtained degrees.

The number “27” after logical multiplication with zero is equal to (0,0,0,0), entering
the first input, is added with (0,0,0,0). Then

26 = (9, 12, 13, 7) is added with (0, 0, 0, 0).
25 = (10, 6, 15, 13) is added with 26 = (9, 12, 13, 7),
24 = (5, 3, 16, 16) is added with 26 + 25 = (8, 5, 11, 1),
23 = (8, 8, 8, 8) is added with 26 + 25 + 24 = (2, 8, 10, 17),
22 = (4, 4, 4, 4) is added with 26 + 25 + 24 + 23 = (10, 3, 1, 6),
21 = (2, 2, 2, 2) is added with 26 + 25 + 24 + 23 + 22 = (3, 7, 5, 10),
20 = (1, 1, 1, 1) is added with 26 + 25 + 24 + 23 + 22 + 21 = (5, 9, 7, 12)
The result (6, 10, 8, 13) under the effect of the signal of the end of the counting of the

fourth input of the quotient output block to the control input of the demultiplexer is fed to
the input of the inverter, where the opposite value (5, 3, 9, 6) is located, arriving at the first
input of the multiplexer quotient, the second input of which receives (6, 10, 8, 13) from the
second output of the demultiplexer.

Since the control inputs of the private multiplexer and the unit multiplexer receive a
signal that the result is negative, the value (5, 3, 9, 6) from the inverter and (10, 12, 16, 18)
from the storage register “−1” in the RNS. Under the action of the signal “|X| = |Y|” (in
this case 0) from the third input of the quotient output unit to the control input of the
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quotient selection multiplexer, the value (5, 3, 9, 6) is sent to the output from the inverter
and since the signal “|X| < |Y|” (in this case, 0) from the second input of the quotient
output block is inverted by the second input of the AND gate, then the quotient output is
supplied with the value (5, 3, 9, 6), which corresponds to the value −127.

5. Comparative Analysis

The proposed implementation of the Euclidean division algorithm reduces the size
of the operands by half compared to the algorithm from [17] by using the Akushsky core
function instead of the approximate method. On the other hand, using the Akushsky
core function without critical cores allows reducing the depth compared to the algorithms
from [18,24–26] (see Table 1). By depth, we mean a number of the RNS processor elements,
circuit for arithmetic or Boolean operations, such as addition, multiplication, modulo, etc.

Table 1. Main properties of the studied Euclidean division algorithms, where a is the size of modulo
RNS in bits.

Ref. Dividend Divisor Size of
Coefficients Depth RNS Processor

Elements

[17] [0, P) (0, P) 2a · n log P n

[18] [0, P) (0, P) a a + 2n + 4 n

[24] [0, P) (0, P) a log n log P n2

log nloglogP + loglogP a · n2

[25] [0, P) (0, P) a · n + log n 2a · n log n + 3a log n n2

[26] [0, P) (0, P) a · n 2 log P n

new [0, P) (0, P) a · n log P n

Akushsky core function is a generalization of the Pirlo and Impedovo function. Both
Akushsky’s core function and approximate method possess similar arithmetic options and
used for similar application areas, for instance, Euclidean division algorithms. However,
Akushsky’s core function avoids computational errors arising due to rounding operations.

6. Conclusions

We propose an enhanced modular division implementation. It has an improved accu-
racy and performance with minimal hardware requirements. The proposed method reduces
the size of the operands by half in comparison with the RNS division algorithm based on
the approximate method. The field programmable gate arrays (FPGAs) implementation can
be used both as a separate device and as a coprocessor to perform non-modular operations.

We use Akushsky core function C(X) = |∑n
i=1 C(Bi) · xi|CP

with no critical cores due
to its monotonicity, which allows accurately comparing numbers and determining the sign
of the number.

Our method improves the accuracy of calculating the division of numbers and de-
termining the sign of the RNS numbers by avoiding rounding errors arising when the
approximate method based on the Chinese remainder theorem is used.
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